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Remarkable progress has been achieved in sepsis treatment in recent times, 
the mortality rate of sepsis has experienced a gradual decline as a result of the 
prompt administration of antibiotics, fluid resuscitation, and the implementation 
of various therapies aimed at supporting multiple organ functions. However, 
there is still significant mortality and room for improvement. The mortality 
rate for septic patients, 22.5%, is still unacceptably high, accounting for 19.7% 
of all global deaths. Therefore, it is crucial to thoroughly comprehend the 
pathogenesis of sepsis in order to enhance clinical diagnosis and treatment 
methods. Here, we  summarized classic mechanisms of sepsis progression, 
activation of signal pathways, mitochondrial quality control, imbalance of pro-
and anti- inflammation response, diseminated intravascular coagulation (DIC), 
cell death, presented the latest research findings for each mechanism and 
identify potential therapeutic targets within each mechanism.
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1 Introduction

Sepsis was defined as a life-threatening organ dysfunction caused by a dysregulated host 
response to infection (1). This definition emphasizes the importance of both the dysregulated 
host’s responses to infection and the mechanism and severity of organ dysfunction due to infection 
(2–4). Approximately 48.9 million individuals worldwide receive a diagnosis of sepsis annually, 
resulting in 11 million fatalities, thus constituting 19.7% of the total number of global deaths (5).

Although there has been a decline in the mortality rate of sepsis, which can be attributed 
to the use of antibiotics, fluid resuscitation, and the implementation of various therapies aimed 
at supporting multiple organs (6, 7), more than 100 randomized controlled trials and research 
did not find out a single treatment that consistently saves lives in sepsis patients (6, 8, 9). It was 
believed that the reason may be a vast, multidimensional array of clinical and biologic features, 
which is called sepsis heterogeneity (6). Accordingly, the pathogenesis of sepsis remains 
complex (4), including activation of signal pathways, disorders of mitochondrial quality 
control, imbalance of pro-inflammatory and anti-inflammatory responses, dysregulation of 
cell death and so on. Hence, understanding the pathogenesis of sepsis is crucial for identifying 
novel therapeutic targets and developing effective therapies for intervention of sepsis. Here, 
we systemically reviewed relevant studies and focused on the molecular mechanism underlying 
the development of immune dysfunction and organ damage in sepsis.
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2 Classic mechanisms of sepsis 
progression

2.1 Activation of signal pathways

Sepsis, a complex and diverse syndrome, is distinguished from 
mild infection by its involvement of intricate signaling pathways and 
dysregulated host response, which contribute to its life-threatening 
nature (10) (Figure 1).

2.1.1 The recognition role of PRRs situated at cell 
membrane or cytoplasm

The commencement of sepsis is triggered when the host cells 
identify pathogen-associated molecular patterns (PAMPs) or 
endogenous damage-associated molecular patterns (DAMPs) derived 
from microbes (10). Based on different modes of cell interference, 
pathogens are recognized by different pattern recognition receptors 
(PRRs). Specifically, pathogens on the cell membrane bind to TLRs, 
dectin1 and dectin2, while stimuli such as cell-free DNA (11) and 
mitochondrial DNA (12) that are engulfed by cells activate DNA 
sensors in the cytoplasm, such as Cyclic GMP-AMP synthase (cGAS). 

The interaction between cfDNA and cGAS leads to the generation of 
2′3′-cGAMP, which serves as an activator for the stimulator of 
interferon genes (STING), ultimately leading to the secretion of 
interferons (IFNs) (11). Moreover, the activation of TLR4 also leads to 
the activation of the STING-IRF3 pathway (13). Consequently, the 
activation of STING results in the formation of homodimers, which 
are then facilitated to form oligomers which promote phosphorylation 
of downstream TANK-binding kinase 1 (TBK1) dimers. This 
phosphorylation event subsequently leads to the activation of the IRF3 
and NF-κB signaling pathway (14, 15).

Numerous preclinical experiments have substantiated the crucial 
role of Toll-like receptors (TLRs), particularly TLR2 and TLR4, in 
mediating the pro-inflammatory effects of septic inflammation. These 
experiments, involving knocking down or inhibition of TLRs, provide 
substantial evidence for the significance of TLRs as pivotal PRRs. For 
example, in sepsis, TLR2−/− mice exhibit enhanced survival rates, 
improved cardiac function, decreased production of cytokines in the 
blood and myocardial tissues (16), reduced depletion of immune cells 
(17), lower production of ROS and overall improved mitochondrial 
function (18). TLR4 serves as the primary identifier of sepsis induced 
by LPS, triggering downstream NF-κB and IFN pathways through the 

FIGURE 1

The signaling pathways through which immune cells recognize microbes and mediate immune responses. Upon initiation of sepsis, innate immune 
cells become activated upon recognition of DAMPs and PAMPs. Receptors located on the cell membrane and within the cell detect these danger 
signals, initiating various pathways that modulate the activation and regulation of innate immune responses. Typically, these pathways converge toward 
the IRF3 and NF-κB signaling pathways, which are crucial for the onset of early-phase inflammatory responses. Moreover, the activation of TLR4 by 
agonists serves as a vital priming signal for the initial steps of inflammasome activation, involving the upregulation of pro-inflammatory genes. Another 
important group of pathogenic substances and endogenous alarm signals are necessary to provide the second signal for the assembly of AIM2/NLRP3 
inflammasomes, triggering the cleavage of caspases, GSDMD, and pro-IL-1β/18, leading to the canonical activation of inflammasomes and pyroptosis. 
Intracellularly, cfDNA originating from apoptotic cells or intracellular pathogens can be sensed by AIM2 and cGAS-STING, promoting inflammasome 
assembly and the phosphorylation of IRF3, ultimately inducing type I interferon responses and inflammasome activation. DAMP damage-associated 
molecular pattern, PAMP pathogen-associated molecular pattern, cfDNA cell-free DNA, ASC apoptosis-associated speck-like protein, GSDMD 
gasdermin D. Created with BioRender.com.
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activation of MyD88 and TRIF. Treatment with LYRM03, an ubenimex 
derivative, can ameliorate the LPS-induced acute lung injury (ALI) in 
animals by attenuating Myd88-dependent LPS-TLR4 signaling 
pathway, including the p38 MAPK and IκB/NF-κB pathways (19). 
Losartan, soluble CD4, Bifidobacterium bifidum E3 with 
Bifidobacterium longum subsp. infantis E4 all exerts their effect in 
various organs to mitigate organ damage in sepsis, operating through 
the aforementioned pathways (20–23).

2.1.2 NF-κB signaling
As one of the crucial signaling pathways that converges upon 

sepsis activation, the nuclear factor-κB (NF-κB) signaling pathway 
plays a crucial role in facilitating inflammatory responses across 
multiple organs during the progression of sepsis (24–26). In fact, 
genes encoding inflammatory mediators, such as TNF-α, IL-6, 
cyclooxygenase-2 (COX2), inducible nitric oxide synthase (iNOS), 
and adhesion molecules, have putative binding sites for NF-κB. These 
binding sites serve the purpose of activating gene expression (26). The 
crucial involvement of NF-κB in immune and inflammatory reactions 
is underscored, establishing it as a leading contender for selective 
deactivation. Macrophages, important innate immune cells, can 
be activated by bacterial components, such as LPS and acquire the M1 
phenotype, then the notable elevation in TLR4 levels facilitates the 
activation of the NF-кB pathways, consequently leading to 
inflammation (21, 27). And that process could be  inhibited by 
Ang-(1–7), which promotes macrophages toward M2 from M1 
phenotype via ACE2-Ang-(1–7)-MAS axis (21). Furthermore, 
Artemisitene (ATT), a byproduct of the antimalarial medication 
artemisinin, could inhibit liver damage caused by LPS-induced 
ferroptosis by activating Nrf2/HO-1/GPX4 to against NF-κB (28). 
Similarly, the mutual competition among NF-κB and other pathways 
also explain the protective effect of Procyanidin B2 (PB2) on 
LPS-induced ALI, which activates PI3K/Akt pathway (29). 
Consequently, the inhibition of NF-κB activation has been 
recommended as a compelling therapeutic approach to mitigate harm 
to various organs and enhance survival rates of sepsis patients. What’s 
more, activation of alternative pathways to compete with the NF-κB 
pathway may also be a more optimal solution, as the NF-κB pathway 
is an integral component of the host’s normal defense mechanism (30).

2.1.3 The JAK/STAT signaling
The Janus kinase/signal transduction and transcription activator 

(JAK/STAT) is another prominent inflammatory signaling pathways 
that is commonly activated during the whole sepsis process, including 
systemic inflammatory response syndrome (SIRS) and compensatory 
anti-inflammatory response syndrome (CARS) (31, 32). Considering 
the intimate correlation between JAK/STAT and NF-κB signaling 
pathways and the observation that inhibitors addressing both 
pathways demonstrate comparable anti-inflammatory properties (33), 
pharmaceutical agents possessing dual inhibitory capabilities might 
prove to be more efficacious in managing septic shock (31). C498-
0670 (C498) from TargetMol Bioactive Compounds Library Plus (Cat. 
D7800), has shown great potential for further therapeutic applications 
by impeding the activation of STATs and p-IKKα/β in immortalized 
cell lines and primary peritoneal macrophages, in addition to reducing 
the expression of LPS-induced inflammatory mediators in vitro (31). 
Similarly, in rat model of sepsis, the administration of Tofacitinib 
demonstrates a significant reduction in acute lung injury and a notable 

improvement in survival rates through the inhibition of the JAK–
STAT/NF-κB pathway (34). What’s more, the investigation into the 
correlation between miRNA and sepsis has emerged as a prominent 
area of interest in recent times. The role of miR-210 in sepsis-induced 
renal injury was elucidated that inhibiting miR-210 effectively 
suppresses the activation of the JAK/STAT pathway, leading to a 
reduction in both renal injury and inflammatory response in sepsis 
(35). And the acceleration of LPS-induced ALI is facilitated by the 
lncRNA MIR3142HG through the miR-95-5p/JAK2 axis (36). In 
conclusion, the potential significance of targeting JAKs/STATs as an 
approach to decrease mortality rates in patients with septic shock 
stems from their evident involvement in immunological dysfunctions 
and multiorgan failure. It is noteworthy that the abundance of animal 
studies conducted on JAK–STAT pathways and their widely 
recognized impacts on sepsis stand in stark contrast to the paucity of 
clinical trials in this area (32).

2.1.4 The MAPK signaling
In sepsis, the mitogen-activated protein kinase (MAPK) pathway 

is consistently activated in conjunction with the NF-κB pathway, 
either independently or cooperatively stimulating the secretion of 
downstream inflammatory factors such as COX-2, TNF-α, IL-1β, 
IL-18, IL-6, and iNOS (23, 37, 38). Treatment with methanol extract 
of S. crispa (SCF4) significantly suppresses the LPS-stimulated TNF-α, 
IL- 6, and IL-1β production by attenuating the TLR4-related MAPK 
signaling in macrophages (39). Similarly, treatment with Ginsenoside 
Rb1 or fisetin (a natural flavonoid) mitigates the LPS-induced kidney 
damages by inhibiting IL-6, TNF-α, COX-2 expression, AKT 
activation and prevents from sepsis-mediated death in mice by down-
regulating the MAPK signaling (40, 41). Treatment with Chinese 
medicinal herb Qiang Xin 1 (QX1) (42) inhibits microglia activation 
and pro-inflammatory cytokine production, and prevents cognitive 
dysfunction of septic mice by reducing the MAPK signaling. 
Furthermore, it is worth noting that despite research claiming the 
involvement of MAPK in regulating NF-κB in sepsis (41), the cited 
studies do not prove this point and have not thoroughly investigated 
the subordinate relationship between the two. They only demonstrate 
the enormous potential of simultaneously inhibiting MAPK and 
NF-κB in rescuing sepsis (43, 44). Further research is needed to 
explore the relationship between the two. In general, the NF-κB 
pathway remains an important potential therapeutic target for the 
early activation of the inflammatory response in sepsis, which may 
have significant implications for reducing the acute phase mortality 
of sepsis.

3 Disorders of mitochondrial 
quality-control

During sepsis, various mechanisms related to the maintenance of 
mitochondrial quality such as mitochondrial biogenesis, dynamics, 
and mitophagy are activated (45). Sepsis-induced exacerbation of 
organ malfunction is due to impaired regulation of mitochondrial 
quality control mechanisms, while the improvement in organ function 
also results from restoration of these regulatory mechanisms (46–50). 
What’s more, significantly, the dysfunction of mitochondria plays a 
crucial role in impairing the efficiency of the immune system. The 
presence of dysfunctional mitochondria contributes to the emergence 
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of an excessively inflammatory state, thereby leading to unfavorable 
clinical consequences (51) (Figure 2).

3.1 Mitochondrial biogenesis

The regulation of mitochondrial biogenesis is governed by various 
molecular cues that are triggered by the need for energy. This process 
plays a significant role in augmenting the overall mitochondrial 
quantity and facilitating the restoration of the intricate mitochondrial 
network (45). The onset of mitochondrial biogenesis transcription 
factors occurs at an earlier stage in individuals who survive from 
sepsis, as opposed to those who do not survive (45, 47). This suggests 
that the prompt restoration of mitochondrial function holds significant 
importance in the management of sepsis. The central of mitochondrial 
biogenesis is TFAM-PGC1α-NRF1/2 pathway, in particular, TFAM is 
vital in the generation of new mitochondria (52). The diminished 
levels of intramitochondrial TFAM in individuals with sepsis, result in 
a concomitant reduction in the copy numbers of mtDNA, expression 
of mtND1, and overall cellular ATP content (53). The PGC-1α, play a 
crucial role in the replication of mtDNA. Recent studies have 
highlighted the significance of PGC-1α as the primary controller of 
mitochondrial biogenesis (54). In brain, PGC-1α, critical regulators of 
mitochondrial biogenesis, significantly decreased in CLP-induced 
sepsis mice, while the inhibitor of Fgr kinase reversed mitochondrial 
damage by activating the SIRT1/PGC-1α pathway (55). In the kidney, 
pectolinarigenin has been proved to restored the expression of 
PGC-1α, Opa1  in CLP-treated and reduced mitochondrial 
fragmentation (56). What’s more, restoration of the expression of the 
PGC-1α seems to be a crucial requirement for the recovery from 
LPS-induced acute kidney injury (AKI) (57). On the contrary, more 
severe consequence were observed in tubule-specific PGC-1α 

knockout sepsis mice (57). The administration of LPS in rats induces 
an increase in mitochondrial biogenesis. This effect is accompanied by 
the upregulation of PGC-1α and TFAM (58). Contrary to human 
discoveries, sepsis-induced mitochondrial dysfunction is marked by 
TFAM’s compromised translocation (59). However, the enhanced 
biogenesis observed in rats discussed above does not correspond to an 
enhancement in mitochondrial functionality. As mentioned above, the 
implementation of pharmacological substances to stimulate the 
initiation of mitochondrial biogenesis has been identified as a 
promising therapeutic approach against sepsis (45, 60). The 
mechanism underlying may be  attributed to the decrease of 
inflammatory cytokines including TNF-α, IL-1β, and IL-6 and 
reduction of ROS generation by PGC-1α activation (61). Further 
research is needed to validate the hypothesis that recovery from sepsis 
relies on timely activation of mitochondrial biogenesis and a balanced 
biogenesis response. While excessive biogenesis may lead to structural 
abnormalities and impaired mitochondrial functionality, studies have 
suggested its importance in the recovery process.

3.2 Mitochondrial dynamics

Mitochondrial dynamics, specifically fission and fusion, 
encompasses the alteration of the structural composition of existing 
mitochondria (51).

During sepsis, the occurrence of mitochondrial dysfunction leads to 
the initiation of mitochondrial fission and the inhibition of mitochondrial 
fusion, potentially facilitating the removal of damaged mitochondrial 
components through redistribution and mitophagy. However, this shift 
can also lead to heightened oxidative stress and cell death in sepsis. This 
process, in turn, encourages the development of impaired mitochondrial 
fragmentation, ultimately leading to the detrimental consequence of 

FIGURE 2

Sepsis disrupts cellular mitochondrial quality control. As sepsis advances, mitophagy is hindered. Furthermore, heightened mitochondrial fission and 
decreased mitochondrial fussion are evidenced as a reaction to sepsis-induced stress. There is a noticeable decrease in mitochondrial biogenesis is 
observed. This decline is predominantly influenced by increased levels of the cytokine TNFα, resulting in reduced levels of PGC-1α. Created with 
BioRender.com.

https://doi.org/10.3389/fmed.2024.1429370
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.biorender.com/


Yang et al. 10.3389/fmed.2024.1429370

Frontiers in Medicine 05 frontiersin.org

various organ failure (62). Mitochondrial fission is predominantly 
influenced by Drp1, a prominent cytosolic GTPase (63). Drp1 undergoes 
translocation from the cytosol to the outer mitochondrial membrane, 
where it forms oligomers and facilitates mitochondrial fission via a 
constricting loop (63, 64). An increasing number of studies have 
observed the involvement of Drp1  in mitochondrial damage. 
Suppression of Drp1 or inhibition of mitochondrial fission using the 
Mdivi-1 (inhibitor of Drp1) exhibited a notable reduction in mortality 
caused by CLP (65). Moreover, this intervention effectively mitigated 
dysfunction observed in various organs such as the heart, liver, kidney, 
vascular smooth muscle, and intestine (66). Similarly, the involvement 
of S100a8/a9  in the mechanisms underlying sepsis-induced 
cardiomyopathy (SIC) is evident, likely through its activation of TLR4-
ERK1/2-Drp1-dependent mitochondrial fission and impairment. 
Inhibiting S100a8/a9 was a promising therapeutic approach to mitigate 
the development of SIC in sepsis patients (67). These beneficial effects 
were achieved by impeding mitochondrial fission and mitigating 
mitochondrial dysfunction. It is worth noting that Drp1 is recruited to 
the mitochondria by partner proteins Fis1, Mff, MiD49, and MiD51 (68), 
however, not all partner protein inhibition can be  regarded as a 
therapeutic approach for the treatment of sepsis. For instance, in vivo, 
the inhibition of Drp1-Mff either through pharmacologically or 
genetically expedites the progression of the pathological manifestations 
linked to neurodegenerative disorders (69). Latest study revealed that the 
utilization of Drp1-Fis1 inhibitors, such as P110 and SC9, may prove to 
be pivotal in preserving the functionality of mitochondria by effectively 
restraining excessive fission (63). In sepsis-induced AKI, the inhibition 
of Drp1-Fis1 pathway by reducing lactate levels and Fis1 lactylation 
attenuate the damage (70).

In contrast to mitochondrial fission, another crucial component 
of mitochondrial dynamics during the process of sepsis is 
mitochondrial fusion, which holds significant implications for 
preserving mitochondrial function and reducing organ damage (71). 
The process of mitochondrial fusion is primarily regulated by two 
proteins, known as mitochondrial fusion protein (Mfn) 1 and 2, as 
well as optic atrophy protein 1 (OPA1) (72). The activation of OPA1 
has been identified as a potential therapeutic approach for sepsis. 
Several studies focusing on different pathway on various organs have 
provided evidence supporting this notion. In kidney, the deacetylation 
of YME1L1 by Sirt3 facilitates the promotion of mitochondrial fusion 
mediated by OPA1 and restore AKI, as it effectively inhibits the 
processing of L-OPA1 (71). While The administration of mesenchymal 
stem cell-derived microvesicles (MMVs) has the potential to transport 
Mfn2 to the intestinal epithelial cells and effectively enhance the 
equilibrium of mitochondrial dynamics following sepsis, ultimately 
leading to the restoration of both mitochondrial function and the 
integrity of the intestinal barrier (73). In ALI, both in vivo and in vitro, 
Dexmedetomidine exhibited the ability to alleviate the adverse effects 
of sepsis. This beneficial effect was achieved by maintaining a state of 
mitochondrial dynamic equilibrium through the activation of the 
HIF-1a/HO-1 signaling pathway and upregulation the expressions of 
Mfn1, Mfn2, OPA1 (74).

3.3 Mitochondrial autophagy

Mitochondrial autophagy (mitophagy) is a crucial form of selective 
autophagy that can experience depolarization and impairment in 

response to various stimuli, such as reactive oxygen species (ROS), 
inadequate nutrient supply, hypoxia, and inflammatory factors. 
Mitochondria play a crucial role in coordinating the immune response 
during sepsis; however, it is important to acknowledge that they can 
also unintentionally exacerbate the detrimental effects. The impairment 
of mitophagy results in the excessive activation of inflammatory 
signaling pathways, which in turn disrupts the equilibrium of immune 
function (75). The results of whole blood mRNA sequencing in 392 
patients revealed that the mitophagy level observed in sepsis patients 
admitted to the ICU was found to be lower compared to those admitted 
to the Emergency Room. Moreover, sepsis patients with a higher 
Sequential Organ Failure Assessment (SOFA) score generally exhibited 
a lower level of mitophagy (76). These findings imply that a heightened 
mitophagy level may serve as a potential indicator for a favorable 
prognosis in sepsis (76). Previous research conducted on the receptor-
interacting serine/threonine-protein kinase 3 (RIPK3) and PINK1/
PARK2 axis has revealed that these signaling pathways play a crucial 
role in regulating tubular mitophagy in the context of septic AKI (77, 
78). At the same time, PINK1 and Parkin mediated mitophagy also 
plays a protective role in renal ischemia–reperfusion injury or acute 
kidney injury caused by sepsis (79). Latest study revealed compelling 
evidence that the auto- and paracrine IGFBP-7 signaling contributes to 
the perpetuation of sepsis-induced Inflammation-coupling tubular 
damage (ICTD) through a novel mechanism: the rewiring of mitophagy 
mediated by NIX/BNIP3 (80). In sepsis-induced acute lung injury, the 
absence of Nrf2 exacerbates impairments in ATP synthesis, fatty acid 
oxidation, and respiration. Notably, research demonstrates that 
damaged lung epithelial mitochondria upregulate Nrf2 expression, 
consequently promoting mitophagy to maintain mitochondria function 
(81). In final analysis, the hindrance of mitophagy is regarded as a 
means to reinstate the damage caused by sepsis.

According to contemporary understanding, it is posited that 
mitigating heightened mitochondrial fission, advancing fusion and 
mitophagy in the course of sepsis, and fostering timely biogenesis 
subsequent to sepsis could potentially mitigate organ malfunction and 
enhance sepsis outcomes.

4 Imbalance of immune homeostasis: 
pro-inflammatory and 
anti-inflammation responses

To commence this part, it is imperative to assert that there is no 
distinct division of sepsis into distinct pro-inflammatory and anti-
inflammatory stages. Both gene expression data and results of clinical 
have supported the statement (82–87). Moreover, it has been 
demonstrated that the pro-inflammatory and anti-inflammatory 
reactions are concurrently controlled right from the initial stages of 
septic shock (88). The imbalance of pro-inflammatory and anti-
inflammation responses lead to immunosuppression, characterized 
by a large amount of immune cell dysfunction and the activation of 
multiple signaling pathways (Figure 3).

4.1 Inflammatory cytokine storms

As reviewed above, several pathways are activated, which play a 
critical, mutual role in the process of sepsis. Subsequently, the level 
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of various inflammatory cytokines rises remarkably, including high 
mobility group box-1 protein (HMGB1), TNF-α, IL-8, IL-6, and 
IL-1β (89–92), which impair host defense against pathogens, 
alongside their crucial involvement in the excessive systemic 
inflammation and resultant damage to organs during sepsis (93). 
Plenty of drugs, natural or artificial, were proved their protection 
effect on sepsis mouse models through inhibiting the activation of 
inflammatory cytokines via various signal pathways such as TLR4/
NF-κB, MD-2/TLR4, ROS/NLRP3 pathways (94–96). However, the 
efficacy of drugs targeting TNF-α, IL-1β, or TLRs appears to 
be limited in in intro experiments. The drugs failed to enhance the 
survival rate of sepsis patients (7, 97–99). Recent research endeavors 
have redirected their attention toward the immunosuppressive 
phase of sepsis and innovative immunomodulatory therapies 
instead of targeting hyperinflammation (97).

4.2 Augmented secretion of 
anti-inflammatory cytokines

One of the mechanisms responsible for sepsis-induced immune 
suppression is the upregulation of the release of anti-inflammatory 
factors. The key anti-inflammatory cytokines associated with sepsis are 
IL-4, IL-10, and IL-37 (7). In sepsis, an elevation in the secretion of 
IL-4 occurs, which consequently transfers undifferentiated T cells into 
Th2 cells (100, 101). But latest research supported the positive role of 

IL-4 in training immunity which featured commonly associated with 
trained immunity, such as epigenetic reprogramming, elevated 
metabolic functioning, and modified transcriptomic reactions (102). 
And apoA1–I (103) L4, a fusion protein of apolipoprotein A1 (apoA1) 
and IL4, was developed to resolve sepsis-induced immune-paralysis 
(102). What’s more, Th2 cells, along with monocytes/macrophages, 
secreted IL-10, which inhibits the expression of TNF-α in monocytes, 
promote the proliferation of MDSCs and aggravate immunosuppression 
in advanced sepsis mice and patients (104, 105). In macrophage, many 
pathways participate in IL-10 production, including MSK/CREB, 
PI3K/Akt and TPL-2/ERK pathway. Recently, studies exhibited that 
IFN-β could promote IL-10 expression in macrophages and TRIM24 
inhibited IFNβ/IL-10 axis signal during macrophage activation (106, 
107). Similarly, it is reported that the upregulation of IL-37 in sepsis 
patients is of great significance as it has the potential to impede the 
proliferation and release of pro-inflammatory cytokines. This 
upregulation of IL-37 is closely correlated with the severity of 
immunosuppression induced by sepsis (7, 108).

4.3 The depletion of effective immune cells

In sepsis, there is a noticeable occurrence of apoptosis in immune 
cells including CD4 T cells, CD8 T cells, B cells, natural killer (NK) cells, 
and follicular dendritic cells (109). The postmortem studies of patients 
who died of sepsis revealed diminished numbers of splenic T cells in 

FIGURE 3

Imbalance of immune homeostasis in sepsis: pro-inflammatory and anti-inflammation responses. Sepsis is characterized by the simultaneous interplay 
of pro- and anti-inflammatory mechanisms. The proinflammatory response involves the release of pro-inflammatory mediators, activation of the 
complement and coagulation systems, and the release of alarmins due to necrotic cell death. On the other hand, the anti-inflammatory response is 
marked by impaired immune cell function caused by effector cell apoptosis, T cell exhaustion, heightened expression of suppressor cells, and the 
inhibition of pro-inflammatory gene transcription. Created with BioRender.com.
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contrast to individuals who died from causes unrelated to infection 
(110). Exhaustion is apparent in CD8+ T cell reactions through the 
display of weakened cell division, compromised ability to destroy cells, 
and reduced generation of IL-2 and IFN-γ (110–112). Meanwhile, 
monocytes and macrophages have important roles in sepsis-induced 
immunosuppression (113). Notably, the expression of human leukocyte 
antigen–DR isotype (HLA-DR), a cell surface receptor used for antigen 
presentation in monocytes and macrophages diminish in sepsis, which 
correlate with impaired outcomes, including a higher incidence of 
nosocomial infections and increased mortality (114, 115). In septic 
patients, an upregulation of caspase-1 expression in various immune 
cells is observed when contrasted with its levels in individuals without 
underlying health conditions. The correlation between the occurrence 
of sepsis and the release of IL-18 as well as the rate of monocyte 
pyroptosis has been established (116). Autophagy and ferroptosis, 
alongside apoptosis and pyroptosis, are recognized as significant 
contributors to the development of sepsis-induced immunosuppression 
(117). Inhibition of autophagy has been shown to augment the 
antimicrobial efficacy of macrophages. Moreover, the suppression of 
autophagy has been observed to mitigate cytokine storms and vascular 
permeability (118, 119). Emerging evidence implicates ferroptosis in 
sepsis, as it directly exacerbates or promotes organ damage associated 
with this condition (120). Ferroptosis mediated by solute carrier family 
39 member 8 (SLC39A8) plays a significant role in the depletion of 
monocytes among individuals with sepsis, thereby leading to immune 
system suppression. Conversely, the suppression of SLC39A8 has the 
potential to diminish lipid peroxidation induced by LPS (121).Another 
notable characteristic of immune suppression involves the 
reprogramming of monocytes and macrophages, resulting in a 
diminished ability to generate proinflammatory cytokines when 
exposed to bacterial agonists in laboratory conditions (109). Notably, 
using cross-species, single-cell RNA sequencing (scRNA-seq) analysis, 
latest research revealed the presence of a conserved subset of monocytes 
that exhibits high expression of S100A family genes and low expression 
of HLA-DR. These monocytes are predominantly found in late sepsis 
and are associated with an immunosuppressive response (122).

4.4 Excessive activation of regulatory cells

In addition of dysfunction of effective immune cells, the excessive 
activation of regulatory cells, such as Tregs and MDSC also contributes 
to sepsis-induced immunosuppression (7). There is an observed 
increase in the population of circulating Treg cells compared to other 
effective cells. This phenomenon has been documented in both animal 
and human studies, both in the circulation and in spleen tissue (123–
125). The shift in lymphocyte population toward Treg cells, which 
have extensive regulatory and suppressive impacts on other immune 
cells, can be  elucidated by their ability to resist apoptosis due to 
heightened expression of the antiapoptotic protein BCL-2 (111). The 
investigation into the function of Tregs in the immunosuppressive 
state induced by sepsis holds promise as a prospective avenue for 
further scholarly inquiry. In experimental models of sepsis, the 
population of MDSC is massively expanded (126). MDSCs exhibit 
immunosuppressive effects by employing diverse mechanisms 
including the degradation of L-arginine, the generation of ROS and 
RNS, the release of immunosuppressive cytokines such as IL-10 and 
TGF-β, and the induction of Tregs (127).

4.5 Disorder in cholinergic 
anti-inflammatory pathway

The cholinergic anti-inflammatory pathway (CAP) is a neuro-
immunomodulatory pathway that operates by facilitating the release 
of acetylcholine (ACh) through the intricate interaction between the 
vagus nerve and the α7 nicotinic acetylcholine receptor (α7nAchR) 
(128). After Ulloa and Tracey demonstrated that nicotine enhances 
mouse survival in LPS and CLP-induced sepsis through the inhibition 
of HMGB1 release and the blockade of the NF-kB pathway by 
activating α7nAChRs, the stimulation α7nAChRs in combating sepsis 
became a novel potential therapeutic approach for sepsis (128, 129). 
Even 24 h after CLP-induced polymicrobial sepsis, the administration 
of choline continued to enhance the survival of mice, underscoring 
the significant impact of CAP in combating sepsis (130). Furthermore, 
the mechanism is closely associated with the functions of splenocytes 
(128). Researchs have demonstrated that the activation of α7nAChR 
leads to the suppression of TLR4 and CD14 expression via α7nAChR/
PI3K signaling pathway (131, 132). A novel diarylheptanoid known 
as compound 28 holds promise as a potential therapeutic candidate 
for sepsis treatment by exhibiting agonistic properties toward the α7 
nAchR-JAK2-STAT3 signaling pathway (133). What’s more, the 
general consensus is that the inhibition of pro-inflammatory cytokine 
release in macrophages leads to the generation of an anti-inflammatory 
response mediated by α7nAChR. The administration of GTS-21 (134) 
or PNU-282987 (135) demonstrated notable efficacy in reducing the 
population of M1-polarized macrophages and concurrently 
augmenting the abundance of M2-polarized macrophages within the 
pulmonary region following an LPS-induced ALI in mice. Consistent 
with this finding, ACh demonstrated an inhibition on LPS-induced 
elevation of IL-1β and IL-6, which is associated with the M1 phenotype 
and promotion on the production of IL-4 and IL-10, characteristic of 
the M2 phenotype (136). Notwithstanding, clinical trials examining 
the effects of α7nAChR agonist on the immune response in 
experimental human endotoxemia did not demonstrate any significant 
modulation (137). The establishment of the role of the neuro-immune 
regulatory reflex in sepsis-induced immunosuppression is yet to 
be determined in scholarly research. Further clinical and preclinical 
experiments are required to further elucidate the mechanism behind 
the varying effects of CAP in sepsis, in different species.

4.6 Metabolic reprogramming in immune 
cells during sepsis

In sepsis, macrophages, as innate immune cells, play a pivotal role 
in promptly responding to systemic infections, with their activation 
being crucial in various organ damages. In the context of LPS 
exposure, macrophages undergo a metabolic reprogramming from 
oxidative phosphorylation to glycolysis, resulting in elevated succinate 
concentrations and eliciting an inflammatory reaction which is called 
the differentiation toward the M1 phenotype. This transition is 
predominantly characterized by activation of succinate dehydrogenase 
(SHD), which have been confirmed in sepsis-ALI (138). In septic 
cardiomyopathy, M1 macrophages exhibit an increased expression of 
HIF-1α protein, participating in the enhancement of glycolysis. Recent 
studies have unveiled a novel compound capable of downregulating 
HIF-1α expression by deactivating SDH, thus inhibiting macrophage 
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glycolysis and alleviating cardiomyopathy (139). Furthermore, lipid 
metabolism serves as another crucial pathway in regulating the 
immune function of macrophages. The stimulation of macrophages 
by LPS leads to triglyceride accumulation through the augmentation 
of fatty acid and glucose uptake, facilitation of glucose incorporation 
into lipids, elevation of triglyceride synthesis, and inhibition of 
triglyceride breakdown (138). It is noteworthy that citrate, upon 
exiting the mitochondria and entering the cytoplasm, leads to the 
production of fatty acids. The key enzyme in this process, ATP citrate 
lyase (ACLY), may play a significant role in enhancing lipid synthesis. 
In the context of sepsis-induced liver injury, the upregulation of 
TREM2 expression in macrophages is associated with an amelioration 
of hepatic lipid metabolism, a decrease in TG levels, and a mitigation 
of liver and lung injuries (140).

4.7 Polarization alterations in monocyte–
macrophage

Macrophages play a crucial role in both innate and adaptive 
immunity, exhibiting a notable degree of heterogeneity and 
adaptability. Their ability to transition into various phenotypes with 
distinct functions is influenced by alterations in the local 
microenvironment of particular tissues, thereby contributing to 
immune regulation. An excess of pro-inflammatory mediators is 
released by M1 macrophages, whereas M2 macrophages 
predominantly secrete anti-inflammatory mediators. The 
dysregulation in the proportion of M1-like to M2-like macrophages is 
implicated in the pathogenesis of sepsis, leading to its onset and 
progression.Tong et  al. found that MMP-9 induces macrophage 
polarization to the M1 phenotype through NF-κB pathway activation 
(141). Similarly, proteins such as SENP3, ERK, Notch1 are activated 
in sepsis, collectively activating the NF-kB pathway, promoting 
macrophage polarization toward the M1 phenotype (44, 142, 143). 
Tang et  al. discovered that the induction of M2-like macrophage 
polarization in septic mice through Schistosoma japonicum infection 
can inhibit M1-like macrophage polarization, thereby reducing 
inflammatory mediators and enhancing survival outcomes, as 
evidenced by previous research findings (144). The polarization of 
macrophages from M1 to M2  in sepsis is considered a primary 
approach for treating sepsis through epigenetic modifications. Indeed, 
this approach has effectively alleviated mortality rates and organ 
damage in animal models of early sepsis (145). The E3 ubiquitin ligase 
ITCH serves as a suppressor of inflammation by negatively regulating 
the process. Diminishing its activity results in the ubiquitination of 
IL-1α, subsequently promoting the enhanced pro-inflammatory 
activation of macrophages (146). What’ s more, alteration of gene 
expression can impact the polarization status and functionality of 
macrophages through the control of non-coding RNA (147). And 
METTL3, a catalytic enzyme belonging to the methyltransferase-like 
3 family, has been shown to play a pivotal role in promoting the 
polarization of M1 macrophages through the direct methylation of 
STAT1 mRNA (148).

Immunosuppressive treatments utilized in the management of 
sepsis encounter notable constraints, primarily due to the diverse 
nature of sepsis, leading to challenges in pinpointing and addressing 
specific immune responses. The precise timing for the implementation 
of such treatments remains ambiguous, posing risks of inefficacy or 

adverse effects when administered prematurely or belatedly. Future 
research on modulating the immune system of sepsis patients should 
focus on two main aspects. Firstly, identifying and validating 
biomarkers that accurately reflect the immune stages of sepsis patients. 
Secondly, determining the optimal timing for the administration of 
various potential drugs.

5 Diseminated intravascular 
coagulation triggered by sepsis

Disseminated intravascular coagulation (DIC) is a secondary 
complication that occurs in up to 80% of patients with sepsis (149). In 
approximately 35% of cases, it manifests itself overtly (150). DIC plays 
a crucial role in the development of multi-organ failure in sepsis, and 
its presence is closely linked to increased mortality rates. Despite is a 
significant contributor to organ injury in sepsis.

5.1 The significant release of TF

In the early stages, the predominant mechanism of DIC was 
recognized as the significant upregulation of tissue factor (TF) 
through inflammatory cytokines. TF is a transmembrane protein 
that, when combined with factor VIIa, triggers the commencement 
of blood coagulation. Coagulation in endotoxemia and sepsis models 
is predominantly influenced by the levels of TF present on 
macrophages and monocytes (10, 151). Furthermore, it was 
previously thought that activated cells, including endothelial cells, 
neutrophils and eosinophils, expressed TF. However, subsequent 
studies have revealed that these cells actually obtain TF from 
monocyte-derived microparticles via surface receptors (149). 
However, the process of forming these circulating soluble TF MPs has 
recently been discovered. Formation of GSDMD pores facilitated 
coagulation in viable macrophages by inducing calcium influx, 
leading to coagulation by promoting phosphatidylserine 
externalization. This process played a crucial role in triggering TF 
activation and facilitating the formation of cofactor-protease 
complexes within the coagulation cascade (152). In experimental 
sepsis models, inhibiting TF has shown to effectively prevent organ 
failure and reduce mortality rates. This not only helps to decrease 
coagulation but also plays a role in modulating the inflammatory 
response (153). Inhibiting DSDMD expression may represent an 
effective approach in the treatment of sepsis-associated DIC.

5.2 Endothelial dysfunction in Sepsis

Endothelial dysfunction plays a pivotal role in the development of 
sepsis, serving as a key factor in the onset of multi-organ failure 
through increased vascular permeability, activation of the coagulation 
system, facilitation of tissue edema, and impairment of vital organ 
perfusion. During sepsis, microbial substances have the ability to 
directly activate endothelial cells via PRRs (154), leading to subsequent 
activation of inflammatory pathways such as NF-κB and mitogen-
activated protein kinases. Additionally, during this process, activated 
macrophage contribute to the reprogramming of endothelial cells 
toward a secretory phenotype through the generation of reactive 
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oxygen species and cytokines (155). Angiopoietin-1, Angiopoietin-2, 
along with their tyrosine kinase receptors, Tie1 and Tie2, are pivotal 
in regulating vascular balance by engaging in diverse signaling 
pathways such as Akt and FOXO1. In sepsis, Ang2 functions as a 
biomarker indicating the severity of sepsis and is associated with the 
progression of the condition. In latest study, Endothelial-to-
mesenchymal transition (EndMT) has likewise been identified 
involving in the development of sepsis induced by LPS, and IL-35 
effectively alleviated endothelial dysfunction by mitigating 
EndMT. Moreover, IL-35 has the potential to reduce EndMT by 
blocking the NFκB signaling pathway (156). What’s more, Ivanka 
found that sepsis-induced DIC is facilitated by TRPM7 within ECs. 
The ion channel activity of TRPM7 and the functioning of α-kinase 
are crucial for the organ dysfunction resulting from DIC in sepsis, 
with their presence correlating with elevated mortality rates in septic 
conditions (157).

5.3 Platelets

Recent studies have extensively investigated the function of 
platelets in the development of sepsis, highlighting their crucial role 
as connectors linking the hemostatic/coagulation system to the 
immune system (149). Platelets are typically among the initial cells to 
become activated in sepsis. The degree of thrombocytopenia is linked 
to the disease’s severity and prognosis. Platelets become activated 
through various stimuli such as DAMPs, inflammatory mediators, 
thrombin, and vWF. This activation leads to heightened levels of 
activated platelet P-selectin, thereby enhancing monocyte TF 
expression by interacting with the PSGL-1 receptors present on the 
surface of monocytes (3, 149), as well as α-granule and dense granule, 
is released from the plasma membrane to promote platelet cascade 
activation (158). Platelet aggregates, leading to the formation of small 
or large blood clots, occur through the activation of GPIIb/IIIa, 
facilitated by fibrinogen or vWF. NINJ1, a cell surface transmembrane 
protein, has been identified as the critical role in platelet activation 
and thrombosis in sepsis, which is closely to the platelet plasma 
membrane disruption (158). Furthermore, in addressing the limited 
efficacy of platelet transfusion therapy in sepsis (150), research 
indicates that platelet populations bearing CD40 ligandshi produced 
by immune-skewed MKs from the spleen exhibit potent 
immunomodulatory functions, leading to a significant reduction in 
mortality in animal models (159) (Figure 4).

6 Cell death

6.1 Apoptosis

In sepsis, apoptosis is an inescapable pathophysiological outcome 
(160). Apoptosis occurs in both parenchymal and immune cells, 
causing multiple organ dysfunction and immune suppression.

Sepsis is associated with a strong depletion of CD4+ and CD8+ T 
cells, B cells and dendritic cells (DCs) as a result of apoptosis (110, 
111, 160, 161). The induction of lymphocyte apoptosis in sepsis is 
believed to encompass both the extrinsic and intrinsic pathways (162). 
In the extrinsic pathway, the activation of caspase-8 is initiated by the 
Fas/Fas-ligand pathway, leading to the subsequent activation of 

caspase-3 and apoptotic program (7). Interestingly, the induction of 
immune cell apoptosis sepsis of mice is facilitated by FasL rather than 
by endotoxins or TNF-α (161). While in the intrinsic pathway, 
mitochondrial pathway, which is activated by BID, a pro-apoptotic 
member of the B-cell lymphoma-2 (Bcl-2) family protein, was 
responsible for the apoptosis. It has been discovered that there is a 
notable increase in the quantity of circulatory microvesicles (MVs), 
which contain an amount of caspase-1, being released from the 
monocytes of sepsis patients, inducing apoptosis in lymphocytes 
(163). Significantly, the enhancement of sepsis outcome in 
experimental models through the implementation of pharmacological 
or genetic approaches to impede lymphocyte apoptosis implies a 
direct correlation between lymphocyte loss and sepsis lethality (164).

Mitochondria-dependent parenchymal cell apoptosis plays a 
critical role in the pathogenesis of sepsis, causing microvascular 
dysfunction and organ failure. Cardiac dysfunction is an indisputable 
aspect of multiorgan failure with the participation of cardiomyocyte 
apoptosis (165, 166). As mentioned above, Bcl-2 and Bax play a pivotal 
role in governing the permeability of the mitochondrial membrane, 
as well as orchestrating the intricate process of cellular apoptosis by 
regulating the activation of cytochrome c/caspase-9/caspase-3 axis 
(167). Several researchers have raised a few pathways aiming to 
inhibiting Bcl-2-induced apoptosis. For instance, the activation of 
PI3K/Akt pathway restore apoptosis in heart, lung, and other vital 
tissues during LPS-induced sepsis (165, 168–170). Pharmacological 
approaches including compounds and Chinese traditional drugs also 
showed significant protection effect on sepsis organs by inhibiting cell 
apoptosis (165, 171–175). However, of note, sepsis-induced apoptosis 
involves both death receptor- and mitochondrial-mediated pathways, 
indicating the activation of multiple cell death stimuli in sepsis. 
Consequently, blocking a single apoptotic trigger is unlikely to prevent 
lymphocyte cell death in this disorder (111).

6.2 Pyroptosis

As the understanding of sepsis deepens, the concept of 
pyroptosis gradually emerges as a significant phenomenon in 
explaining the mechanisms underlying septic injury (176–179). In 
sepsis, controlled pyroptosis serves to impede the proliferation of 
intracellular pathogens, eliminate intracellular pathogens and 
impaired cells, and elicit an inflammatory reaction as a defense 
mechanism against infection. Nevertheless, an excessive 
manifestation of pyroptosis can instigate extensive cellular demise, 
resulting in septic shock, multiple organ dysfunction syndrome 
(MODS), or an elevated susceptibility to secondary infections (180–
183). Pyroptosis is primarily triggered within innate immune cells. 
However, contemporary research has demonstrated the pyroptosis 
in nonimmune cells (180). During the sepsis, both classical and 
non-classical pyroptosis are involved. In the classical pyroptosis 
pathway, intracellular PRRs such as Nod-like receptor family pyrin 
domain containing 3 (NLRP3), NLR family caspase activation and 
recruitment domain (CARD), NLR containing 4 (NLRC4), and NLR 
family pyrin domain-containing 1B (NLRP1B) detect pathogenic 
stimuli and interact with pro-caspase-1 via the adaptor protein 
apoptosis-associated speck-like protein containing a CARD (ASC) 
(184–186). This interaction results in the formation of a multi-
protein complex capable of activating caspase-1 protein. This process 
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could be inhibited by Cinnamomum cassia (187), which inhibits the 
activation of NLRP3, NLRC4, and AIM2 inflammasomes, leading to 
a decrease in the secretion of IL-1β and an improvement in the 
survival rate of mice with septic shock induced by LPS. Similar 
mechanisms also exist in the protection effect of Glaucocalyxin A 
(188), ginsenoside metabolite protopanaxatriol (189) and myricetin 
(190). The activated caspase-1 plays a role in cleaving GSDMD and 
subsequently releasing N-GSDMD, which possesses the ability to 
form pores. These N-GSDMD oligomers then assemble within the 
cell membrane, leading to the formation of GSDMD pores. 
Consequently, the permeability of the cell membrane is altered, 
resulting in the ultimate cell lysis.

Of note, LPS trigger for the nonclassical pyroptosis pathway, 
functioning independently from the classical inflammasome (191). In 
the non-classical pyroptosis pathway, caspase-4/5 (human) and 
caspase-11 (murine) precursors are apical activators. Directly 
recognizing LPS and being activated by that, active caspase-4/5/11 
cleave GSDMD to cause pyroptosis (192, 193). Caspase-11, in contrast 
to caspase-1, does not have the ability to directly cleave pro-IL-1β or 
pro-IL-18. Its mechanism involves the indirect activation of the 
NLRP3/ASC/caspase-1 pathway, leading to the maturation and release 
of IL-1β and IL-18 (194). Wang et al. discovered a compound called 
8-ol, NSC84094, which effectively blocks HMGB1-mediated 
caspase-11 signaling. In animal experiments, 8-ol safeguard mice from 
sepsis (195). Natural alkaloid goitrin isolated from medicinal herbals, 
Artemisia argyi methanol extract also have been proved to be potential 

drugs for inhibiting caspase-11 activation, thus fighting against sepsis 
(196, 197). Some established drugs have been discovered to act as new 
medications for treating sepsis by influencing caspase-11, like heparin, 
Korean Red Ginseng (198, 199). This evidence suggests that inhibiting 
caspase-11-dependent non-canonical pyroptosis could be an effective 
approach in treating sepsis. Notably, the induction of intracellular 
caspase-11 also triggers the cleavage of pannexin-1, resulting in the 
efflux of K+, initiating the activation of the NLRP3 inflammasome and 
facilitate the activation of caspase-1. It shows that besides the classical 
pathway, the activation of caspase-1 can be  induced through 
intercommunication with the caspase-11 pyroptotic pathway (200). 
Regardless of the means by which it is achieved, host-expressed 
members of the gasdermin family (GSDM) are the final effector 
proteins of pyroptosis. GSDMD is regarded as a novel and ideal target 
for drug development in sepsis (179). The findings of the study 
demonstrated that macrophages lacking GSDMD, when exposed to 
LPS and Gram-negative bacteria, do not lead to cellular scorching. 
Furthermore, it was observed that mice deficient in GSDMD exhibit 
an increased rate of survival following the induction of sepsis 
(192, 201).

6.3 Ferroptosis

Multiple research studies have emphasized ferroptosis’ 
involvement in sepsis and the resultant organ damage associated with 

FIGURE 4

Cell death modalities in sepsis. Mitochondria-generated ROS and mtDNA act as triggers for the activation of the JAK–STAT pathway and the 
suppression of HDAC1, necessary for the hyperacetylation and movement of HMBG1 to the cytosol. Upon exposure to pathogenic stimuli, a significant 
amount of thiol-reduced HMGB1 is released through exosomes, functioning as inflammatory agents in sepsis. This redox state of HMGB1 interacts with 
AIM2 to initiate inflammasome activation and caspase-1-mediated responses, which are essential for inducing apoptosis/pyroptosis. Created with 
BioRender.com.
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it (202). Additional investigation is necessary as the intricate 
mechanisms and physiological significance of ferroptosis are not yet 
fully comprehended (203). Currently, the mechanisms underlying 
sepsis-organ damage caused by ferroptosis primarily revolve around 
the classical pathways of ferroptosis. In CLP-induced cerebrum, there 
is a growing occurrence of ferroptosis that supported by the observed 
decrease in GPX4 and SLC7A11 levels, elevation of ACSL4 and MDA 
levels, and the shrinkage of mitochondria (204–207). While research 
in septic cardiomyopathy (SCM) revealed that transmembrane protein 
43 (TMEM43) protects against SCM by inhibiting ferroptosis in 
LPS-induced mice by downregulating the expression of P53, ferritin 
and increasing SLC7A11, GPX4 (208). Except of GPX4 pathway, in 
AKI, Zhang et  al. provided evidence supporting the notion that 
overexpression of miR-124-3p.1 mitigates cellular injury by directly 
targeting the inhibition of LPCAT3-mediated ferroptosis, thus 
establishing miR-124-3p.1 as a potent inhibitor of this iron-dependent 
form of cell death (209). Inhibiting the process of ferroptosis presents 
itself as a compelling therapeutic approach in addressing the 
challenges posed by sepsis and the consequential organ damage that 
often follows. Indeed, a number of compounds have already exhibited 
promising therapeutic capabilities in addressing organ injuries 
associated with sepsis through the specific targeting of ferroptosis. 
Among them, acetaminophen (206), ferrostatin-1 (204, 207), and 
irisin (205) alleviate SAE by inhibiting ferroptosis. While Sodium 
hydrosulfide (NaHS) (210), melanin nanoparticles (211), ferrostatin-1 
(212), and vitamin B6 (213) alleviate SCM by inhibiting ferroptosis. 
In-depth studies are currently underway on inhibitors targeting ALI 
and AKI, with the ultimate goal of inhibiting ferroptosis through the 
classical ferroptosis pathway. What’s more, ferroptosis of immune cells 
plays a crucial role in the immunosuppression in sepsis. T cell lipid 
peroxidation causes ferroptosis and weakens infection immunity. 
Gpx4 plays a vital role in maintaining the survival of CD8+ T cells and 
promoting the growth of CD4+ and CD8+ T cells during infection 
(214). In conclusion, the employment of pharmacologically targeted 
therapeutic medications, specifically those that hinder the process of 
ferroptosis, could potentially introduce a promising therapeutic 
approach in mitigating organ damage by sepsis.

7 Summary

Sepsis is a highly costly and severe medical condition to manage, and 
it is considered one of the most expensive pathological conditions. The 
estimated annual healthcare burden for septic shock is around $24 billion 
(7). Understanding the pathogenesis mechanisms of sepsis is crucial for 
the development of novel treatment approaches. Here, we summarized 

four classic mechanisms of sepsis progression, activation of signaling 
pathway, mitochondrial quality-control, imbalance of immune 
homeostasis, DIC, cell death and presented the latest research findings 
for each mechanism. Enhanced understanding of sepsis mechanisms is 
expected to facilitate the more precise and customized selection of 
treatments, leading to better outcomes in the future.
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