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Inflammation is a process that is associated with the activation of distal 
immunosuppressive pathways that have evolved to restore homeostasis and 
prevent excessive tissue destruction. However, long-term immunosuppression 
resulting from systemic and local inflammation that may stem from dysbiosis, 
infections, or aging poses a higher risk for cancers. Cancer incidence and 
progression dramatically increase with chronic infections including HIV 
infection. Thus, studies on pro-tumorigenic effects of microbial stimulants from 
resident microbiota and infections in the context of inflammation are needed 
and underway. Here, we discuss chronic infections and potential neuro-immune 
interactions that could establish immunomodulatory programs permissive for 
tumor growth and progression.
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Introduction

Chronic infections have been identified as a significant risk factor for the 
development of various types of cancer. Helicobacter pylori, human papillomavirus 
(HPV), hepatitis B virus (HBV), hepatitis C virus(HCV), and Epstein–Barr virus(EBV) 
play prominent roles (1). Other infections such as Candida are also associated with 
cancers (2). Infectious agents and inflammation modulate a broad range of host immune 
responses, which in turn may promote carcinogenesis and progression (3). However, 
mechanisms related to infection-mediated immunomodulation in tumor development 
have not been completely understood. Local inflammatory signals in tissues provide a 
positive feedback loop to nerve fibers, glial, and immune cells which dynamically 
reciprocate in a recurrent fashion in the tumor microenvironment (4, 5). Here we discuss 
some of these interactions in intra-tumoral immunosuppressive milieu and cellular 
crosstalk at the neural-immune interface that may contribute to oral cancer initiation, 
progression, and metastasis.
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CD8 exhaustion and 
CD4+CD25+FOXP3+ regulatory cells 
(Tregs) – at the crossroads of 
immune-homeostasis, chronic 
infections, and tumor evasion

Chronic and persistent inflammatory stimuli (due to ongoing 
HIV replication, microbial translocation, or co-infections) have been 
shown to stimulate the expression of pro-inflammatory cytokines in 
people living with HIV (PLWH) (6–11). Accumulating evidence 
suggests that HIV may lead, at least in part, to an accelerated aging 
phenotype in immune cells and immunomodulatory/inflammaging 
phenotype (12–17). With regards to the oral mucosa, opportunistic 
infections (18) and altered oral microbiome/mycobiome profiles (19–
22) are also important features of oral inflammation in PLWH under 
treatment (23–26). Local and systemic inflammation in PLWH are 
linked to a wide range of co-morbidities, the most significant being 
increased propensity to malignancy (27–30). Some oral malignancies 
in PLWH are linked to HPV, EBV, and Kaposi’s sarcoma herpesvirus, 
as well as the HIV itself (31). However, the immune mechanisms of 
increased propensity to Head and neck cancers (HNC) in PLWH are 
not fully understood. HNC are the sixth most common cancers, 
accounting for 450,000 GLOBOCAN estimated deaths each year (32, 
33). Over two-thirds of all new cancers are diagnosed among adults 
aged ≥60 years. Oral squamous cell carcinoma (OSCC) are aggressive 
tumors constituting ~90% of all oral cancers, with a global incidence 
of ~350,000 new cases and 177,000 deaths annually. The treatment of 
OSCC mainly includes surgery, radiotherapy, and chemotherapy. The 
prognosis of OSCC is poor due to tumor recurrence (50%) or lymph 
node metastasis within 3 years, and the 5-year survival rate is ~50% 
(34, 35). Although our understanding of underlying oncogenic 
processes of OSCC is evolving and has led to Epidermal Growth 
Factor Receptor (EGFR) and PD-1 targeted therapies, major 
roadblocks exist. Several cancers, including a large proportion of oral 
cancers, do not respond to immune checkpoint inhibitors (36–40). 
Varied treatment efficacy between patients, inadvertent side effects, 
overtreatment, worsening prognosis, and increasing treatment costs 
contribute to treatment challenges. Therefore, there has been great 
interest in understanding the mechanisms that govern 
immunosuppression in cancer including the contributions of 
components of the tumor immune microenvironment (TIME).

Due to their crucial role in the anti-tumoral immune response, 
CD8+ T lymphocytes and their dysfunction have been a major focus 
of attention. In the context of chronic infections, inflammation, or 
cancer progression, persisting antigen stimulation of CD8+ T cells 
drives progressive loss of functionality and eventual deletion instead 
of memory formation (41, 42). The cells in TIME are known to release 
cytokines to engage checkpoints on immune cells, induce an increase 
in exhausted cytotoxic T cells, thereby disrupting the anti-tumoral 
immune response. Also, unceasing antigen stimulation in tumors 
profoundly alters T cell differentiation trajectories, leading to CD8+ 
precursors of exhausted T cells (TPEX cells), which share several 
common features with those in chronic infections (43). Exhausted 
CD8 T cells may comprise heterogeneous cell populations expressing 
a multitude of exhaustion markers such as TOX, PD1 and lymphocyte-
activation gene 3 protein (LAG3) and memory cell markers including 
T cell factor 1 (TCF1), B cell lymphoma 6 protein (BCL6), inhibitor 
of DNA binding 3 (ID3) and SLAMF6 (also known as LY108), C–C 
chemokine receptor type 7 (CCR7), CD62L, CD127, CD69 and 

eomesodermin (EOMES) (44–46) and are present in both lymphoid 
and non-lymphoid tissues. Apart from TPEX cells, effector-like, tumor-
reactive, exhausted CD8+ T cells (TEX cells) that are distinct from 
resting memory T cells are also found in TIME (47, 48). These subsets 
undergo gradual exhaustion in the face of persisting antigen 
stimulation giving rise to effector-like cytolytic exhausted T cells (TEEF 
cells), transient or intermediate differentiation state exhausted T cells 
(TINT cells) with antitumoral functions, as well as terminally exhausted 
T cells (TTEX cells) along this trajectory. It will be  of considerable 
interest to determine the functional relevance of these stem cell–like 
and exhausted CD8 T cells and factors that may drive their 
proliferation or exhaustion in the context of chronic infections 
and OSCC.

FOXP3+Tregs are central to immune homeostasis but have been 
implicated in cancer immune evasion and angiogenesis (49–53). These 
cells, along with tumor-associated macrophages (TAM), and myeloid-
derived suppressive cells (MDSC) accumulate in tumors and 
contribute to poor immunologic response against the tumor (54, 55). 
Tregs display a broad degree of functional heterogeneity and phenotypic 
plasticity within tissues and tumors Indeed we (17, 27, 56–58) and 
others have shown distinct populations of Tregs namely, 
T-bet+FOXP3+cells (that may be  dysfunctional; TregDys), 
ROR-γt+FOXP3+ (Treg17) cells, and PD-1+FOXP3+ cells (16, 17, 59), 
whose functions are significantly altered by microbiome, IL-6, and 
IL-1β in an mTOR dependent manner in oral mucosa (58). In solid 
tumors of nonlymphoid origin, Tregs may constitute 30–45% of CD4+ 
T cells, depending on the tumor type (55, 60), and can also hinder the 
success of α-PD1 cancer immunotherapy (61). Having a high Treg 
infiltration and highest Treg/CD8+ T cell ratio among all cancers, 
OSCCs are poised to benefit from Treg-targeted approaches (60). Intra-
tumoral FOXP3 + Treg: CD8 ratio is associated with poor prognosis and 
survival in human OSCC (62) and is linked to pro-tumorigenic 
functions of Tregs (55). Besides being recruited into tumors via 
chemotaxis, FOXP3+ Tregs can be  induced in situ in tumors by 
mediators released from tumor cells, TAM and MDSC (63). Increased 
accrual of Tregs is also observed in aging (age > 60) oral mucosa 
compared to younger mucosa (58, 64). In a 4-Nitroquinoline 1-oxide 
(4-NQO) mouse model of oral carcinogenesis, Candida albicans 
infection and zymosan exacerbate and accelerate dysplasia and 
hyperplasia demonstrating the role of fungal ligands in exacerbating 
tumor growth and progression. Our prior studies have established the 
requirement of TGF-β1 and microbiome in Treg cell induction and 
viability during Candida infection (59, 65–68). Several studies have 
suggested a link between oral fungi and the development of OSCC (2, 
55, 69). Yet, the underlying molecular mechanisms of OSCC initiation 
and progression are unknown. A combination of inflammaging and 
impaired immunity contributes to increased susceptibility to 
infections and cancer in elderly individuals. Candida infection is 
effectively cleared in young mice but causes oral inflammation in aged 
mice (58). Immunopathology involved the loss of anti-inflammatory 
function by IL-1β dependent Treg17, but an accumulation of IL-6 and 
TregDys in aged oral mucosa (58). These data suggest that aging may lead 
to loss of homeostatic mechanisms that maintain Candida in a 
non-inflammatory commensal state. Also, aged mice show increased 
fungal abundance and early filtration of Tregs and MDSC cells than 
young mice during oral tumorigenesis (55). Tumors in aged animals 
further show higher PD-1 expression (exhaustion marker) in CD8+ T 
cells coinciding with accelerated incidence of dysplasia, hyperplasia, 
and OSCC development when compared to younger mice. Elevated 

https://doi.org/10.3389/fmed.2024.1432398
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


D’Silva and Pandiyan 10.3389/fmed.2024.1432398

Frontiers in Medicine 03 frontiersin.org

resident fungal abundance in saliva implies the role of resident 
mycobiome dysbiosis in promoting immune dysfunction and 
tumorigenesis, although the cause versus consequence effect of the 
mycobiome is unknown. In summary, while evidence point to a link 
between inflammaging and immunomodulation mechanisms, the 
process by which mucosal cells are precisely poised for tumor growth 
in different contexts needs further exploration.

Fungal recognition receptors such as TLR-2 and dectin-1 are 
expressed by myeloid dendritic cells, monocytes, and macrophages. 
Dectin-1 binds specifically to β-1,3 glucans in fungi, as well as to 
endogenous galectins and annexins on apoptotic cells (70, 71). It has 
a C-type lectin-like carbohydrate recognition domain, whose 
stimulation leads to phosphorylation of Syk (p-SYK) and IL-1β 
secretion. Fungi can also induce inflammasome activation by signaling 
through MyD88/NF-κB and Caspase recruitment domain-containing 
protein-9/SYK pathways and engage pyrin domain-containing protein 
3 (NLRP3), which activates the protease caspase-1  in infected 
macrophages and other immune cells (72, 73). IL-1β is a typical 
cancer-inflammation-associated cytokine up-regulated in saliva 
derived from OSCC patients and is linked to poor prognosis for 
esophageal cancer (74). HIV can also activate inflammasome pathway 
and IL-1β secretion, which are linked to AKT activation, T cell 
dysfunction and Treg enrichment seen in oral mucosa of PLWH (16). 
Candida can further potentiate inflammasome pathway in the context 
of HIV (15, 16). IL-1β is also involved in maintaining 
immunomodulatory Foxp3+ROR-γt+ (Treg17) cells (56–58, 68, 74), 
which contribute to mucosal homeostasis, tumor immune evasion and 
autoimmunity control (75). Inflammasome activation can significantly 
alter the population size and functions of immune cells (76, 77), and 
are linked to tumor initiation and development (78). NLRP3 is also 
implicated in promoting Th1 responses and anti-tumor immune 
functions (79). Inflammasome activation and metabolic pathways are 
intricately connected and regulate each other through feed-back loop 
mechanisms. Activated caspase-1 can mediate multiple processes 
including (1) release of IL-1β, (2) pyroptosis (80), (3) mitochondrial 
damage (81), (4) cleavage of glycolytic enzymes (82) causing 
alterations in glycolytic metabolites (83), and (5) degradation of innate 
immune sensor proteins (84). For example, succinate, an intermediate 
of the tricarboxylic acid (TCA) cycle can activate NLRP3 through 
HIF-1α stabilization and reactive oxygen species production (85). 
Similarly, K+-depletion/efflux-induced canonical NLRP3 response is 
associated with increased glycolytic flux, which is dependent on the 
AKT/PI3-K/ mammalian target of rapamycin (mTOR) pathway, and 
upregulation hexokinase 1 the primary glycolytic enzyme (86). 
Therefore, immunometabolism and inflammasome pathways play 
pivotal roles in integrating growth signals and functions in T cells 
including Tregs and govern tumor permissive pathways (87–93). 
Understanding them will pave the way to new combinatorial strategies 
in the face of resistance to PD-1 immunotherapy, leading to improved 
patient outcomes.

Interactions between immune cells 
and neural cells in inflammation

The oral mucosa is richly innervated with sensory afferents for 
physiological sensory perception (94, 95). Innervation for the oral 
mucosa is from the maxillary and mandibular branches of the 

trigeminal nerves, facial, glossopharyngeal, vagus, and hypoglossal 
nerves; and by the spinal accessory nerve (96–98). The tongue receives 
additional sensory innervation from the glossopharyngeal nerve, and 
the chorda tympani branch of the facial nerve (97, 99). Bidirectional 
signals between tissue-resident immune cells and nerve fiber terminals 
form an integrated network coordinating and modulating 
antimicrobial immunity, inflammation and pain signals during 
infection, and tissue homeostasis (100–102). For example, microglia 
were found to cross-present antigen after acquisition from adjacent 
olfactory sensory neurons and provide a front-line defense against a 
neuroinvasive nasal viral infection (103). Residential macrophages 
play a homeostatic role in the control of tissue innervation of brown-
adipose tissue (104). Tissue-residential Tregs promote myelin 
regeneration upon damage of the central nervous system mediated by 
CCN2 (105). Infective agents, damaged host cells, and activated 
immune cells may initiate inflammatory signals in the nerve fiber 
environment (106). Such inflammatory chemical signals interacting 
with sensory nerve fiber terminals strongly associate with pain (107–
109). It occurs via the synthesis and release of inflammatory mediators 
such as prostaglandin (PG) and interactions with neurotransmitters 
and their receptors (107, 110). Arachidonic acid is a key lipid mediator 
driving pain and inflammatory responses (111, 112) and is 
metabolized by cyclooxygenase and 5-lipoxygenase, resulting in the 
synthesis of PG and leukotrienes. This pathway is involved in the 
release of PGE2, IL-1β and ATP (113) and neuronal nociceptor 
activation (113–115). Thus, emerging evidence demonstrate how 
tissue resident immune cells, mucosal and submucosal glial cells, and 
neurons are actively involved in tissue homeostasis, inflammation, and 
pain pathophysiology (114–116). Even stress-susceptible cellular and 
behavioral phenotypes are causally mediated by dectin-1, an innate 
immune receptor expressed in intestinal γδ T cells (117). Nerves also 
have an extensive and well recognized role in immune regulation via 
neurotransmitter neuropeptides such as calcitonin gene-related 
peptide (CGRP) and substance P (118). Glial cells surrounding 
trigeminal neurons (119, 120), also produce PGE2 during tissue injury 
or inflammation and may regulate the sensory neuronal function both 
in paracrine and autocrine manners (121–123), involving CGRP and 
SP (124–126). CGRP is a crucial neurotransmitter of sensory neurons 
innervating the mucosa (127, 128), although it’s modulatory role in 
oral mucosal immunity needs new exploration.

Interactions between immune cells 
and neural cells in tumor progression

In the last two decades, cancer neuroscience has revealed the 
significant role of nerves in cancer progression (129). Since nerves 
regulate tumor progression and immunity, there is emerging interest 
in the nerve-immune-cancer axis. Studies in cutaneous cancers suggest 
that the increased innervation and damage of nerves in cancer can 
promote adverse outcomes by favoring pro-tumoral immunity. Nerves 
in oral squamous cell carcinomas exhibit damage (97, 130, 131). 
Moreover, increased nerve density is associated with poor outcomes 
(132). Cytotoxic CD8+ T lymphocytes were recently shown to express 
RAMP1 (receptor activity-modifying protein 1), the receptor for the 
neuropeptide CGRP, which is produced by transcription of the Calca 
gene in mice (133). Balood et  al. showed that nociceptors release 
CGRP that induce RAMP1 on CD8+ T cells thereby leading to 
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functional exhaustion (133). These CD8+ T cells exhibited concurrent 
expression of exhaustion markers such as PD-1+LAG3+TIM3+ and 
suppression of effector functions, resulting in tumor progression. 
Importantly, ablation of the nociceptor neurons inhibited tumor 
growth, which was reversed by intra-tumoral injection of CGRP. The 
importance of these findings lies in the ability to sensitize tumors to 
immunotherapy by interrupting the cancer-neuro-immune axis. 
Perineural Invasion (PNI) is another phenomenon that is highly 
correlated with poor prognosis, increased likelihood of metastasis, 
higher recurrence rates, node involvement, and decreased survival in 
OSCC (97, 130, 131, 134, 135). Although it is a high-risk adverse 
feature in OSCC, there are currently no treatments targeting PNI, 
which is important route of tumor dissemination in OSCC. It is seen 
in most of OSCC and provides a challenge to complete resection due 
to neural extension away from the primary tumor that is missed 
during surgical margin evaluation. PNI requires crosstalk between 
multiple cells, paracrine signaling, and direct matrix remodeling in the 
perineural niche (136–138). TIME-produced mediators activate and 
sensitize primary afferent neurons, contributing to inflammation, 
peripheral nerve injury, and sensitization that also underlie pain 
associated with PNI (128, 139–141). The heterogeneity in levels of 
neurotropism and the predictive value of nerve-tumor distance for 
survival among N0 patients emphasizes the need for mechanistic 
studies and characterization of interactions between immune cells, 
nerves, and cancer cells in TIME. Recent findings in cutaneous 
squamous cell carcinoma lend support to the importance of 

nerve-immune interactions in tumor resistance to immunotherapy 
(142). Non responders to anti-PD-1 therapy are more prone to nerve 
damage and immunosuppression. In mice, denervation enhanced 
tumor sensitivity to anti-PD-1 therapies. In a syngeneic orthotopic 
mouse model of oral squamous cell carcinoma, tumors in Calca 
knockout mice were smaller than in wild type mice, and had an 
increased anti-tumor immune response, including CD8+ T cells and 
CD4+ T cells (143). In a subsequent study, surgical denervation of the 
lingual nerve in mice, inhibited tumor growth, enhanced cytotoxic 
activity of CD8+ T cells and improved response to anti-PD1 
immunotherapy (144). Findings from these oral cancer studies were 
corroborated in a recent in vitro and in vivo study (145).

Neuregulins (NRGs) and neurotrophic factors such as nerve 
growth factor (NGF) are expressed by leukocytes and can be involved 
in neuro-immune crosstalk. Amphiregulin (AREG) is a glycoprotein 
that was originally named Schwannoma-derived Growth Factor 
(SDGF) and is known to be neurotrophic (146). Schwann cell-derived 
AREG enhances nerve regeneration during peripheral nerve injury. 
AREG triggers EGFR signaling activating MAPK/ERK, PI3K/AKT, 
mTOR and STAT pathways in leukocytes (147). It is vital for tissue 
repair and the suppression of inflammation but is overexpressed in 
cancers (100, 148). AREG is also upregulated in Tregs in oral mucosa 
under chronic HIV infection, and may enhance their proliferation 
(16). GAL-1 is present in cytosolic compartments and as secreted form. 
It is known to promote cell–cell and cell-matrix communications and 
interact with glycoconjugates in TIME (149). GAL-1 overexpression is 

FIGURE 1

By releasing inflammatory mediators, tissue resident glial cells such as mucosal glia and Schwann cells and Tregs may modulate the synthesis and 
release of neurotransmitters and their receptors. Local cytokines may provide a positive feedback loop through which these cells interact in a 
reciprocal and recurrent fashion to induce neuropathological and immunosuppressive signals in PNI. These signals may be amplified by infections.
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observed in the lymphocyte populations adjacent to areas of perineural 
spread and is associated with poor disease-free survival and overall 
survival (150). GAL-1 is also known to be upregulated in FOXP3+ Tregs 
supporting their differentiation, expansion, recruitment, and 
immunosuppressive potential (151). However, much work remains to 
define precise cellular sources of these proteins and their functions at 
the neuroimmune interface during PNI (Figure 1).

Schwann cells (SC) are glial-type cells that nurture neurons during 
development, promote myelination of mature peripheral nerves, and 
play a crucial role in neural regeneration and mediate bidirectional 
interactions between inflammation and pain (136, 137, 139, 152, 153). 
An increase in non-myelinating SC, like those responding to nerve 
injury, is observed in close proximity to pancreatic cancer cells in 
patient specimens and correlates with tumor invasion and diminished 
survival in patients (136–138). While GFAP+ and S100β+ glial cells can 
be found in oral mucosa (154, 155), it will be crucial to study if these 
cells support and modulate bidirectional neuronal and immune 
signaling in TIME (141, 156). Tumor cells can activate c-Jun–
dependent reprogramming and kynurenine metabolism changes 
inducing them into non-myelinating/repair SC, which are involved in 
tumorigenesis (157). Except these recent reports in pancreatic cancer, 
the role of SC remains largely unexplored but could be an important 
cell-type explaining the heterogeneity of OSCC and amenable to 
therapeutic targeting in OSCC. Taken together, these studies suggest 
that the nerves and nerve-glia-immune interactions significantly 
impact cancer progression and could have a crucial role in the 
outcome of immunotherapy in oral cancer (Table 1).

Discussion

Cellular dysregulation related to microbiome dysbiosis, infections, 
and chronic inflammation that could result in malfunction at the 
neuroimmune interface contributes to initiation and progression of 
cancers. While infections are associated with tumors, precise 
mechanisms linking infection responses, immuno-senescence, 
immunosuppression in tumors are yet to be  studied. A new 
understanding of neurons and glial cells in immune exhaustion and 
suppression, and tumor development and dissemination of squamous 
cell cancers are crucial for opening new avenues of investigation leading 
to better treatment selection and developing new treatment strategies.
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TABLE 1 Cellular interactions in neuro-immune niche.

Authors Neuroimmune interactions Function

Sun, C., et al Tumor-associated nonmyelinating Schwann cell-expressed PVT1 promotes pancreatic cancer kynurenine 

pathway and tumor immune exclusion.

Pro-tumorigenic

Ji, R.R., et al Pain regulation by non-neuronal cells and inflammation. Pain

Huang, T., et al Schwann Cell-Derived CCL2 Promotes the Perineural Invasion of Cervical Cancer. Pro-tumorigenic

Chen, S., et al Schwann cell-derived amphiregulin enhances nerve regeneration via supporting the proliferation and migration 

of Schwann cells and the elongation of axons.

Darragh, L.B., et al. Sensory nerve release of CGRP increases tumor growth in HNSCC by suppressing TILs. Pro-tumorigenic

Tao, Z.Y., et al. Lingual Denervation Improves the Efficacy of Anti-PD-1 Immunotherapy in Oral Squamous Cell Carcinomas by 

Downregulating TGFbeta Signaling.

Pro-tumorigenic

Deborde, S., et al. Reprogrammed Schwann Cells Organize into Dynamic Tracks that Promote Pancreatic Cancer Invasion. Pro-tumorigenic

Schmitd, L.B., et al. Spatial and Transcriptomic Analysis of Perineural Invasion in Oral Cancer. Pro-tumorigenic

Balood, M., et al. Nociceptor neurons affect cancer immunosurveillance. Pro-tumorigenic

Perez-Pacheco, C., 

et al.

Increased Nerve Density Adversely Affects Outcome in Oral Cancer. Pro-tumorigenic

Scheff, N.N., et al. Tumor necrosis factor alpha secreted from oral squamous cell carcinoma contributes to cancer pain and 

associated inflammation.

Inflammation

Wang, H., et al. Enteric neuroimmune interactions coordinate intestinal responses in health and disease. Barrier immunity

Dombrowski, Y., et al. Regulatory T cells promote myelin regeneration in the central nervous system. Immunomodulation

Tsou, A.M., et al. Neuropeptide regulation of non-redundant ILC2 responses at barrier surfaces. Barrier immunity

Chiu, I.M., et al. Bacteria activate sensory neurons that modulate pain and inflammation. Infection

Talbot, S., et al. Silencing Nociceptor Neurons Reduces Allergic Airway Inflammation. Barrier immunity

Moseman, E.A., et al. T cell engagement of cross-presenting microglia protects the brain from a nasal virus infection. Barrier immunity

Mailhot, B., et al. Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. Inflammation
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