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The risk of lung cancer is significantly increased in patients with systemic sclerosis 
(SSc), yet the specific genes underlying this association remain unexplored. Our study 
aims to identify genes shared by SSc and lung cancer. We identified differentially 
expressed genes (DEGs) from SSc and lung adenocarcinoma (LUAD) datasets 
(SSc: GSE95065, LUAD: GSE136043) in the GEO database. We  found shared 
genes by intersecting top genes in protein–protein interaction networks by the 
STRING database. The area under the ROC curve (AUC) was calculated for each 
shared gene in validation datasets (SSc: GSE231692; LUAD: GSE43458), identifying 
PRKG2 as the core shared gene. We used the UALCAN platform to assess PRKG2 
expression in LUAD patients at various stages and lymph node metastasis states, 
and compared disease-free survival (DFS) between low and high PRKG2 expression 
LUAD groups. PRKG2 was overexpressed in A549 cells to study its impact on lung 
cancer cell proliferation and invasion in vitro. We identified seven shared genes 
(SCN7A, AGTR1, WIF1, PRKG2, LTF, AQP4, COL10A1), with the AUC for PRKG2 
exceeding 0.93  in both diseases (SSc AUC = 0.973; LUAD AUC = 0.939). The 
PRKG2 expression levels of LUAD patients with different clinical stages and lymph 
node metastasis states were consistently lower than those observed in normal 
individuals. The DFS of LUAD patients in the high PRKG2 expression group was 
higher than that in the low expression group (p = 0.028). In vitro experiments 
confirmed elevated PRKG2 expression inhibits the proliferation and invasion of 
lung cancer cells. PRKG2 is one of the genes shared by SSc and lung cancer, 
affecting the proliferation and invasion of lung cancer cells.
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1 Introduction

Systemic sclerosis (SSc) is a complex disease characterized by small vessel lesions, 
autoantibody production, and fibrosis affecting the skin and visceral organs (1). The incidence 
rate of SSc is 1.4 cases per 100,000 person-years (2). This disease significantly diminishes 
patients’ quality of life and life expectancy (3–5). Interstitial lung disease, pulmonary arterial 
hypertension, infections, and tumors are common causes of mortality in SSc patients (5).

Compared to the general population, SSc patients exhibit a significantly increased risk of 
tumorigenesis (6). The incidence rate of tumors in SSc patients varies from 3 to 10% across 
different populations (6–12). Among SSc patients, lung cancer is the most prevalent tumor, 
followed by breast cancer (6, 8, 9, 13). Risk factors for the occurrence of lung cancer in SSc 
patients include long-term lung involvement, smoking, prolonged SSc duration, low age at SSc 
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diagnosis, anti-topoisomerase I antibodies, a history of renal crisis, 
and male gender (14). Several studies have investigated potential 
common mechanisms between the two diseases, such as telomere 
shortening, glycolysis, oxidative stress, microbiome involvement, 
miRNAs, and LncRNAs (14). However, the relationship between SSc 
and neoplasms is complex, and there is no consensus among 
researchers regarding their common mechanisms. Further clarification 
of the shared mechanisms between these two diseases is necessary.

The occurrence of cancer in SSc patients complicates their 
therapeutic management. These patients require long-term, sustained 
immunosuppressive therapy (1), which contrasts with the reliance of 
anti-tumor therapy on an active immune response. Therefore, 
investigating potential targets for the prevention and treatment of SSc 
complicated by lung cancer is crucial. Genes are recognized as key 
elements in the pathogenesis of diseases. Identifying susceptibility 
genes could aid in the early prevention and intervention of SSc with 
concurrent lung cancer. Nevertheless, knowledge about core genes 
that are common to both SSc and lung cancer is currently limited, 
highlighting the need for further research.

The rapid advancement of bioinformatics and the availability of 
public databases have greatly facilitated the identification of 
pathogenic genes (15). To date, no bioinformatics-based research has 
explored the core shared genes between SSc and lung cancer. In this 
study, we employed bioinformatics methods to analyze the core shared 
genes between SSc and lung cancer, with the aim of identifying 
potential pathogenic genes and elucidating shared mechanisms.

2 Materials and methods

2.1 Data source

The data of gene expression profile for SSc and lung cancer were 
obtained from the Gene Expression Omnibus (GEO) database. The 
GEO database, maintained by the National Center for Biotechnology 
Information (NCBI), is a public repository for gene expression data, 
encompassing both microarray and next-generation sequencing 
studies. We  utilized the GEO database to download and analyze 
datasets relevant to our research objectives, thereby gaining insights 
into the molecular mechanisms underlying diseases. Following 
screening, GSE95065 dataset was selected as the SSc expression dataset, 
and GSE136043 dataset as the lung adenocarcinoma (LUAD) dataset. 
The GSE95065 dataset includes transcriptomic sequencing data of skin 
biopsies from 18 SSc patients and 15 healthy controls (16). The 
GSE136043 dataset comprises mRNA expression profiles from five 
primary LUAD tissues and five non-neoplastic tissues (17). 
Additionally, we utilized the GSE231692 and GSE43458 datasets for 
validation. The GSE231692 dataset comprises expression profiles from 
skin biopsies of 33 SSc patients and 14 healthy controls (18). The 
GSE43458 dataset encompasses gene expression profiles from 80 
LUAD samples and 30 corresponding normal lung tissue samples (19). 
We also utilized the GSE40839 and GSE231693 datasets to analyze the 
expression levels of the core shared gene in lung tissue fibroblasts of SSc 
associated interstitial lung disease (SSc-ILD) and normal populations. 
The GSE40839 dataset includes the expression profiles of fibroblasts in 
lung tissue from 10 normal controls and 8 SSc-ILD patients (20). The 
GSE231693 dataset contains expression profile data of fibroblasts from 
20 normal lung tissues and 20 SSc-ILD lung tissues (18).

2.2 Data standardization and processing

GEO2R, provided by NCBI, is an online tool designed for 
analyzing gene expression data within the GEO database. The box 
plots generated by GEO2R were used to display the distribution of 
expression levels across all samples, which allowed for the assessment 
of dataset quality, such as variability between samples and the 
normality of the data. Therefore, we employed GEO2R to confirm the 
standardization of the GSE95065 and GSE136043 datasets. Differential 
gene expression analysis was conducted on these two datasets. 
We  applied the “limma” package (version 3.40.6) in R to identify 
differentially expressed genes (DEGs) (21). Thresholds for differential 
gene expression were set as p < 0.001 and |fold change| > 2 for the 
LUAD group, and p < 0.001 and |fold change| > 1.3 for the SSc group. 
Subsequently, we utilized Cytoscape software for Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analyses on the DEGs (22) and constructed protein–protein 
interaction (PPI) networks using the STRING database (23), in order 
to consolidate all available and predicted protein–protein interactions.

2.3 Identification of shared genes in SSc 
and LUAD

We imported both PPI networks into Cytoscape software and 
screened these networks for top genes using the “cytoHubba” plugin 
(24), which ranks genes based on their network topological properties. 
Next, we  intersected the top DEGs from both diseases to identify 
shared genes potentially involved in the pathogenesis of both diseases.

2.4 Identifying the core shared gene of SSc 
and LUAD

Ferroptosis exacerbates pulmonary fibrosis in SSc and leads to cell 
death in lung cancer, playing a significant role in the pathogenesis and 
progression of both diseases. Therefore, to identify the core shared 
gene between the two diseases, we  investigated the correlation 
between these shared genes and ferroptosis-marker genes. All 
ferroptosis marker genes were sourced from the FerrDb database, the 
first global repository dedicated to the study of ferroptosis regulators 
and ferroptosis-disease relevance (25). We employed the “corrplot” R 
package to evaluate the correlation between the marker genes and the 
shared genes across the datasets. Furthermore, to determine the 
discriminatory ability of these shared genes in distinguishing LUAD 
and SSc patients from normal individuals, we used the “pROC” R 
package to construct receiver operating characteristic (ROC) curves 
and calculate the area under the curve (AUC) for each gene within 
both the SSc and LUAD validation datasets (26).

2.5 PRKG2 and its related genes

We identified gene groups closely associated with PRKG2 using 
the GeneMANIA database (27). Subsequently, we performed GO and 
KEGG enrichment analyses on PRKG2 and its associated genes. This 
analysis aids in elucidating the potential molecular mechanisms 
underlying PRKG2.
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2.6 The differential expression, 
clinicopathological analysis and prognosis 
of PRKG2 in LUAD

UALCAN is a powerful bioinformatics platform that incorporates 
sequencing data from the TCGA database (28). Utilizing these data, 
we assessed the expression levels of PRKG2 and its correlation with cancer 
staging and lymph node metastasis status in LUAD patients. GEPIA2 is a 
comprehensive platform designed for personalized analysis, offering data 
from 9,736 tumor types and 8,587 normal samples within the TCGA and 
GTEx projects (29). We employed GEPIA2 to analyze differences in 
overall survival (OS) and disease-free survival (DFS) among LUAD 
patients stratified by low and high PRKG2 expression.

2.7 Estimation of immune infiltration in 
LUAD

CIBERSORT, the most frequently cited tool for assessing immune 
cell infiltration, operates on the principle of linear support vector 
regression for deconvolution analysis of the expression matrix of 
human immune cell subtypes (30). We  utilized CIBERSORT to 
evaluate the influence of PRKG2 on immune cell infiltration within 
lung cancer tissues, with parameters set to signature genes (LM22), 
batch correction mode (B-mode), and 1,000 permutations. To bolster 
the credibility of our findings, we also referenced the TIMER database 
(31), an alternative approach for quantifying immune cell infiltration, 
to assess the impact of PRKG2 expression on the infiltration levels of 
distinct immune cell types in LUAD.

2.8 Cell culture and transfection

The human-derived LUAD A549 cell line was cultured in 100-mm 
cell culture dishes at a concentration of 1 × 106 cells/mL for this study. 
We then added 10 mL of RPMI 1640 complete medium containing 1% 
Penicillin/Streptomycin solution and 10% fetal bovine serum. When 
the cell density reached approximately 70% confluence, the PRKG2 
overexpression plasmid (FLAG-PRKG2) and the negative control 
plasmid (FLAG-NC) were transfected into A549 cells using 
Lipofectamine™ 3000 (L3000075, Invitrogen™, United States) and 
Opti-MEM (31985, Gibco, United States). After 48 h, three groups of 
cells (FLAG-PRKG2 overexpression, FLAG-NC control, and blank 
control) were collected.

2.9 Quantitative real time PCR

We extracted total RNA from each group of A549 cells. 
Subsequently, cDNA was synthesized using a reverse transcription kit. 
The mRNA expression of PRKG2 was quantified by qPCR using a kit 
(11143ES50, Yeasen Biotechnology, China), with GAPDH serving as 
an internal reference gene. The primer sequences were as follows:

PRKG2
forward: 5′-GGTTCCGTGAAACCCAAACA-3′
reverse: 5′-CACCACATCCTGAAGCTTGTT-3′

GAPDH

forward: 5′-ATCATCAGCAATGCCTCCTG-3′
reverse: 5′-ATGGACTGTGGTCATGAGTC-3′.

2.10 Cell proliferation experiment

We utilized the Cell Counting Kit-8 (CCK-8, C6005, NCM 
Biotech, China) to assess the proliferation of A549 cells in both the 
FLAG-PRKG2 overexpression and control groups. Cells from each 
group were plated into 96-well plates. After the addition of the CCK-8 
reagent, all plates were incubated at 37°C for 4 h, and then the 
absorbance at 450 nm was measured using a microplate reader.

2.11 Wound healing assay

Twenty four-well plates were utilized to culture each group of 
A549 cells. Upon reaching 100% confluence, a 200-μl pipette tip was 
used to create a scratch line in each group. The cells were rinsed with 
PBS, and photographs of the scratches were taken using a microscope. 
Additional photographs of the two groups of cells were captured after 
a 24-h interval and compared with the initial images.

2.12 Cell migration and invasion assay

Matrigel was applied to the upper surface of Transwell chambers 
(catalog number 3470, Corning, United States) for the cell invasion 
assay. Serum-free medium, used to culture each group of A549 cells, 
filled the upper chamber, whereas the lower chamber contained 
medium with 20% fetal bovine serum. After a 36-h incubation in a cell 
incubator, the upper chamber was removed, and the non-invading 
cells on the upper surface were wiped clean. The cells that invaded 
through the Matrigel were stained with methylene blue and then 
visualized and counted under a microscope. Except for the Matrigel 
application, the remaining steps of the cell migration experiment 
closely resembled those of the invasion assay. The detailed procedures 
for cell invasion and migration assays can be referred to the study by 
Wen et al. (32).

2.13 Statistical analysis

We utilized R software (version 4.0.5) for generating all figures. 
Data from the two groups were compared using an unpaired t-test. 
The criterion for statistical significance was a p-value of less than 0.05. 
Each assay was repeated a minimum of three times.

3 Results

3.1 DEGs and functional enrichment 
analysis

The GEO2R analysis results indicate that the GSE95065 and 
GSE136043 datasets have been standardized (Figures 1B,F). DEGs are 
depicted on volcano plots, where upregulated genes are marked with 
red dots, and downregulated genes with blue (Figures  1A,E). In 
comparison to normal individuals, the SSc group exhibited upregulation 
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of 47 genes and downregulation of 216 genes. Likewise, the lung cancer 
group showed upregulation of 274 genes and downregulation of 182 
genes. Subsequently, we conducted GO/KEGG functional enrichment 
analysis for these DEGs. The DEGs from the SSc dataset are associated 
with various signaling pathways, including blood coagulation, positive 
regulation of interleukin-10 production, epithelial cell apoptosis, neural 
impulse transmission, and regulation of CoA-transferase activity. 
Similarly, The DEGs from the lung cancer dataset are involved in 
pathways such as heparin binding, membrane depolarization during 
action potentials, negative regulation of chemotaxis, and morphogenesis 
of branching structures (Figures 1C,D,G,H).

3.2 Shared genes in SSc and lung cancer

We constructed PPI networks for DEGs using the STRING database 
(Figures 2A,C). Subsequently, we identified the top 100 DEGs from the 
LUAD dataset and the top 120 DEGs from the SSc dataset. Utilizing the 
cytoHubba plugin, we  identified several DEGs in central positions, 
including SERPINE1, PRKG2, AGTR1, IL-6, CCL2, and ACTB in the 
SSc dataset, and PROM1, FGF2, VEGFA, SPP1, PRKG2, and BDNF in 
the LUAD dataset (Figures 2B,D). By intersecting these top DEGs, 
we recognized seven genes potentially involved in the pathogenesis of 
both SSc and lung cancer: SCN7A, AGTR1, WIF1, PRKG2, LTF, AQP4, 

and COL10A1 (Figure 2E). By analyzing the correlation of these shared 
DEGs with ferroptosis marker genes, we found that in the SSc group, 
PRKG2 was significantly positively correlated with GPX4 and negatively 
with PTGS2, NFE2L2, and FTH1 (Figure 2F). In the lung cancer group, 
PRKG2 exhibited significant positive correlation with NFE2L2, 
SLC40A1, TFRC, and significant negative correlation with CHAC1 and 
HSPB1 (Figure 2G). Additionally, using independent validation datasets 
(LUAD: GSE43458; SSc: GSE231692), we evaluated the capacity of these 
shared DEGs to distinguish between the two diseases and the normal 
population. The results showed that PRKG2 had an AUC greater than 
0.93  in both diseases (SSc AUC = 0.973; LUAD AUC = 0.939) 
(Figures 2H,I). In conclusion, we propose PRKG2 as a core shared gene 
between SSc and lung cancer.

3.3 PRKG2 expression and biological 
process analysis

3.3.1 Expression levels of PRKG2 in SSc, LUAD, 
and SSc-ILD group

The PRKG2 expression levels in tissues from SSc and lung cancer 
patients were significantly lower than those of normal individuals, as 
evidenced by the GSE95065 and GSE136043 datasets (Figures 3A,B). 
Analysis of the TCGA database indicated that primary LUAD patients 

FIGURE 1

Identification and enrichment analysis of DEGs in SSc and lung cancer datasets. (A) Volcano plot of DEGs in the GSE95065 dataset; (B) Standardization 
of the GSE95065 dataset; (C) GO functional enrichment analysis of DEGs in the GSE95065 dataset; (D) KEGG pathway enrichment analysis of DEGs in 
the GSE95065 dataset; (E) Volcano plot of DEGs in the GSE136043 dataset; (F) Standardization of the GSE136043 dataset; (G) GO functional 
enrichment analysis of DEGs in the GSE136043 dataset; (H) KEGG pathway enrichment analysis of DEGs in the GSE136043 dataset.
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had lower PRKG2 expression levels than normal individuals 
(Figure 3C). The expression levels of PRKG2 in pulmonary fibroblasts 
from lung tissues of SSc-ILD patients were significantly lower than 
those in fibroblasts from normal lung tissues in the GSE231693 

dataset. Additionally, the PRKG2 expression levels in pulmonary 
fibroblasts from SSc-ILD patients were also lower than in the control 
group in the GSE40839 dataset, yet this difference was not statistically 
significant (Figure 4A).

FIGURE 2

Core shared DEGs from SSc and LUAD datasets. (A) PPI network of DEGs from the SSc dataset; (B) Heatmap of connections for the top 120 DEGs 
within the SSc dataset; (C) PPI network of DEGs from the LUAD dataset; (D) Heatmap of connections for the top 100 DEGs within the LUAD dataset; 
(E) Venn diagram showing the intersection of core DEGs between the SSc and LUAD datasets; (F) Correlation heatmap for the seven shared genes and 
ferroptosis marker genes in SSc; The numbers enclosed in circles refer to the results of the correlation analysis between two genes. (G) Correlation 
heatmap for the seven shared genes and ferroptosis marker genes in LUAD; The numbers enclosed in circles refer to the results of the correlation 
analysis between two genes. (H) ROC curve and AUC for the seven shared genes within the SSc validation dataset; (I) ROC curve and AUC for the 
seven shared genes within the LUAD validation dataset.
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3.3.2 PRKG2 expression and clinical outcomes in 
LUAD patients

The expression of PRKG2 in LUAD patients with different clinical 
stages and lymph node metastasis status was significantly lower than 
that in the normal population (Figures 3D,E). We categorized all lung 
cancer patients from the GEPIA2 database into low and high PRKG2 
expression groups based on the median expression value of PRKG2. 
The median DFS was significantly longer in the high PRKG2 
expression group compared with the low expression group (p = 0.028), 
whereas the median OS was shorter (p = 0.037) (Figures 3F,G).

3.3.3 Genes closely related to PRKG2 and its 
potential signaling pathways involved

To investigate the signaling pathways associated with PRKG2, 
we identified a close association between PRKG2 and genes such as 
PTS, IRAG1, KCNMB1, KCNMB4, KCNMB3, SPR, GUCY1A1, and 
PDE5A (Figure 3H). The GO/KEGG functional enrichment analysis 

for PRKG2 and these related genes revealed that these genes influence 
various cellular components, including those involved in the nitric 
oxide stimulation of guanylate cyclase, cGMP metabolic processes, 
and calcium-activated potassium channels (Figure 3I).

3.4 Correlation of PRKG2 expression with 
immune cell infiltration in lung cancer

After analyzing data from the CIBERSORT database, we observed 
a positive correlation between PRKG2 expression and the infiltration 
of M2 macrophages, mast cells, and dendritic cells, as well as a 
negative correlation with Treg cells and natural killer cells 
(Figures 5A,B). The data from TIMER database also demonstrated 
significant positive correlations between PRKG2 expression and the 
infiltration of CD8+ T cells, macrophages, dendritic cells, and 
neutrophils (Figure 5C).

FIGURE 3

PRKG2 expression levels in tissues and the biological processes associated with PRKG2. (A) Expression levels of PRKG2 in the SSc dataset; 
(B) Expression levels of PRKG2 in the LUAD dataset; (C) Expression of PRKG2 in LUAD samples as per the TCGA database; (D) Expression of PRKG2 in 
LUAD samples across different pathological stages; (E) Expression of PRKG2 in LUAD samples categorized by nodal metastasis status; (F) Kaplan–Meier 
curve for overall survival for low and high PRKG2 expression groups in LUAD; (G) Kaplan–Meier curve for disease-free survival of low and high PRKG2 
expression groups in LUAD; (H) PRKG2 and its associated genes; (I) GO/KEGG enrichment analysis for PRKG2 and its associated genes. *** indicates 
p < 0.001; ** indicates p < 0.01.
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3.5 PRKG2 inhibits the proliferation and 
migration of A549 cells in vitro

To elucidate the effects of PRKG2 on proliferation, migration, 
and invasion of A549 cells, we overexpressed PRKG2 in A549 cells 
in vitro (Figure 4B). The MTT proliferation assay indicated that 

PRKG2 significantly inhibited the growth of A549 cells 
(Figure  4C). Additionally, another assay showed that elevated 
PRKG2 expression slowed the wound healing of A549 cells 
(Figures 4D,E). The Transwell assay revealed that high PRKG2 
expression inhibits the migration and invasion of A549 cells 
(Figure 4E).

FIGURE 4

Inhibitory effects of PRKG2 on lung cancer cells in vitro. (A) Expression levels of PRKG2 in fibroblasts of lung tissues of SSc-ILD and normal populations 
within the datasets GSE40839 and GSE231693; (B) Overexpression of PRKG2 in A549 cells; (C) MTT assay for the impact of PRKG2 on A549 cell 
proliferation; (D) Wound-healing assay for the effect of PRKG2 on A549 cell migration; (E) Transwell assay for the influence of PRKG2 on A549 cell 
migration and invasion. *** indicates p < 0.001.

FIGURE 5

Associations between PRKG2 expression and immune cell infiltration in lung cancer. (A) Heatmap depicting the associations between PRKG2 and 
immune cells; (B) Relative percentages of associations between PRKG2 and immune cells; (C) Correlations between PRKG2 expression and the 
infiltration of immune cells.
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4 Discussion

Systemic sclerosis (SSc) is an autoimmune disease with one of the 
highest mortalities (33, 34), leading to substantial suffering and a 
heavy burden on the lives of affected patients (1). As early as the 1990s, 
a seminal population-based study by Persson et  al. identified a 
significant increase in cancer incidence among SSc patients (35). 
Subsequent research from various countries has consistently 
highlighted an elevated cancer risk in SSc, with a particular emphasis 
on lung cancer (10, 36–39). Currently, lung cancer is the leading cause 
of cancer-related death in China, characterized by early metastasis and 
high mortality (40). Deaths attributable to lung cancer also account 
for a significant proportion of all-cause mortality in SSc patients (14).

With advances in gene sequencing technology, numerous public 
databases have been established. Researchers have since developed a 
range of bioinformatics tools, yielding meaningful findings that have 
significantly indicated potential research directions. However, 
variations in sequencing methodologies and standards result in the 
incomparability of sequencing datasets, posing challenges for analysis. 
Consequently, drawing on prior research, we applied a novel approach 
to address these challenges in our study, a method also employed by 
other investigators (41, 42). The GSE95065 and GSE136043 datasets 
are standardized transcriptomic profiles from the GEO database, 
facilitating our analysis of gene expression at the mRNA level. By 
analyzing differential gene expression of tissues between patients and 
normal individuals within datasets, we  eliminated discrepancies 
arising from different detection methods and data processing 
protocols. This approach ensures the comparability of the DEGs from 
the two datasets.

After ensuring the comparability of results between datasets, 
we conducted a further search for potential core genes associated 
with both diseases. We selected varying numbers of DEGs from the 
datasets with the aim of identifying additional core genes specific to 
SSc. The linkage analysis of the top DEGs revealed the presence of 
multiple genes at the core locus for both diseases, with PRKG2 being 
particularly notable. The intersection of top DEGs also suggested 
that PRKG2 expression is aberrant in both conditions. Ferroptosis, 
an iron-dependent programmed cell death, is characterized by the 
accumulation of lipid peroxides and the peroxidation of unsaturated 
fatty acids in the cell membrane, resulting in membrane rupture and 
cell demise (43). Cao et  al. demonstrated that ferroptosis in 
macrophages exacerbates fibrosis in the SSc mouse model (44). 
Zhang et al. identified ferroptosis and its pro-inflammatory drivers 
in SSc-ILD at the single-cell transcriptome level (45). Wu et  al. 
observed upregulated expression of ferroptosis-related genes in SSc 
patients, which are involved in regulating cellular proliferation, 
differentiation, and migration (46). Also, ferroptosis triggers lung 
cancer cell death, modulates the tumor microenvironment, impacts 
metastasis, and alters cell sensitivity to chemotherapeutic agents 
(47). Considering the impact of ferroptosis on both diseases, 
we  analyzed the correlation between seven shared genes and 
ferroptosis marker genes, revealing that PRKG2 exhibits the 
strongest association. Furthermore, analysis of independent 
validation datasets confirmed that PRKG2 is the most effective gene 
for distinguishing SSc and LUAD from the normal population, 
suggesting that PRKG2 is a core gene shared between SSc and 
lung cancer.

In the GSE95065 and GSE136043 datasets, PRKG2 expressions 
of SSc and LUAD patients were significantly lower than those of 
normal individuals, a finding also corroborated by data from the 
TCGA database. Subsequently, we  observed that PRKG2 
expressions of LUAD patients across various stages and lymph 
node metastasis statuses were significantly lower than that of the 
normal population. LUAD patients with low PRKG2 expression 
showed significantly shorter median DFS (p = 0.028), yet longer 
median OS (p = 0.037). This discrepancy may arise because OS is 
more susceptible to the influence of various confounding factors, 
including comorbidities. This suggests that PRKG2 may exert a 
sustained inhibitory effect on the onset and progression of lung 
cancer. Building on this hypothesis, we overexpressed PRKG2 in 
lung cancer cell lines in  vitro and found that it significantly 
inhibited cell growth, invasion, and migration, aligning with 
previous research. Browning et al.’s study suggests that PRKG2 
may suppress the proliferation of colon epithelial cells by 
downregulating Sox9 (48). Additionally, Chen et al. demonstrated 
that PRKG2 can inhibit the proliferation of various cancer cells, 
including lung, ovarian, and breast cancer cells, by blocking the 
MAPK/ERK, PI3K/Akt, Raf/MEK signaling pathways, and EGF/
EGFR-related signaling cascades (49–52). Consequently, low 
expression of PRKG2 facilitates the growth and migration of 
lung cancer.

The PRKG2 gene, approximately 125 kb in length and comprising 
19 exons, is located on chromosome 4 (53). It primarily encodes type 
II cGMP-dependent protein kinase (cGK II) (54). Reports indicate 
that robust cGK II signaling is detectable in the lungs of normal mice 
(55, 56), and PRKG2 is highly expressed in fibroblasts within normal 
lung tissue (57). As previously mentioned, long-term lung involvement 
is a notable risk factor for lung cancer development in SSc patients 
(14). Many researchers also found a correlation between pulmonary 
fibrosis and the site of lung cancer occurrence, implying that sustained 
fibrosis may underlie lung cancer development in SSc patients (7, 8, 
14). Additionally, some studies propose a link between the 
carcinogenic mechanism of SSc and pro-fibrotic factors, such as 
miR-21, miR-199a-3p, miR-199a-5p, and miR-214 (58–61). These 
molecules, on one hand, enhance the expression of TGF-β to promote 
fibrosis (59), and on the other hand, they may also contribute to 
tumorigenesis (60). Although the PRKG2 expression levels in 
pulmonary fibroblasts from SSc-ILD patients compared to those from 
the normal population in the GSE40839 dataset showed no statistically 
significant difference, PRKG2 expression levels in pulmonary 
fibroblasts from SSc-ILD lungs were lower than those in normal lung 
tissues in both datasets (GSE231693 and GSE40839), with this 
difference being statistically significant in the GSE231693 dataset. This 
finding implies that low level of PRKG2 in SSc patients may promote 
pulmonary fibrosis, leading to the onset and progression of 
lung cancer.

Immune cell infiltration is recognized to directly modulate the 
onset and progression of lung cancer, a notion that is widely accepted 
within the scientific community (62). In our study, the expression level 
of PRKG2 demonstrated a significant positive correlation with 
macrophages and dendritic cells within the immune 
microenvironment of lung cancer. Conversely, it exhibited a negative 
correlation with Treg cells. These correlations suggest that PRKG2 
may play a role in inhibiting lung cancer development through the 
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modulation of these immune cells. This aligns with the findings 
reported by Kanoh, who concluded that PRKG2 modulates NF-κB 
activation through PP2A in human cells, thereby influencing innate 
immunity and inflammation (63). This could elucidate the strong 
correlation we observed in this study between PRKG2 and innate 
immune cells. Nevertheless, the current understanding of how PRKG2 
mediates immune regulation is limited, necessitating further 
investigation in future studies.

Our study also has several limitations. Firstly, we analyzed the 
core shared gene between SSc and LUAD using two datasets and 
validated our findings with two additional independent datasets, yet 
potential selection bias may still be  present. Secondly, while 
we examined the effects of PRKG2 on lung cancer cells and the 
expression of PRKG2 in fibroblasts from lung tissues of SSc-ILD 
patients, we did not evaluate the effects of PRKG2 in SSc animal 
models, an aspect we plan to address in future research. Thirdly, 
although there is a suggested correlation between PRKG2 
expression levels and the immune microenvironment of lung 
cancer, further investigation using immunohistochemical scoring 
is required due to limited data. Fourthly, due to the absence of 
demographic and clinical characteristic data, such as SSc subtypes 
and autoantibodies, from these datasets, we were unable to conduct 
subgroup analyses to elucidate the impact of these clinical variables 
on the occurrence of lung cancer in SSc patients. Patients with 
different SSc subtypes or those carrying various autoantibodies may 
exhibit distinct gene expression profiles, potentially influencing 
their development risk of lung cancer. Consequently, the lack of 
these data may hinder a comprehensive understanding of our 
study’s findings.

5 Conclusion

In summary, this study represents the first to investigate the 
shared genetic underpinnings between SSc and lung cancer. As a core 
gene common to both diseases, PRKG2 exerts a significant influence 
on the proliferation and migration of lung cancer.
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