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Background and aims: The immune system plays a crucial role in the 
development of kidney diseases. Chronic kidney disease (CKD) can lead to 
various complications, potentially affecting multiple systems throughout the 
body. Currently, the description of the immune system in human CKD is not 
comprehensive enough. Constructing a CKD kidney atlas using single-cell RNA 
sequencing (scRNA-seq) can provide deeper insights into the composition and 
functional changes of immune cells in CKD, facilitating the discovery of new 
therapeutic targets.

Methods: We processed and integrated scRNA-seq datasets from healthy and 
CKD kidneys from three independent cohorts using the same approach (including 
42 normal samples and 23 chronic kidney disease samples). Subsequently, 
we  conducted gene enrichment and intercellular communication analysis to 
construct an immune cell atlas of the kidneys in CKD patients.

Results: We identified nine major kidney cell clusters. Further clustering analysis 
of different immune cell clusters revealed that, compared to normal kidneys, 
CKD patients’ kidneys had decreased CD16+ NK cells while CD4+ naive helper T 
cells and CCR7+ DC increased. Partial activation of the WNT signaling pathway 
was observed in T cells and NK cells of CKD patients, while some metabolism-
related genes were inhibited. Myeloid cell subgroups also exhibited abnormal 
signaling pathway alterations. Additionally, we discovered a unique population 
of SPP1 macrophages in CKD, which are recruited by chemokines released 
from aPT and aTAL cell subpopulations. These SPP1 macrophages may promote 
cellular fibrosis through the signaling of SPP1, FN1, and various receptors.

Conclusion: We established a human CKD kidney immune cell atlas and identified 
SPP1 macrophages as a unique cell type in CKD. The interaction between SPP1 
macrophages and damaged cells may serve as a potential therapeutic target for 
treating CKD in the future.
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1 Introduction

Chronic kidney disease (CKD) is a condition characterized by chronic structural and 
functional impairments of the kidneys due to various reasons, leading to a gradual loss of 
kidney function over time. Currently, CKD is a global public health concern, affecting 
approximately 10% of the world’s population, with its incidence on the rise worldwide (1). The 
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Global Burden of Disease Consortium predicts that by 2040, CKD will 
be one of the top five diseases contributing to reduced life expectancy 
(2). However, understanding of CKD remains inadequate, and 
treatment options are limited at present.

As CKD progresses, both the function and structure of the kidney 
undergo corresponding changes, ultimately leading to end-stage 
glomerular closure and tubulointerstitial fibrosis. The role of immune 
cells in CKD is of paramount importance. One of the most significant 
changes observed is the influx and expansion of immune cells (3). In 
CKD, damaged cells release a variety of cytokines to attract immune 
cells, which, once recruited, release pro-inflammatory cytokines (3, 4). 
These immune cells become excessively activated within the kidney, 
thereby further accelerating the progression of fibrosis (5). The advent 
of single-cell RNA sequencing (scRNA-seq) and spatial 
transcriptomics has yielded unparalleled insights into the molecular 
and cellular composition of healthy mouse and human kidneys, 
including changes during development and disease (6–11). However, 
current scRNA-seq studies on the cellular composition and functional 
changes in CKD have primarily focused on proximal tubules and 
epithelial cells (10, 11). A systematic characterization of the 
composition and functional changes of immune cells in CKD 
remains lacking.

Therefore, we integrated and analyzed three independent kidney 
scRNA-seq datasets to create a detailed immune cell atlas of the 
kidneys in CKD patients. By comparing differential gene expression 
ratios, gene enrichment, and cell communication analysis, 
we  identified changes in the composition and function of renal 
immune cells under physiological and pathological conditions. This 
exploration aimed to elucidate the impact of immune cells on CKD 
development, identify signaling pathways associated with these 
changes, and provide potential therapeutic targets for CKD treatment.

2 Methods

2.1 scRNA-seq data acquisition

The normal and CKD scRNA-seq datasets were obtained from 
published studies based on human kidney tissue. This study utilized 
the following human kidney scRNA-seq datasets as controls or CKD 
samples: Kuppe et al. (normal group = 9, CKD group = 6), (11) Lake 
et al. (normal group = 20, CKD group = 17) (10), Stewart et al. (normal 
group = 13) (12). The datasets were downloaded from the respective 
repositories using the provided accession numbers.

2.2 scRNA-seq data processing and 
clustering

scRNA-seq expression data analysis was performed using the R 
package Seurat (version 4.0.6) (13). A Seurat object list was established 
for each sample across diverse datasets. The DoubletFinder tool was 
utilized to remove potential doublets (14). Quality control measures 
were established by determining cutoff values derived from the 
distributions of each variable across the entire dataset. Cells were 
filtered for nFeature_RNA > 200 and nCount_RNA < 12,000 and 
mitochondrial reads < 30%. We removed ribosomal genes due to their 
strong influence on downstream clustering (15). Subsequently, each 

dataset was integrated using the scVI algorithm to remove batch 
effects between different samples (16). Cells were clustered based on 
a graph-based clustering approach in the FindNeighbors (top 30 PCA 
dimensions) and FindClusters functions (ranging from 0.2 to 1.2), 
then the clustree (17) (v0.4.3) R package was used to select an 
appropriate resolution by assessing cluster stability. Finally, 
we  obtained 32 clusters with resolution = 0.5. Marker genes for 
individual clusters were determined computed by FindAllMarkers 
function and the UMI count was a latent variable. Cell types were 
annotated using CellTypist and custom gene lists, “Adult_Kidney_
HCAKidney2022.pkl” was used as the reference dataset (18). The 
second round of clustering procedures for immune cells was the same 
as above.

2.3 Differential proportion analysis

We performed differential proportion analysis to assess shifts in 
cell subpopulation proportions between normal and CKD conditions, 
following the approach of Farbehi et al. (19). Cells were clustered 
across both conditions and assigned group (G) and cluster (L) labels. 
For each cluster, a statistic was computed, representing the difference 
in proportions between the conditions. To assess significance, a null 
distribution was generated by permuting cluster labels for 10% of cells 
(w = 0.1) across 100,000 iterations. Empirical p-values were calculated, 
and a Bonferroni correction was applied to control for multiple 
testing, with significant changes defined at p-value < 0.05.

2.4 Single-cell gene enrichment analysis

Single-cell gene set enrichment analysis was conducted using the 
VISION (v2.1.0) R package, following the instructions provided in the 
package’s documentation. Hallmark and KEGG gene sets were 
obtained from the Molecular Signatures Database (MSigDB) and used 
to calculate enrichment scores for each cell in the dataset (20, 21). 
These enrichment scores, reflecting pathway activity, were 
incorporated into Seurat objects for downstream analysis. For 
visualization, the enrichment scores were mapped onto the cells using 
the FeaturePlot function of Seurat, with max.cutoff and min.cutoff set 
to highlight the most relevant score ranges. To compare enrichment 
levels across different cell types or subtypes, the AverageExpression 
function was employed, averaging enrichment scores within each 
group. Heatmaps displaying these average scores were generated using 
the pheatmap package, providing a clear visualization of pathway 
activation patterns across various cell populations.

2.5 Cell communication analysis

Cell–cell signaling pathways between each identified cell cluster 
were comprehensively analyzed using CellChat (version 1.5.0), a tool 
specifically designed for the systematic analysis of cell–cell 
communication based on ligand-receptor interactions (22). Prior to 
the analysis, immune and non-immune cell Seurat objects were 
merged into a single integrated dataset to enable holistic investigation 
of intercellular communications across all cell types. For the 
inference of cell–cell communication networks, we  focused 
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exclusively on the secreted signaling interaction category from 
CellChat’s manually curated ligand-receptor interaction database, 
which encompasses experimentally validated protein–protein 
interactions and pathway annotations. The analysis pipeline included 
several key steps: First, expression data was preprocessed and 
normalized according to CellChat’s requirements. Subsequently, 
potential ligand-receptor interactions were identified based on the 
expression levels of signaling molecules. Statistical significance of 
these interactions was assessed using a probability threshold of 0.05. 
The communication pattern analysis was performed using CellChat’s 
built-in statistical approaches, including differential expression 
analysis and permutation tests. All other parameters in the CellChat 
algorithms were maintained at their default settings to 
ensure reproducibility.

We employed NicheNet to identify ligand-receptor interactions 
between injured cells and enriched immune cells. Initially, 
we  identified the intersection of differentially expressed genes 
between aPT, aTAL, and normal cells, selecting genes with 
log2FC > 0.5 and adjusted p-value < 0.05 as the genes of interest. All 
expressed genes in the enriched immune cells were used as the gene 
background, where a gene was considered expressed if it had 
non-zero values in at least 10% of cells within a cell type. 
Furthermore, aPT and aTAL were designated as sender cells, while 
the enriched immune cells were designated as receiver cells. Ligands 
expressed by sender cells were ranked based on Pearson correlation 
coefficients between ligand target predictions and observed 
transcriptional responses. Receptor cells were inferred based on 
NicheNet’s pre-built prior model, which leverages multiple curated 
ligand-receptor and signaling databases to infer interactions 
between sending ligands, receiving receptors, and downstream 
target genes.

2.6 Deconvolution analysis

To further investigate the relationship between SPP1+ 
macrophages and injured kidney cells, we employed the cell2location 
method, which was reported as the top-performing tool for this task 
in a recent benchmarking study. The Visium Spatial Gene Expression 
slide from Lake et al. (10). Briefly, cell2location is a Bayesian model 
that estimates the abundance of each cell population at each location 
by decomposing mRNA counts in Visium data using transcriptional 
signatures of reference cell types. Initially, we applied the negative 
binomial regression model implemented in cell2location and 
estimated the reference signatures of our annotated cell types based 
on scRNA-seq data. The regression model for single-cell data was 
initialized using batch as the batch_key, and the model was trained for 
a maximum of 250 epochs. Subsequently, for spatial transcriptomics 
data, we retained genes shared with scRNA-seq and initialized the 
regression model using single-cell reference signatures, default 
settings, and hyperparameters recommended by cell2location. 
Through manual visual inspection, we estimated eight cells per spot 
and accordingly set N_cells_per_location to 15. The model was then 
trained for a maximum of 30,000 epochs. We plotted the ELBO loss 
history during training and evaluated mapping quality by examining 
reconstruction accuracy plots. Additionally, we  utilized Scanpy’s 
plotting function scanpy.pl.spatial to visualize spatial scatter plots of 
cell type abundance in spatial coordinates.

3 Results

3.1 Single-cell profiling of chronic kidney 
disease

For a systematic evaluation of immune cell changes in chronic 
kidney disease, we integrated three independent scRNA-seq datasets 
using scVI, comprising a total of 65 samples, including 42 normal 
samples and 23 CKD samples (Figure 1A). The collected scRNA-seq 
data underwent the same processing pipeline for reprocessing. After 
strict quality control filtration, we  retained 165,905 cells (95,868 
normal; 70,037 CKD) for subsequent analysis. Using unsupervised 
clustering and after visualization by uniform manifold approximation 
and projection (UMAP), we  identified 32 distinct cell clusters 
(Figure 1B). We annotated cell types using CellTypist and classical 
marker genes (Figure 1C; Supplementary Figure S1B), resulting in 9 
major cell types and 19 subclasses, including proximal tubule (PT), 
endothelial cells (EC), immune cells, podocytes (Pod), ascending thin 
limbs (ATL) and distal convoluted tubule cells (DCT) (Figure 1D; 
Supplementary Figure S1A). Among them, adaptive proximal tubule 
(aPT) and adaptive ascending thin limb cells (aATL) are 
predominantly expressed in CKD samples (Figure 1E).

3.2 Changes in kidney T cell and NK cell 
composition and function in CKD

To better understand the changes in lymphoid cells within the 
kidney in CKD, we performed graph-based reclustering of 11,250 
subsets of T cells and NK cells. We then identified CD8 T cells, CD4 
T cells and NK cells based on the expression of canonical marker 
genes. The CD8 T cell group comprises three subgroups, while the 
CD4 T cell and NK cell groups each consist of two subgroups, along 
with one proliferating T cell subgroup (Figure  2A; 
Supplementary Figures S2A,D). T cells were identified by CD3D, and 
TYROBP gene was strongly expressed in NK cells 
(Supplementary Figure S2B). CD8 T cell were identified by the 
expression of CD8A, LTB was used as marker gene to identify CD4 T 
cell (Supplementary Figure S2C). The violin plot shows the specific 
expression of key marker genes for each subgroup (Figure 2B).

Cell subgroups with significant changes in relative proportions 
may be  one of the contributing factors to the occurrence and 
progression of chronic kidney disease. Cell relative proportions 
show significant changes in several cell subgroups in CKD, including 
CD16+ NK cells, CD4+ naive helper T cells, etc. (Figure 2C). To 
determine whether these changes are due to chance, we conducted 
permutation-based statistical test (differential proportion analysis) 
(19). As shown in Figure 2D, across different datasets, there are 
significant and consistently altered proportions, including a 
significant contraction of CD16+ NK cells (p < 0.001) and a 
significant expansion of CD4+ naive helper T cells (p < 0.001). As 
the primary mediators of cytotoxicity, the decrease in the CD16+ 
NK cell subgroup may be  associated with reduced NK cell 
cytotoxicity and the immunosuppressive environment of CKD (23). 
It has been reported that the progression of human CKD is 
associated with an increase in the number of CD4 naive helper T 
cells in the kidneys (24, 25). To further understand the clinical 
relevance of these changes, we analyzed the association between 
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lymphoid cell compositions and clinical parameters. When stratified 
by serum creatinine level, patients with impaired renal function 
(>140 μM) had a significantly lower proportion of CD16+ NK cells 
and an increased proportion of CD4+ naive helper T cells compared 
with patients with normal renal function (<140 μM) (p < 0.001) (26). 
Similarly, patients with impaired GFR (<60 mL/min/1.73m2) 
exhibited reduced CD16+ NK cells and increased CD4+ naive 
helper T cells compared to those with normal GFR (>60 mL/
min/1.73m2) (p < 0.001) (Figure 2E; Supplementary Figures S2E–H). 
In contrast, there were no significant differences in the analyzed 

comparisons of age-age strata (young (<30 years), adult (30–60 years) 
and elderly (>60 years) groups) and gender 
(Supplementary Figures S2E–H). These findings suggest that 
alterations in CD16+ NK cells and CD4+ naive helper T cells are 
strongly associated with renal functional status. To investigate the 
functional changes of T cells and NK cells in CKD, we then used the 
Vision tool to perform genome enrichment analysis on relevant cell 
subgroups. We observed that the cellular functions of T cells and 
NK cells in the kidney showed relatively consistent responses to 
CKD (Figure 2F). Several WNT signaling pathways were activated 

FIGURE 1

Integrated single-cell atlas of human normal and CKD kidney. (A) Graphic overview of this study design. The sample comprises scRNA sequencing data 
from 42 normal kidneys and 23 CKD kidneys obtained from three independent studies. (B) Uniform manifold approximation and projection (UMAP) 
visualization of 165,905 normal and CKD kidney cell atlases. (C) The prediction of cell type annotations using CellTypist. (D) UMAP plots for different 
cell types. The colors of the cells represent different cell types. (E) UMAP plots of cell clusters from different conditions.
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(Supplementary Figure S2E), while genes involved in glycolysis, 
glucose production and fatty acid metabolism were inhibited 
(Supplementary Figures S2F,G). The metabolic imbalance of 
immune cells can lead to the accumulation of toxic metabolites, 

oxidative stress, and fibrosis, which are key factors in the progression 
of CKD (27).

While our initial analysis captured various immune cell 
populations, B cells were excluded from the final analysis due to 

FIGURE 2

Changes in the composition and function of T cells and NK cells. (A) UMAP plots of different clusters. The colors of the cells represent different cell 
types. (B) Violin plot showing the expression levels of representative marker genes for 8 clusters. (C) Proportion of different cell populations in normal 
and CKD kidney tissues. (D) The percentages of cell clusters under different conditions were determined to exhibit significant changes based on 
Differential Proportional Analysis (DPA) (**Bonferroni-corrected p value < 0.01; ***Bonferroni-corrected p value < 0.001). (E) Percentage changes in 
cell clusters at different eGFR, and serum creatinine levels were determined according to difference proportions analysis (DPA) (***Bonferroni-
corrected p value < 0.001). (F) The heatmap displays the enrichment of Hallmark and KEGG gene sets within eight T and NK cell clusters in CKD or 
normal kidneys.
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technical limitations. B cells were notably underrepresented in our 
dataset (4,061 cells total), with only 4 out of 65 samples containing 
more than 30 B cells. Moreover, we observed significant sampling 
bias, with a single sample (CDm8) accounting for over 50% of all B 
cells. These technical constraints prevented reliable subclustering 
analysis and meaningful biological interpretation of B cell populations. 
Future studies specifically designed to capture adequate B cell 
populations will be  valuable for understanding their role in 
CKD pathogenesis.

3.3 Changes in kidney myeloid cell 
composition and function in CKD

Previous data from mice indicate that the plasticity of myeloid 
cells plays a crucial role in kidney injury and repair (28). To 
further characterize the composition and phenotypic changes of 
myeloid cells in CKD, we  performed unbiased clustering on 
myeloid cells, resulting in the classification of these cells into 11 
clusters. Based on the expression of typical marker genes in each 
cluster, they were categorized into mast cells, dendritic cells (DC), 
monocytes, and macrophages, with one cluster of mast cells, four 
clusters of DC, and three clusters each of monocytes and 
macrophages (Figures  3A–D). Differential proportion analysis 
revealed that subgroups with significant and consistent changes in 
composition across two independent datasets include CCR7+ DC 
and SPP1+ macrophages subgroups, which were scarcely detected 
in normal kidneys but appeared in CKD. The increased abundance 
of CCR7+ DC in CKD may promote migration to draining lymph 
nodes by binding to CCR19/CCR21 (Figures  3E,F) (29). The 
SPP1+ macrophages subgroup expands after organ injury, 
promoting the fibrotic process, and is associated with the prognosis 
of various diseases (30, 31). We next examined the relationship 
between myeloid cell populations and clinical parameters. The 
proportions of CCR7+ DC and SPP1+ macrophages were 
significantly higher in patients with renal impairment (serum 
creatinine > 140 μM) compared to those with normal renal 
function (p < 0.001). Similar patterns were observed when 
comparing patients with impaired GFR (<60 mL/min/1.73m2) to 
those with normal GFR (Figure 3G; Supplementary Figures S3A–D). 
In contrast, there were no significant differences in the analyzed 
comparisons of age-age strata and gender 
(Supplementary Figures S3A–D). The association between these 
clinical parameters and bone marrow cell composition provides 
additional evidence for a link between immune cell alterations 
and CKD.

We subsequently compared changes in pathway enrichment levels 
among DC, monocyte, and macrophage subgroups in CKD. In CKD, 
the enrichment level of genes downregulated due to KRAS activation 
increases in the four DC subgroups, whereas genes associated with 
fatty acid metabolism exhibit decreased enrichment levels 
(Figures  4A–C). Additionally, genes related to the TGF-BETA 
signaling pathway are downregulated in the three macrophage 
subgroups (Figures 4D–F). Furthermore, genes associated with the 
extrinsic apoptosis pathway are upregulated in the three monocyte 
subgroups, while genes related to fatty acid metabolism exhibit 
downregulation (Figures 4G–I). The observed changes in signaling 
pathways suggest their potential involvement in CKD pathophysiology.

3.4 Interaction network between SPP1+ 
macrophages and injured cells in CKD

Complex tissues like the kidney rely on cell–cell communication 
networks to coordinate physiological functions. SPP1 macrophages 
increase in CKD, whereas they are rarely detected in normal kidneys. 
To investigate the role of SPP1 macrophages in CKD, we  utilized 
CellChat to explore potential communication pathways between SPP1 
macrophages and damaged cells.

We first assessed the strength of cell–cell communication 
networks aggregated in CKD (Figure 5A), revealing a widespread 
network of communication among cells. Next, we  examined the 
signals emitted by SPP1 macrophages (Figure 5B), and the results 
showed that aPT, aTAL, and podocytes received the strongest signals. 
This suggests that SPP1+ macrophages primarily target damaged cells 
in CKD for regulation. We  further investigated the cellular 
communication of specific ligand-receptor pairs between SPP1+ 
macrophages and damaged cells (aPT and aTAL) (Figure 5C). The 
results showed 19 ligand-receptor pairs including SPP1, NAMPT, MIF, 
GRN, FN1, EREG and ANGPTL4 signaling pathways were involved 
in the communication from SPP1+ macrophages to damaged cells, 
with the ligand SPP1, FN1 and its multi-subunit receptors acting as 
the major signals (Figure 5C) and genes associated with SPP1 and FN1 
signaling exhibit high expression in damaged cells (Figure 5D). The 
receptor-ligand related genes of the SPP1 and FN1 signaling pathways 
are associated with the expression of the extracellular matrix (32). 
Excessive accumulation of the extracellular matrix is closely related to 
fibrosis (33), which may be one of the pathways through which SPP1+ 
macrophages promote organ fibrosis.

A substantial body of literature indicates that damaged renal cells 
recruit immune cells (34–36). Therefore, we applied NicheNet to 
explore the potential mechanisms by which damaged cells in CKD 
recruit immune cells (37). NicheNet integrates gene expression data 
with pre-existing signaling and gene regulatory network models to 
predict ligand interactions within the sending cells. These interactions 
are not limited to homologous receptors but extend to any potential 
downstream genes. In our analysis, we identified aPT and aTAL as 
the sending centers and defined target gene sets using the 
differentially expressed genes of aPT and aTAL compared to normal 
PT and TAL. NicheNet analysis was performed with the increased 
immune cell types as the receivers. The analysis of SPP1+ 
macrophages showed a higher ligand activity measure for CELSR1, 
LAMB2, and ADAM17 (Figure 6A), and the expression levels of 
these ligands were comparable in aPT and aTAL (Figure  6B). 
We subsequently inferred the target genes of these ligand-receptor 
interactions (Figure  6C). Lastly, we  examined the intersection of 
ligand lists for the increased immune cells and identified 10 
overlapping ligands (Figure  6D), including several chemokines 
responsible for immune cell infiltration. Notably, the expression of 
chemokines CXCL2, CXCL1, CXCL16, and CX3CL1 was increased 
in both aPT and aTAL (Figure 6E). Recent studies have indicated that 
damaged PT cells release CXCL1, which attracts immune cells and 
promotes the progression of renal fibrosis (38). Therefore, the 
upregulation of chemokines in damaged cells in CKD may represent 
a key mechanism for the recruitment of various immune cells. To 
further validate the interaction between SPP1+ macrophages and 
kidney injury cells, we  identified the spatial distribution of SPP1 
macrophages and kidney injury cells in combination with spatial 
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FIGURE 3

Changes in the composition of myeloid cells. (A) UMAP analysis was performed on myeloid cells to delineate 4 major cell populations. (B) UMAP plots 
of different clusters. The colors of the cells represent different cell types. (C) UMAP plots of cell clusters from different conditions. (D) Expression of 
typical marker genes in different myeloid cell clusters. (E) Proportion of different myeloid cell populations in normal and CKD kidney tissues. (F) The 
percentages of cell clusters under different conditions were determined to exhibit significant changes based on DPA (*Bonferroni-corrected p value 
<0.01; **Bonferroni-corrected p value <0.01; ***Bonferroni-corrected p value <0.001). (G) Percentage changes in cell clusters at different eGFR, and 
serum creatinine levels were determined according to difference proportions analysis (DPA) (***Bonferroni-corrected p value < 0.001).

https://doi.org/10.3389/fmed.2024.1434535
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Fan et al. 10.3389/fmed.2024.1434535

Frontiers in Medicine 08 frontiersin.org

transcriptome data. The results showed regional co-localization of 
SPP1 macrophages with kidney injury cells (Figures 6F,G), suggesting 
that there is recruitment of these kidney injury cells to SPP1 
macrophages and possible interaction between the two 
cell populations.

4 Discussion

Increasing evidence suggests that immune dysfunction is one 
of the key factors contributing to the occurrence and progression 
of CKD, known as secondary immunodeficiency related to kidney 
disease (SIDKD) (39). While progress has been made in 
understanding the immune mechanisms of kidney disease using 
mouse models (5, 40), their translation to human conditions 
requires further validation. This is because mice, particularly those 
bred under specific pathogen-free conditions, may have immune 
and inflammatory environments different from humans. Currently, 
the composition and changes of immune cells in the kidneys of 
human CKD patients remain undetermined compared to 
mouse kidneys.

In this study, we  integrated scRNA data from human CKD 
patients and normal kidney tissues to systematically analyze the 
composition and functional changes of immune cells, aiming to 
construct a comprehensive profile of the kidney immune system in 
CKD patients. By integrating and analyzing two independent 
datasets, we could effectively mitigate experimental biases arising 
from variations in experimental protocols, technical differences, 
limited sample sizes, and individual variations. In terms of changes 
in cellular composition, compared to immune cells in normal 
kidneys, CD16+ NK cells decrease, while CD4+ naive helper T cells 
and CCR7+ DC increase in the kidneys of CKD patients. In addition, 
SPP1+ macrophages are a unique cell type in CKD. In terms of 
cellular functional changes, the responses of T cells and NK cells in 
the kidney to CKD are relatively consistent, including activation of 
the WNT pathway and inhibition of some metabolic pathways. 
Functional changes in myeloid cell subsets vary in CKD, but there 
are also abnormalities in metabolic pathways. Some emerging 
therapies aim to achieve therapeutic goals by modulating the 
metabolic status of immune cells in the disease (41). Targeting 
immune metabolism is a promising approach to the treatment of 
kidney disease. It is noteworthy that we  observed cell-to-cell 
communication between SPP1 macrophages and injured cells in 
CKD, promoting cellular fibrosis through signal transmission via 
SPP1, FN1, and multiple receptors. Our findings align with existing 
literature demonstrating the pro-fibrotic role of SPP1+ macrophages 
in other organ systems, particularly in myocardial infarction (30). 
This cross-organ consistency lends additional credibility to our 
observations. The interaction between injured cells and SPP1 
macrophages should be considered as a potential therapeutic target 
for CKD treatment.

Our findings have several potential therapeutic implications. 
Firstly, the pathways involving relevant chemokines associated with 
CKD damage could be  targeted for intervention. Currently, 
clinically approved drugs targeting chemokines include anti-CCR4 
antibodies (Mogamulizumab) and CXCR4 antagonists (Plerixafor, 
AMD3100), which are utilized in the treatment of hematological 
malignancies. Additionally, there are ongoing efforts to develop 

various therapeutic strategies targeting different chemokine 
receptor-ligand axes, which have shown considerable promise and 
are currently in clinical development. Secondly, the depletion of 
SPP1+ macrophages through antibody-based or cellular therapies 
should also be considered.

To further validate the mechanisms identified, future studies 
should experimentally test the chemokine pathways observed in our 
analysis, such as the CXCL1-CXCR2 and CXCL16-CXCR6 axes, 
which are key in immune cell recruitment. Targeting these pathways 
using antagonists or knockout models could confirm their role in 
CKD progression. Additionally, SPP1+ macrophages, identified as a 
critical pro-fibrotic cell type, warrant further investigation through 
depletion strategies or receptor-ligand interaction studies. These 
experiments could provide valuable insights into immune-mediated 
fibrosis and novel therapeutic targets.

In summary, we have established a map of human CKD renal 
immune cells based on integrated analysis of different scRNA-seq 
data. This map delineates the detailed profiles of immune cells in 
the CKD renal microenvironment and reveals the potential value of 
therapeutic strategies targeting CKD-injured cells, SPP1 
macrophages, or molecules involved in their crosstalk. These 
findings greatly contribute to our understanding of the 
heterogeneity of immune cells in CKD kidneys and the complexity 
of the renal microenvironment. Nevertheless, the cellular 
communication between CKD-damaged cells and SPP1 
macrophages, as well as the mechanism by which SPP1 macrophages 
promote renal fibrosis, remain to be elucidated in future studies. 
Our current findings provide a solid foundation for future 
mechanistic studies. Furthermore, it is important to acknowledge 
that our current atlas lacks detailed B cell profiling due to technical 
limitations in cell capture and representation. This constraint affects 
our comprehensive understanding of adaptive immunity in CKD, 
particularly regarding antibody-mediated responses and B cell 
interactions with other immune populations. Future studies 
employing B cell-specific enrichment protocols would be valuable 
to complement our current findings and provide a more complete 
picture of immune responses in CKD. Additionally, disease activity, 
disease stage, and disease duration may have a significant impact 
on the composition and behavior of immune cells in CKD, which 
are not included in the current data. Therefore, further exploration 
of cellular composition and behavior at different stages of CKD is 
warranted in future research. Specifically, future studies should 
prioritize comprehensive clinical data collection to establish more 
robust connections between immune cell profiles and disease 
progression. Longitudinal sampling tracking immune cell changes 
would be particularly valuable, as it could reveal dynamic shifts in 
immune populations that correlate with disease advancement. 
Integration of standardized disease activity markers, precise staging 
criteria, and detailed treatment histories would help better 
understand therapeutic impacts on immune cell compositions. 
Moreover, comprehensive metabolic profiles, inflammatory 
markers, and comorbidity data could provide crucial context for 
interpreting immune cell alterations. Such multi-parameter analyses 
could potentially identify stage-specific immune signatures and 
reveal novel therapeutic targets. Understanding these correlations 
between immune cell dynamics and clinical outcomes could 
ultimately facilitate the development of more targeted therapeutic 
strategies for CKD patients.
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FIGURE 4

Changes in the function of myeloid cells. (A) Umap plot of DC subpopulations. (B) The heatmap displays the enrichment of Hallmark and KEGG gene 
sets within 4  DC subpopulations in CKD or normal kidneys. (C) Violin plots showing enrichment of KRAS down-regulated genes (left panel), fatty acid 

(Continued)
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metabolism genes (right panel) in the DC subpopulation of normal and CKD kidneys. (D) Umap plot of macrophages subpopulations. (E) The heatmap 
displays the enrichment of Hallmark and KEGG gene sets within 3 macrophages subpopulations in CKD or normal kidneys. (F) Violin plots showing 
enrichment of TGF-BETA signaling pathway in the macrophage subpopulation of normal and CKD kidneys. (G) Umap plot of monocytes 
subpopulations. (H) The heatmap displays the enrichment of Hallmark and KEGG gene sets within 4 monocytes subpopulations in CKD or normal 
kidneys. (I) Violin plots showing enrichment of extrinsic apoptosis pathway genes (left panel), fatty acid metabolism genes (right panel) in the monocyte 
subpopulation of normal and CKD kidneys.

FIGURE 4 (Continued)

FIGURE 5

Regulation of damaged cells by SPP1 macrophages in CKD. (A) Circle plot showing the strength of interactions between cell clusters in CKD. (B) Circle 
plot displays the interaction strength between SPP1 macrophages as signal senders and other types of cells in CKD. The thickness of the edges line 
represents the strength of the interactions. (C) The bubble plot displays all significant ligand-receptor interactions from SPP1 macrophages to PT, ATL 
and corresponding damaged cells. (D) Violin plots showing the expression of signaling genes SPP1 and FN1 in each cellular subgroup.
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FIGURE 6

Subpopulations of kidney aPT and aTAL cells recruit spp1+ macrophages by releasing chemokines. (A) NicheNet-predicted ligand activity when using 
spp1 macrophages as receiver cells. (B) NicheNet-predicted expression of ligand genes in aTAL and aPT. (C) NicheNet’s ligand-target matrix, represents 
the potential for regulation between ligands and target genes during communication between kidney-damaged cells and SPP1 macrophages. (D) Venn 
diagram of the list of ligand activities predicted by NicheNet when using different increased immune cells as receiver cells. (E) Violin plots showing 
expression of different chemokines in injured and normal cell types. (F) Spatial image of cell abundance estimated by cell2location for selected cell 
types (color intensity). (G) Estimated cell abundance (color intensity) of the cell type (color) shown on the image of the same CKD kidney sample. Scale 
bar is 1  mm.
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