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Background: Coronavirus disease 2019 (COVID-19), an infectious disease

caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2),

has caused a global pandemic. Gastric cancer (GC) poses a great threat to

people’s health, which is a high-risk factor for COVID-19. Previous studies have

found some associations between GC and COVID-19, whereas the underlying

molecular mechanisms are not well understood.

Methods: We employed bioinformatics and systems biology to explore these

links between GC and COVID-19. Gene expression profiles of COVID-19

(GSE196822) and GC (GSE179252) were obtained from the Gene Expression

Omnibus (GEO) database. After identifying the shared differentially expressed

genes (DEGs) for GC and COVID-19, functional annotation, protein-protein

interaction (PPI) network, hub genes, transcriptional regulatory networks and

candidate drugs were analyzed.

Results: We identified 209 shared DEGs between COVID-19 and GC. Functional

analyses highlighted immune-related pathways as key players in both diseases.

Ten hub genes (CDK1, KIF20A, TPX2, UBE2C, HJURP, CENPA, PLK1, MKI67, IFI6,

IFIT2) were identified. The transcription factor/gene and miRNA/gene interaction

networks identified 38 transcription factors (TFs) and 234 miRNAs. More

importantly, we identified ten potential therapeutic agents, including ciclopirox,

resveratrol, etoposide, methotrexate, trifluridine, enterolactone, troglitazone,

calcitriol, dasatinib and deferoxamine, some of which have been reported to

improve and treat GC and COVID-19.

Conclusion: This research offer valuable insights into the molecular interplay

between COVID-19 and GC, potentially guiding future therapeutic strategies.
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1 Introduction

Coronavirus disease 2019 (COVID-19) has caused a global
pandemic, posing a significant health challenge worldwide and
resulting in the deaths of over 6 million people (1). As the pandemic
progresses, new variants of the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) have emerged, with the World Health
Organization (WHO) identifying variants of concern, including
Alpha, Beta, Gamma, Delta, and Omicron (2, 3). SARS-CoV-2
enters the body by interacting with the angiotensin-converting
enzyme 2 (ACE2) receptor and replicates within the epithelium,
subsequently infecting surrounding cells (4). ACE2, a critical
component of the renin-angiotensin system, has been identified as a
membrane receptor for SARS-CoV-2 (5). Additionally, SARS-CoV-
2 also enters host cells with the primary or auxiliary help of host
proteases transmembrane protease serine 2 (TMPRSS2), FURIN
(6), glucose-regulating protein 78 (GRP78) receptor (7), dipeptidyl
peptidase 4 (DPP4) (8), cluster of differentiation 147 (CD147)
transmembrane protein (9), tyrosine-protein kinase receptor UFO
(AXL) (10), phosphatidylinositol 3-phosphate 5-kinase (PIKfyve)
(11), two pore channel subtype 2 (TPC2) (12) and cathepsin L (13).
Infection by SARS-CoV-2 alters alveolar vascular permeability,
leading to lung injuries like pulmonary edema and pulmonary
ischemia (14). Beyond the lungs, SARS-CoV-2 can spread to the
brain, heart, gastrointestinal tract, and other organs through the
bloodstream, causing severe complications (15–19). Due to the
frequent genome reorganization of SARS-CoV-2, COVID-19 is
likely to evolve and become seasonal epidemics (20). Clinical
and epidemiological data suggest that underlying conditions,
such as cancer, hypertension, cardiovascular disease, and diabetes,
increase susceptibility to SARS-CoV-2 infection and can lead to
more severe outcomes, including lung damage and death (21).
Therefore, understanding how to treat COVID-19 in individuals
with underlying diseases, including cancer, is of great research and
clinical significance.

Gastric cancer (GC) is a major global health concern and
the fourth leading cause of cancer-related deaths worldwide
(22). GC incidence shows a strong geographic pattern, with the
highest rates in East Asia, some South American and Eastern
European countries, and the lowest in Africa and North America.
More than 70% of GC cases occur in developing countries.
GC patients typically have a poor prognosis and low long-term
survival rates (23). Evidence suggests that GC patients are more
vulnerable to SARS-CoV-2 infection, with immunotherapy and
radiotherapy within three months of a COVID-19 diagnosis
being risk factors for death (24). The expression profile of
the SARS-CoV-2 host receptor ACE2 protein in the human
gastrointestinal tract revealed that ACE2 was detectable in the
gastric pits, fundic glands, gastric chief cells (pepsinogen-secreting
cells), parietal cells (gastric acid-secreting cells), and pyloric
glands, suggesting that gastric tissue may be susceptible to SARS-
CoV-2 infection (25). Moreover, the intensity of ACE2 staining
is significantly higher in gastric tumor tissues compared to
adjacent non-tumor tissues, indicating that GC patients may be
at increased risk of SARS-CoV-2 infection (25). A Mendelian
randomization study also suggests a causal relationship between
SARS-CoV-2 infection and an increased risk of gastric cancer
(26). These findings underscore the importance of understanding

the molecular mechanisms underlying the interaction between
COVID-19 and gastric cancer.

In this study, we hypothesize that there are shared molecular
mechanisms between COVID-19 and GC that could inform
new therapeutic strategies. Specifically, we address the following
research questions: 1. What are the common differentially
expressed genes (DEGs) between COVID-19 and gastric cancer? 2.
How do these shared DEGs contribute to the onset and progression
of both diseases? 3. Can hub genes within the protein-protein
interaction (PPI) network reveal key molecular players that may
serve as potential therapeutic targets? 4. What are the potential
drugs that could target these shared molecular mechanisms, and
how might they contribute to the treatment of both COVID-
19 and gastric cancer? To answer these questions, transcriptome
profiles were obtained from the National Center for Biological
Information (NCBI)-Gene Expression Omnibus (GEO) database.
The datasets of COVID-19 and GC were studied to find DEGs
for both diseases. These sets of DEGs were then compared to gain
mutual DEGs. Moreover, the biological function of the common
DEGs was analyzed to gain insights into its impact on disease onset
and progression. A protein-protein interaction network was used to
identify hub genes with the most obvious interactions and narrow
down potential biomolecules. Next, the hub genes were used to
establish the gene-regulatory network, predict potential drugs,
and complete the gene-disease association network. This study
identified the relationship between gastric cancer and COVID-
19, potentially providing new ideas to assist in the treatment of
GC and COVID-19.

2 Materials and methods

2.1 Data source and work flow

Figure 1 shows the successive workflow of this study. To
determine the mutual genetic interrelationship between SARS-
CoV-2 infection and gastric cancer, we used the GEO database1

of NCBI to obtain RNA-seq datasets. For SARS-CoV-2 patients,
we used GSE196822 dataset (27), which includes whole-blood
transcriptome profiling of 34 COVID-19 patients and 9 healthy
controls. The data came from high-throughput sequencing
using the Illumina HiSeq 4000 (Homo sapiens). Gastric cancer
(GSE179252) (28) consists of 38 gastric tumors and paired normal
38 gastric tissues which was based on Illumina HiSeq 4000 (Homo
sapiens).

2.2 Identification of DEGs and common
DEGs between COVID-19 and gastric
cancer

The key target of the analysis is to find the DEGs for the
datasets GSE196822 and GSE179252. The DEseq2 package (29) of
R software (version 4.2.1) was used to identify the DEGs with false-
discovery rate (FDR) < 0.05 and | log2 Fold Change| > 1. To extract

1 https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1

The overall work of this study.

the shared DEGs between COVID-19 and gastric cancer, an online
VENN visual tool called Jvenn2 was used (30).

2.3 Gene ontology and pathway
enrichment analysis

The use of gene ontology (GO) enrichment methods is
widespread for demonstrating the relationship between genes and
GO terms, and the GO database is a comprehensive resource
on gene and gene product functions (31). GO annotated sources
for biological process (BP), molecular function (MF), and cellular
component (CC) were retrieved from the GO database (32). To
identify pathways shared by GC and COVID-19, we considered the
following three repositories as the origin of pathway classification:
WikiPathways, Reactome, and the Kyoto Encyclopedia of Genes
and Genomes (KEGG). We used Enrichr (33)3 for gene ontology
and pathway enrichment investigations. To quantify the top
pathways and functional items, a standardized index with a
P-value < 0.05 was utilized.

2.4 Protein–protein interaction network
analysis and hub genes extraction

STRING (version 11.5) database,4 an online protein-protein
association networks platform, has been used to construct the PPI
network with a filter condition (combined score > 0.5) (34). All the
common DEGs between COVID-19 and GC were used to build the
PPI network. Then, the PPI network was consumed into Cytoscape

2 https://jvenn.toulouse.inra.fr/app/example.html

3 https://maayanlab.cloud/Enrichr/

4 https://string-db.org/

(v.3.9.1) for visual representation and hub genes’ recognition (35).
We used Maximal Clique Centrality (MCC) method of Cytohubba
(a plugin of Cytoscape)5 to identify the top 10 hub genes from the
PPI network (36). At the same time, Cytohubba’s proximity ranking
characteristics helped us to identify the shortest reachable pathways
linking hub genes.

2.5 Identification of miRNAs–gene and
transcription factors–gene interactions

Transcription factors (TFs) are proteins attached to specific
genes that control the genetic information’s transcription rate; as
such, they are essential for molecular insight (37). Our approach
involved utilizing the NetworkAnalyst platform (version 3.0) (38)
to identify topologically feasible TFs from the JASPAR database that
could be potentially integrated with hub genes. JASPAR is a publicly
accessible database that compiles information on TFs across six
taxonomic groups for various species (39). miRNAs targeting gene
interactions are also included in studies to identify miRNAs that
tend to bind to gene transcripts and thus negatively impact protein
production. We used Network-Analyst to analyze miRNAs-gene
interactions from Tarbase (version 8.0) (40) databases.

2.6 Identification of drug candidates

Another emphasis of this study was to use the hub genes of
COVID-19 and GC to predict protein-drug interactions (PDIs) or
drug molecule recognition. Using Enrichr’s disease/drug functions,
based on hub genes, drug molecules were predicted from the Drug

5 http://apps.cytoscape.org/apps/cytohubba
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TABLE 1 Overview of datasets with their geo-features and their quantitative measurements in this analysis.

Disease name GEO accession GEO platform Total DEGs
count

Upregulated DEGs
count

Downregulated
DEGs count

COVID-19 GSE196822 GPL20301 1,668 839 829

Gastric cancer GSE179252 GPL20301 3,447 1,045 2,402

FIGURE 2

The Venn diagram showed 209 shared DEGs between COVID-19 and GC.
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FIGURE 3

The bar graphs depicting the gene ontology enrichment analysis of shared DEGs between COVID-19 and gastric cancer. (A) biological process.
(B) molecular function. (C) cellular component. The lighter the color, the more significant it is.

Signatures Database (DSigDB)6 (41), which contains 17,389 unique
chemicals that span 19,531 genes and has 22,527 gene sets.

2.7 Gene-disease association analysis

DisGeNET7 (42) is a platform that integrates and standardizes
data on genes associated with diseases from diverse sources.
Currently, DisGeNET has information on about 24,000 illnesses
and features, 17,000 genes, and 117,000 genetic variations. To
identify the relationship between relevant diseases and common
DEGs, we use DisGeNET, Network-Analyst and Cytoscape to
investigate the relationship between genes and diseases.

6 http://tanlab.ucdenver.edu/DSigDB

7 http://www.disgenet.org/

3 Results

3.1 Determination of DEGs and common
DEGs of GC and COVID-19

To investigate the correlation and influence between GC and
COVID-19, we analyzed human RNA-seq datasets from GEO and
identified shared DEGs that may trigger both COVID-19 and
GC. In this study, 1,668 genes were found to be differentially
expressed in COVID-19, including 839 up regulated DEGs and 829
down regulated DEGs (Supplementary Table 1). Similarly, 3,447
DEGs were identified in the GC data, including 1045 up regulated
DEGs and 2402 down regulated DEGs (Supplementary Table 2).
The information about the two datasets has been integrated in
Table 1. To find shared DEGs between GC and COVID-19,
we performed a cross-comparative evaluation using Jvenn and
identified 209 common DEGs in both datasets (Figure 2 and
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TABLE 2 Ontological analysis of common DEGs between SARS-CoV-2 and GC.

Category GO ID Term P-value Genes

GO biological
process

GO:0043312 Neutrophil degranulation 4.42E-14 CDA; CRISP3; GPR84; SLC2A5; ABCA13; TRPM2; PLAU;
ANPEP; CLEC5A; OLR1; CD177; MGAM; SLC11A1;
HSPA6; MCEMP1; AZU1; RNASE2; LILRB3; OLFM4;
MMP9; OSCAR; CHIT1; CEACAM6; CYSTM1; BPI;
S100P; HSPA1A; LTF

GO:0002283 Neutrophil activation involved in
immune response

5.43E-14 CDA; CRISP3; GPR84; SLC2A5; ABCA13; TRPM2; PLAU;
ANPEP; CLEC5A; OLR1; CD177; MGAM; SLC11A1;
HSPA6; MCEMP1; AZU1; RNASE2; LILRB3; OLFM4;
MMP9; OSCAR; CHIT1; CEACAM6; CYSTM1; BPI;
S100P; HSPA1A; LTF

GO:0002446 Neutrophil mediated immunity 6.33E-14 CDA; CRISP3; GPR84; SLC2A5; ABCA13; TRPM2; PLAU;
ANPEP; CLEC5A; OLR1; CD177; MGAM; SLC11A1;
HSPA6; MCEMP1; AZU1; RNASE2; LILRB3; OLFM4;
MMP9; OSCAR; CHIT1; CEACAM6; CYSTM1; BPI;
S100P; HSPA1A; LTF

GO:0045087 Innate immune response 2.01E-06 IFITM3; IFITM1; SLC11A1; F12; CRISP3; IFI6; ISG15;
RNASE2; CXCL16; TREML1; CLEC5A; BPI; CLEC4E; LTF

GO:2000147 Positive regulation of cell motility 2.19E-06 COL1A1; SEMA6B; CEACAM6; PLAU; MDK; EGF; HGF;
GPER1; LEF1; EPHB2; MMP9; CXCL16

GO:0140546 Defense response to symbiont 4.05E-06 IFITM3; IFITM1; IFI6; ISG15; AZU1; RNASE2; RNASE1;
IFI44L; IFIT2

GO:0051101 Regulation of DNA binding 6.68E-06 CDT1; EGF; LEF1; HJURP; E2F1; MMP9

GO:0010604 Positive regulation of macromolecule
metabolic process

7.00E-06 SLC24A3; EGF; SLC11A1; HPN; LEF1; PCSK9; AZU1;
INHBA; LGALS9C; GPER1; TMEM119; E2F1; EPHB2;
FGFR4; HSPA1A

GO:0051607 Defense response to virus 7.20E-06 IFITM3; IFITM1; IFI6; ISG15; AZU1; RNASE2; RNASE1;
IFI44L; IFIT2

GO:0050829 Defense response to Gram-negative
bacterium

7.86E-06 SELP; SLC11A1; SERPINE1; BPI; AZU1; RNASE2; LTF

GO molecular
function

GO:0008083 Growth factor activity 2.26E-04 MDK; EGF; HGF; CLEC11A; OSM; INHBA

GO:0008236 Serine-type peptidase activity 2.50E-04 PLAU; HGF; HTRA3; F12; HPN; PCSK9; MMP9

GO:0048018 Receptor ligand activity 2.54E-04 SEMA6B; GDF15; MDK; EGF; IL34; HGF; CLEC11A;
OSM; TIMP1; INHBA; ERFE

GO:0004252 Serine-type endopeptidase activity 6.23E-04 PLAU; HGF; F12; HPN; PCSK9; MMP9

GO:0004175 Endopeptidase activity 0.001221 ADAM28; ADAMTS2; PLAU; F12; HGF; HTRA3; HPN;
PCSK9; MMP9; TRABD2A

GO:0048407 Platelet-derived growth factor binding 0.005057 COL1A1; COL1A2

GO:0002020 Protease binding 0.006418 COL1A1; COL1A2; SERPINE1; TIMP1; CD177

GO:0008237 Metallopeptidase activity 0.007122 ADAMTS2; ADAM28; ANPEP; MMP9; TRABD2A

GO:0005125 Cytokine activity 0.007615 GDF15; IL34; OSM; INHBA; TIMP1; CXCL16

GO:0016836 Hydro-lyase activity 0.017196 CBS; CA4; ECHDC3

GO cellular
component

GO:0070820 Tertiary granule 6.32E-13 CDA; MGAM; SLC11A1; CRISP3; MCEMP1; GPR84;
OLFM4; MMP9; OSCAR; CHIT1; TRPM2; PLAU;
CLEC5A; OLR1; CYSTM1; CD177; LTF

GO:0030667 Secretory granule membrane 3.46E-11 MGAM; SLC11A1; CCDC136; MCEMP1; AZU1; GPR84;
LILRB3; SLC2A5; ABCA13; SELP; TRPM2; CEACAM6;
PLAU; ANPEP; CLEC5A; CA4; OLR1; CYSTM1; CD177

GO:0042581 Specific granule 7.11E-10 CRISP3; MCEMP1; GPR84; OLFM4; SLC2A5; OSCAR;
CHIT1; TRPM2; PLAU; CLEC5A; OLR1; BPI; CD177; LTF

GO:0070821 Tertiary granule membrane 2.60E-09 TRPM2; MGAM; PLAU; SLC11A1; CLEC5A; OLR1;
MCEMP1; CYSTM1; GPR84; CD177

GO:0034774 Secretory granule lumen 6.37E-07 CDA; EGF; HGF; CRISP3; SERPINE1; HSPA6; AZU1;
RNASE2; OLFM4; OSCAR; CHIT1; BPI; S100P; TIMP1;
LTF

(Continued)
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TABLE 2 (Continued)

Category GO ID Term P-value Genes

GO:1904724 Tertiary granule lumen 1.14E-06 CHIT1; CDA; CRISP3; OLFM4; MMP9; OSCAR; LTF

GO:0035579 Specific granule membrane 3.37E-06 TRPM2; PLAU; CLEC5A; OLR1; MCEMP1; GPR84;
SLC2A5; CD177

GO:0035580 Specific granule lumen 3.38E-05 CHIT1; CRISP3; BPI; OLFM4; OSCAR; LTF

GO:0005887 Integral component of plasma
membrane

5.36E-04 KCNG2; CNTNAP1; CSF3R; SLC24A3; PTGDR2; HPN;
SLC1A3; GPR84; SLC2A5; TRPM2; HRH2; GPER1;
CLEC5A; OLR1; EPHB2; FCGR1A; NTSR1; PLXNA4;
SEMA6B; SLC11A1; LILRB3; SELP; SLCO4A1; FGFR4;
F2RL2; GPR19; SLC28A3; TRABD2A

GO:0062023 Collagen-containing extracellular
matrix

0.001478 COL1A1; COL1A2; GDF15; MDK; F12; COL7A1;
SERPINE1; COL9A2; MMP9; LOXL1; TGM2

Supplementary Table 3). There are multiple genes in common
between GC and COVID-19, suggesting some similarity between
the two diseases.

3.2 Analyses of GO and pathway
enrichment

To investigate the enrichment pathways and biological
significance of common DEGs between COVID-19 and GC,
we used Enrichr for gene functional annotation. Figure 3 and
Table 2 summarized the top 10 enriched GO categories in the
biological process, molecular function and cellular component
categories. Notably, common DEGs were significantly enriched in
immune-related pathways, which include neutrophil degranulation
(GO:0043312), neutrophil activation involved in immune response
(GO:0002283), neutrophil mediated immunity (GO:0002446),
innate immune response (GO:0045087), defense response to virus
(GO:0051607), receptor ligand activity (GO:0048018), and cytokine
activity (GO:0005125).

Pathway analysis can highlight how underlying molecular and
biological processes interact (43). Figure 4 and Table 3 show the
main pathways of common DEGs enrichment in WikiPathways,
Reactome, and KEGG. Pathway enrichment analysis showed
that common DEGs are mainly involved in the regulation of
immune-related pathways, including TGF-beta Receptor Signaling
WP560, Neutrophil Degranulation R-HSA-6798695, Immune
System R-HSA-168256, Innate Immune System R-HSA-168249,
Immunoregulatory Interactions Between A Lymphoid And A
non-Lymphoid Cell R-HSA-198933, Transcriptional Regulation Of
Granulopoiesis R-HSA-9616222, Interferon Alpha/Beta Signaling
R-HSA-909733 and B cell receptor signaling pathway. These results
provide strong evidence that these common DEGs play a role
in the onset and development of COVID-19 and GC through
immune-related pathways.

3.3 Building PPI network and selecting of
hub genes

PPI networks can visualize the interrelationships between
different proteins and can help us understand the underlying

mechanisms by which proteins interact (44). Using STRING and
Cytoscape, we built and visualized a PPI network of shared DEGs
between COVID-19 and GC, which encompasses 46 nodes and
82 edges, as depicted in Figure 5. The most entangled nodes
among them are hub genes. These hub genes have the potential to
serve as biomarkers and may offer novel insights into therapeutic
approaches. The top 10 hub genes with the highest MCC scores
were identified using the cytoHubba plugin of Cytoscape, namely
CDK1, KIF20A, TPX2, UBE2C, HJURP, CENPA, PLK1, MKI67,
IFI6, and IFIT2 (Figure 6 and Supplementary Table 4).

3.4 Identifying of transcription regulatory
network

To figure out how hub genes modulate COVID-19 and
GC at the transcriptional level, this study also investigated the
interaction between TFs and genes, as well as miRNAs. In this
study, a network-based approach was used to decode regulatory
transcription factors and miRNAs as a way to gain insight
into hub genes and find substantial changes that occur at the
transcriptional level. As shown in Figure 7, the figure exhibits
the interaction network of 38 transcription factors, such as ESR2,
REL, SRY, SPIB, NR2F1, BRCA1, FOS, CREB1, FOXC1 and
GATA2 (Supplementary Table 5). Similarly, Figure 8 represents
the interaction network of miRNAs regulators and hub genes,
containing 234 miRNAs, such as hsa-mir-16-5p, hsa-mir-192-5p,
hsa-mir-215-5p, hsa-mir-92a-3p, hsa-mir-193b-3p, hsa-let-7e-5p,
hsa-mir-1283, hsa-mir-218-5p, hsa-mir-1-3p and hsa-mir-671-5p
(Supplementary Table 6).

3.5 Determination of candidate drugs

To search for potential drugs to treat COVID-19 and GC,
possible drug molecules were predicted based on the transcriptional
characteristics from the DSigDB database (45). The top 8
compounds were identified according to their P-values (Table 4).
The potential drug compounds were ciclopirox, resveratrol,
etoposide, methotrexate, trifluridine, enterolactone, troglitazone,
calcitriol, dasatinib and deferoxamine. These drugs have the
possibility to be used as treatment for GC and COVID-19.
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TABLE 3 Pathway enrichment analysis of common DEGs between SARS-CoV-2 and GC.

Category Term P-value Genes

WikiPathways Lung fibrosis WP3624 3.99E-04 PLAU; EGF; HGF; TIMP1; MMP9

Bladder cancer WP2828 6.44E-04 EGF; E2F1; MMP9; TYMP

Neural crest cell migration during development WP4564 6.44E-04 AKT3; EPHB2; MMP9; F2RL2

Neural crest cell migration in cancer WP4565 8.50E-04 AKT3; EPHB2; MMP9; F2RL2

Regulation of microtubule cytoskeleton WP2038 0.001099 CFL2; CDK1; EPHB2; F2RL2

Blood clotting cascade WP272 0.001462 PLAU; F12; SERPINE1

IL1 and megakaryocytes in obesity WP2865 0.001659 TIMP1; PLA2G7; MMP9

TGF-beta receptor signaling WP560 0.002002 EGF; SERPINE1; LEF1; INHBA

TGF-beta receptor signaling in skeletal dysplasias WP4816 0.002605 EGF; SERPINE1; LEF1; INHBA

Reactome Neutrophil degranulation R-HSA-6798695 2.96E-15 LILRA6; CDA; CRISP3; GPR84; SLC2A5; ABCA13; TRPM2;
PLAU; ANPEP; CLEC5A; OLR1; CD177; MGAM; SLC11A1;
HSPA6; MCEMP1; AZU1; RNASE2; OLFM4; RNASE1; MMP9;
OSCAR; CHIT1; CEACAM6; CYSTM1; BPI; S100P; HSPA1A;
LTF

Immune system R-HSA-168256 1.79E-10 IFITM3; CDA; IFITM1; CSF3R; CRISP3; SLC2A5; ABCA13;
IFIT2; PLAU; ANPEP; AKT3; CLEC5A; OLR1; TIMP1; CD177;
TNFRSF12A; IL1R2; SLC11A1; MCEMP1; RNASE2; OLFM4;
RNASE1; MMP9; OSCAR; CHIT1; CEACAM6; BPI; KIF20A;
CLEC4E; LTF; LILRA6; IFI6; GPR84; LILRA5; TRPM2;
FCGR1A; MGAM; UBE2C; SIGLEC11; IL34; HSPA6; ISG15;
AZU1; FBXO32; TREML1; COL1A2; CYSTM1; S100P; GSDME;
HSPA1A

Innate immune system R-HSA-168249 2.48E-09 LILRA6; CDA; CRISP3; GPR84; SLC2A5; ABCA13; TRPM2;
PLAU; ANPEP; CLEC5A; OLR1; FCGR1A; CD177; MGAM;
SLC11A1; HSPA6; MCEMP1; ISG15; AZU1; RNASE2; OLFM4;
RNASE1; MMP9; OSCAR; CHIT1; CEACAM6; CYSTM1; BPI;
S100P; CLEC4E; GSDME; HSPA1A; LTF

Collagen formation R-HSA-1474290 3.10E-06 COL1A1; ADAMTS2; COL1A2; PCOLCE2; COL7A1; COL9A2;
MMP9; LOXL1

Assembly of collagen fibrils and other multimeric
structures R-HSA-2022090

2.08E-05 COL1A1; COL1A2; COL7A1; COL9A2; MMP9; LOXL1

Extracellular matrix organization R-HSA-1474244 3.50E-05 COL1A1; CAPN13; ADAMTS2; COL1A2; PCOLCE2;
CEACAM6; COL7A1; SERPINE1; COL9A2; TIMP1; MMP9;
LOXL1

Collagen biosynthesis and modifying enzymes
R-HSA-1650814

5.27E-05 COL1A1; ADAMTS2; COL1A2; PCOLCE2; COL7A1; COL9A2

Immunoregulatory interactions between a lymphoid and a
non-lymphoid cell R-HSA-198933

2.26E-04 TREML1; LILRA6; IFITM1; SIGLEC11; FCGR1A; OSCAR;
LILRA5

Transcriptional regulation of granulopoiesis
R-HSA-9616222

2.93E-04 H2BC9; CSF3R; LEF1; E2F1; H2BC17

Interferon alpha/beta signaling R-HSA-909733 7.39E-04 IFITM3; IFITM1; IFI6; ISG15; IFIT2

KEGG Prostate cancer 5.07E-05 PLAU; EGF; IL1R2; AKT3; LEF1; E2F1; MMP9

Neutrophil extracellular trap formation 1.15E-04 H4C8; SELP; H2BC9; H2BC7; CR1L; AKT3; AZU1; FCGR1A;
H2BC17

Complement and coagulation cascades 1.99E-04 PLAU; CR1L; F12; SERPINE1; F2RL2; C2

Bladder cancer 7.09E-04 EGF; E2F1; MMP9; TYMP

B cell receptor signaling pathway 0.00126 LILRA6; IFITM1; AKT3; LILRB3; LILRA5

Osteoclast differentiation 0.001674 LILRA6; AKT3; FCGR1A; LILRB3; OSCAR; LILRA5

Systemic lupus erythematosus 0.00228 H4C8; H2BC9; H2BC7; FCGR1A; H2BC17; C2

Pyrimidine metabolism 0.00229 CDA; ENPP3; UPP1; TYMP

Hematopoietic cell lineage 0.003049 CSF3R; CR1L; ANPEP; IL1R2; FCGR1A

Melanoma 0.005675 EGF; HGF; AKT3; E2F1
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FIGURE 4

The bar graphs of pathway enrichment analysis of mutual DEGs between COVID-19 and GC. (A) WikiPathway. (B) Reactome pathway. (C) KEGG. The
lighter the color, the more significant it is.

3.6 Exploration of gene-disease
associations

Different diseases can generally be considered to be associated
with each other if they have one or more similar genes. With the
DisGeNET database, Network-Analyst was used to analyze gene-
disease associations (Figure 9). Network-Analyst further revealed
the stomach neoplasms, colonic neoplasms, autosomal recessive
predisposition, liver cirrhosis experimental, mammary neoplasms,

neoplasm metastasis, and prostatic neoplasms to be most associated
with the identified COVID-19/GC-related common DEGs.

4 Discussion

A strong correlation between COVID-19 and GC has been
reported (24–26), with GC patients being more susceptible to
viral infection post-surgery, chemotherapy, or radiotherapy. Once
infected, the disease progression in GC patients is often more rapid
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FIGURE 5

PPI network of shared DEGs between COVID-19 and GC. The DEGs in the figure are represented by circles and the edges mean the connections
between the nodes. The PPI network consists of 46 nodes and 82 edges.

FIGURE 6

The hub genes were obtained from the PPI network. The nodes in orange represent the top 10 prominent hub genes and the interactions among
them and other molecules. This network contains 26 nodes and 60 edges.
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FIGURE 7

The regulatory network of TFs-gene. The circles represent hub gene, and transcription factor was represented by quadrilateral shape. The network
contains 38 nodes and 75 edges.

and severe, leading to higher mortality rates. This study aims to
explore the molecular mechanisms underlying this correlation to
potentially inform new therapeutic strategies.

Here, we identified 209 common DEGs between COVID-19
and GC and explored the biological function of shared DEGs in the
pathogenesis of COVID-19 and GC. Notably, these common DEGs
are significantly enriched in many immune-related pathways.
Alterations in neutrophil number and function have been identified
as one of the immunopathological markers associated with severe
COVID-19 (46). Studies have shown that neutrophils in healthy
individuals can become dysfunctional in degranulation due to
factors secreted by epithelial cells which were infected by SARS-
CoV-2 (47). Also, neutrophils play an important role in tumor
progression and metastasis (48). Cytokine activity was affected by
SARS-CoV-2 infection. Impaired acquired immune responses and
uncontrolled inflammatory innate responses to SARS-CoV-2 may
lead to cytokine storms (49). The occurrence and development
of tumors are actually closely related to the immune system,
and cancer patients generally have immune dysfunction and low
resistance. At the same time, in the process of tumor treatment,
including surgery, chemotherapy and radiotherapy, it has a great

impact on the body, which will have a certain impact on the patient’s
immune system. Targeting immune-related pathways offers a
promising avenue for the development of therapeutic strategies
against both COVID-19 and gastric cancer.

The common DEGs are utilized to construct the PPI network,
in which the hub gene is the most significant regulator in the
common pathogenetic processes of GC and COVID-19. CDK1 is
an important regulator of cell cycle at G1/S and G2/M checkpoints
(50). It has been reported that CDK1 is highly expressed in
gastric cancer. Phosphorylation of islet-1 serine 269 by CDK1 can
increase its transcriptional activity and promote the proliferation
of gastric cancer cells (51), and inhibition of CDK1 can inhibit the
proliferation, migration and invasion of GC cells (52). CDK1 is
highly expressed in PBMCs of COVID-19 patients and is involved
in the apoptosis process; CDK1 may also be associated with a
worsening of the course of COVID-19, which is characterized by
an extreme decrease in immune cells (53). KIF20A (also known
as mitotic kinesin-like protein 2, MKlp2) transports chromosomes
during mitosis and plays a key role in cell division. KIF20A is
highly expressed in almost all cancers, including gastric cancer
(54), melanoma (55), hepatocellular carcinoma (56), and breast
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FIGURE 8

The regulatory network of miRNAs-gene. The pink circle represents the hub gene and the green triangle represents the miRNA. The network
contains 243 nodes and 256 edges.

cancer (57). Several studies have also shown that KIF20A is
a hub gene involved in SARS-CoV-2 infection (58, 59). TPX2
is a microtubule-associated protein that activates the cell cycle
kinase protein Aurora-A, which then plays an vital role in
spindle formation in mitosis (60), and high TPX2 expression is
associated with tumor progression and low survival in gastric
cancer (61). TPX2 may be a novel COVID-19 intervention target
and biomarker (62). Overexpression of UBE2C is associated with
poor prognosis of patients with gastric cancer, and it is also a
potential biomarker for intestinal-type gastric cancer (63). A study
of peripheral blood transcriptome sequencing in patients with
pneumonia found that the expression of UBE2C in patients with
severe pneumonia was higher than that in patients with mild
pneumonia (64). HJURP (65), CENPA (66), PLK1 (67) and IFI6
(68) were found to significantly increase in gastric cancer tissues
compared with normal tissues. In addition, HJURP (69), PLK1
(58), MKI67 (70) and IFI6 (71) have been identified as potential
therapeutic target for COVID-19 patients. IFIT2 have been proved
to have important roles in regulating apoptosis. Chen et al. (72)
showed that decreased expression of IFIT2 promotes gastric cancer
progression and predicts poor patient prognosis. Similarly, the
significant downregulation of IFIT2 has been observed in patients

with severe COVID-19 (73). These findings suggest that targeting
these hub genes could be a promising therapeutic strategy in
managing both diseases.

In this study, we identified a variety of compounds and
medications that may treat COVID-19 and GC, including
ciclopirox, resveratrol, etoposide, methotrexate, trifluridine,
enterolactone, troglitazone, calcitriol, dasatinib and deferoxamine.
Ciclopirox is an antifungal drug that was recently identified
as a promising cancer treatment (74). Ciclopirox regulates the
growth and autophagic cell death of GC cells by regulating the
phosphorylation of STAT3 at Tyr705 and Ser727 residues, and
suggests that ciclopirox may be a potential treatment for GC (75).
Consistent with this study, Zhang et al. (76) identified ciclopirox
as a potential therapeutic agent for the treatment of patients with
SARS-CoV-2 infection through drug prediction and simulated
docking patterns. Resveratrol is considered an anti-inflammatory
and antiviral agent. Resveratrol inhibits the progression of gastric
cancer by anti-inflammatory, antioxidant (77), antibacterial (78),
inducing cell cycle arrest (79), promoting apoptosis (80), and
inhibiting proliferation (81). Besides, resveratrol downregulates
neutrophil extracellular traps (NETs) generation by neutrophils
in patients with severe COVID-19 (82). Similarly, network
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FIGURE 9

The Gene-disease association network. The square nodes represent diseases and the round nodes represent DEGs.

pharmacology has shown that resveratrol can alleviate COVID-19-
related hyperinflammation (83). Etoposide is a class of anticancer
drugs (84). Etoposide induces cell death through the mitochondria-
dependent effects of p53 (85). The interaction of etoposide with
pertuzumab or trastuzumab induces programmed cell death in
gastric cancer cells through exogenous and endogenous apoptotic
pathways (86). Besides, etoposide may be a very effective treatment
to protect critically ill patients from death caused by a storm of
COVID-19-specific cytokines (87). Methotrexate is a tightly bound
dihydrofolate reductase (DHFR) inhibitor that is used both as an
antineoplastic agent and as an immunosuppressant (88). Clinical
and experimental data suggest that methotrexate has a protective
effect on SARS-CoV-2 infection by downregulating ACE2 (89).
Trifluridine/tipiracil could be a new treatment option for patients
with heavily pretreated advanced gastric cancer after progression
on, or intolerance to, two or more previous lines of chemotherapy,
including a fluoropyrimidine, a platinum agent, a taxane or
irinotecan (or both), and an anti-HER2 therapy (in patients with
HER2-positive disease) (90). Similarly, trifluridine is considered
to have good anti-SARS-CoV-2 capability by virtual screening,
ADME/T, and binding free energy analysis (91, 92). Enterolactone
is a bioactive phenolic metabolite known as mammalian lignans
derived from dietary lignans (93). Enterolactone has potent
anti-cancer and/or protective properties against different cancers,
including gastric (94), breast (95), colorectal (96), lung (97),
ovarian, endometrial (98), and hepatocellular carcinoma (99). In
another bioinformatics and systems biology analysis, enterolactone

was similarly identified as a potential treatment for COVID-19
(70). Troglitazone induces apoptosis in gastric cancer cells through
the NAG-1 pathway (100). In addition, troglitazone has been
identified as a potential inhibitor of SARS-CoV-2 replicase (101).
Calcitriol alleviates COVID-19 complications by modulating
pro-inflammatory cytokines, antiviral proteins, and autophagy
(102). Similarly, there was an improvement in peripheral arterial
oxygen saturation and inspired oxygen fraction in hospitalized
patients with COVID-19 treated with calcitriol (103). Dasatinib
promotes TRAIL-mediated apoptosis by upregulating CHOP-
dependent death receptor 5 in gastric cancer (104). Dasatinib can
reduce SARS-CoV-2-related mortality, delay its onset, and reduce
the number of other clinical symptoms (105). Deferoxamine
is a widely used iron chelator used to treat iron overload.
Deferoxamine targets mitochondria and impair mitochondrial
respiration and [Fe-S] cluster/heme biogenesis in cancer cells,
thereby inhibiting tumor proliferation and migration and inducing
cell death (106). Deferoxamine has iron chelation, antiviral, and
immunomodulatory effects to help control SARS-CoV-2 (107).

This study explores the relationship between COVID-19 and
GC using bioinformatics and systems biology approaches; however,
several limitations should be acknowledged. First, our analysis
relies on data retrieved from specific public databases, which
may introduce biases related to sample selection, data collection
methods, and population differences. Second, the gene expression
data used in this study may be subject to methodological biases,
including batch effects and variations in experimental conditions
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TABLE 4 Drug candidates combined with hub genes.

Name P-
value

Molecular
formula

Structure

Ciclopirox 4.08E-16 C12H17NO2

Resveratrol 9.92E-15 C14H12O3

Etoposide 2.88E-14 C29H32O13

Methotrexate 4.77E-14 C20H22N8O5

Trifluridine 2.23E-12 C10H11F3N2O5

Enterolactone 1.24E-09 C18H18O4

Troglitazone 4.13E-09 C24H27NO5S

Calcitriol 7.41E-09 C27H44O3

Dasatinib 4.68E-08 C22H26ClN7O2S

Deferoxamine 1.02E-07 C25H48N6O8

across datasets. Although we identified several hub genes and
pathways potentially linking COVID-19 and GC, our study
is based on computational predictions. Experimental validation
through in vitro and in vivo studies is necessary to confirm the
biological significance and therapeutic relevance of the identified
targets. Additionally, translating these findings into clinical practice
presents significant challenges, requiring further research to ensure
these insights can be effectively applied in therapeutic settings.

5 Conclusion

In this study, transcriptome analysis was applied to summarize
the relationship between gastric cancer and COVID-19. DEGs for
GC and COVID-19 were obtained in the GEO dataset, 209 shared
DEGs were identified, and associations between gastric cancer and
COVID-19 were found. To clarify what role these DEGs play
at the transcriptional level, enrichment analysis was conducted.
We also used these common DEGs to obtain a PPI network and
defined the 10 most important hub genes: CDK1, KIF20A, TPX2,
UBE2C, HJURP, CENPA, PLK1, MKI67, IFI6, and IFIT2. Besides,
we established a TF-gene and miRNA-gene interaction network for

hub genes and identified key TFs and miRNAs. More importantly,
we identified a variety of compounds and drugs that may treat
COVID-19 and GC, such as ciclopirox, resveratrol, etoposide,
methotrexate, trifluridine, enterolactone, troglitazone, calcitriol,
dasatinib and deferoxamine. This study shows new possibilities for
the treatment of COVID-19 and GC.
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