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Intensive Care Unit, Erzurum Territorial Training and Research Hospital, Health Sciences University,
Erzurum, Türkiye, 5Department of Paediatric Intensive Care Unit, Cam Sakura Training and Research
Hospital, Health Sciences University, Istanbul, Türkiye

Background: The aim of this study is the evaluation of a closed-loop
oxygen control system in pediatric patients undergoing invasive mechanical
ventilation (IMV).

Methods: Cross-over, multicenter, randomized, single-blind clinical trial.
Patients between the ages of 1 month and 18 years who were undergoing IMV
therapy for acute hypoxemic respiratory failure (AHRF) were assigned at random
to either begin with a 2-hour period of closed-loop oxygen control or manual
oxygen titrations. By using closed-loop oxygen control, the patients’ SpO2
levels were maintained within a predetermined target range by the automated
adjustment of the FiO2. During the manual oxygen titration phase of the trial,
healthcare professionals at the bedside made manual changes to the FiO2, while
maintaining the same target range for SpO2. Following either period, the patient
transitioned to the alternative therapy. The outcomes were the percentage of
time spent in predefined SpO2 ranges±2% (primary), FiO2, total oxygen use, and
the number of manual adjustments.

Findings: The median age of included 33 patients was 17 (13–55.5) months.
In contrast to manual oxygen titrations, patients spent a greater proportion of
time within a predefined optimal SpO2 range when the closed-loop oxygen
controller was enabled (95.7% [IQR 92.1–100%] vs. 65.6% [IQR 41.6–82.5%]),
mean di�erence 33.4% [95%–CI 24.5–42%]; P < 0.001). Median FiO2 was lower
(32.1% [IQR 23.9–54.1%] vs. 40.6% [IQR 31.1–62.8%]; P < 0.001) similar to total
oxygen use (19.8 L/h [IQR 4.6–64.8] vs. 39.4 L/h [IQR 16.8–79]; P < 0.001);
however, median SpO2/FiO2 was higher (329.4 [IQR 180–411.1] vs. 246.7 [IQR
151.1–320.5]; P < 0.001) with closed–loop oxygen control. With closed–loop
oxygen control, the median number of manual adjustments reduced (0.0 [IQR
0.0–0.0] vs. 1 [IQR 0.0–2.2]; P < 0.001).

Conclusion: Closed-loop oxygen control enhances oxygen therapy in pediatric
patients undergoing IMV for AHRF, potentially leading tomore e�cient utilization
of oxygen. This technology also decreases the necessity for manual adjustments,
which could reduce the workloads of healthcare providers.
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Clinical Trial Registration: This research has been submitted to
ClinicalTrials.gov (NCT05714527).
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Introduction

When it comes to the treatment of respiratory failure of any

type, oxygen is a fantastic drug to use. The Pediatric Mechanical

Ventilation Consensus Conference (PEMVECC) recommends

that all ventilated children should have their peripheral oxygen

saturation (SpO2) monitored using pulse oximetry, and that

patients with moderate to severe conditions should have their

partial arterial oxygen pressure (PaO2) measured (1). This is done

in order to prevent hypoxemia and hyperoxemia. On the other

hand, this may need the manual adjustment of inspired oxygen,

which may be an annoyance during time periods of high demand,

such as the current epidemic of COVID-19. Furthermore, the

pandemic has brought to light the need of increasing oxygen

utilization in hospitals. This is due to the fact that it is probable that

oxygen might become a scarce resource during times of such high

demand (2, 3). The monitoring of SpO2 is the fundamental metric

that is used to guide the treatment of acute respiratory failure in

patients of all ages, including neonates, children, and adults. All of

the recommendations that are now in place include specific sections

on SpO2 monitoring, as well as ranges that are often imprecise but

are up for debate based on the severity of the condition and the

patient’s age (1, 4, 5).

Both hypoxemia and hyperoxemia are conditions that

pediatric intensivists often want to steer clear of (6–9). This

precaution is rooted in previous research data has shown

that there is a connection between excess or insufficient

oxygen utilization and mortality in pediatric intensive care

unit patients who have received oxygen treatment (10–14).

Although the partial pressure of oxygen in the arterial system

(PaO2) and the saturation of arterial oxygen (SaO2) are usually

the measures that are used in the process of titrating oxygen,

it is sometimes challenging to keep track of these values in

pediatric patients. Pulse oximetry, often known as SpO2, is a

potentially appealing option since it provides the benefit of

ongoing tracking.

On November 29, 2023, a search was conducted in Embase,

MEDLINE, CINAHL, and Web of Science using the keywords

“closed-loop” or “automatic” and “oxygen” or “oxygen therapy.”

There were no constraints placed on the search based on

the publication date or language. The search resulted in the

identification of 45 clinical investigations, of which 38 were

randomized clinical trials. According to the findings of all of

the investigations, SpO2 may be used by closed-loop oxygen

systems in order to automatically modify the FiO2. The majority

of these studies were conducted in neonates, with the remaining

focus on adults; however, only two studies were carried out

in pediatric patients. None of these research, on the other

hand, investigated the effects of closed-loop oxygen regulation in

pediatric patients while they were undergoing different modes of

mechanical ventilation (15–56).

There is a current gap in research evaluating the effectiveness

and safety of closed-loop oxygen systems in pediatric patients

undergoing invasive mechanical ventilation for acute hypoxemic

respiratory failure (AHRF), regardless of the applied ventilation

mode. To address this gap, we conducted a randomized crossover

study aimed at assessing the performance of a closed-loop

oxygen control system integrated into a mechanical ventilator

concerning the quality of oxygen therapy in pediatric patients.

Our investigation also encompassed an evaluation of safety,

determination of total oxygen consumption, and a comparison

of manual adjustments between closed-loop oxygen control and

manual oxygen titration. Our hypothesis postulated that the

utilization of this closed-loop oxygen system would result in an

increased duration within predefined optimal SpO2 ranges.

Methods

Study design

This study adopts a multicentre, single-blinded, randomized,

crossover design to compare closed-loop oxygen control with

manual oxygen titrations in the pediatric patient population

across four medical facilities in Turkey. The eligible participants

were carefully screened for inclusion in the PICUs at Dr Behcet

Uz Children’s Research and Training Hospital in Izmir, Aydin

Obstetrics and Children Hospital in Aydin, Erzurum Territorial

Training and Research Hospital in Erzurum, and Cam Sakura

Research and Training Hospital in Istanbul. The enrolment period

spanned from June 2022 to October 2022. Ethical approval was

obtained from the Institutional Ethical Committee (Approval

ID: 750/2022/29-09), and the study adhered to the principles

outlined in the Declaration of Helsinki. Registration details for

this study can be found on ClinicalTrials.gov (study identifier

NCT05714527). Also the protocol including statistical plan was

published online (57).

Participants

Patients were eligible if they were (1) aged 1 month to 18

years and (2) receiving IMV with FiO2 > 25% to maintain SpO2

within clinician-defined parameters. (3) We excluded patients

who had diseases or conditions that could potentially impact

the measurement of transcutaneous SpO2, such as chronic

or acute dyshemoglobinemia (including methemoglobinemia),

carbon monoxide (CO) poisoning, and sickle cell disease.
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Additionally, we excluded patients who required a continuous

infusion of epinephrine or norepinephrine at rates exceeding 1

mg/h. The exclusion criteria for this study included patients who

had an immediate need for non-invasive ventilation or high-flow

oxygen therapy whether foreseeable or unforeseeable, those with

poor quality SpO2 measurements using finger and ear sensors,

individuals with severe acidosis, pregnant women, patients at

high risk for needing non-invasive mechanical ventilation or

transportation to another unit or hospital, those with a formalized

ethical decision to withhold or withdraw life support, patients

participating in another research study, and patients who had

previously been enrolled in the study during a previous episode

of acute respiratory failure. The establishment of these criteria was

aimed at guaranteeing the study’s integrity and dependability, as

well as the safety and wellbeing of the participants.

Randomization and masking

Participants whowere already intubated and receiving IMVdue

to the natural course and treatment of their disease, were assigned

randomly to either begin with a 2-h session of closed-loop oxygen

control or a 2-h session of manual oxygen titration. Subsequently,

patients were transitioned to the alternative treatment. The

randomization was conducted in a 1:1 ratio, using blocks of 4

and sealed opaque envelopes. The intervention design precluded

the possibility of blinding healthcare professionals. Nonetheless,

patients remained blinded about the specific techniques employed

to regulate their oxygen levels.

Procedures

The patients underwent intubation using an endotracheal tube

of appropriate size, which was inserted properly. Throughout

the trial, the patients were maintained in a semi–recumbent

position. Invasive mechanical ventilation was performed using

a pediatric ventilator which included a closed-loop oxygen

controller (Hamilton–C1 or C6, Hamilton Medical AG, Bonaduz,

Switzerland). Patients were administered sedatives as required,

achieving an appropriate amount of sedation for each individual.

The amount of sedation-analgesia remained constant during the

whole course of the study. Continuous patient care and routine

tasks, such as suctioning secretions or providing nutrition, were

carried out without interruption, and randomly throughout both

periods. At the research locations, the doctor to patient ratios

during daytime and night-time shifts were roughly 6:1 and 12:1,

respectively. Similarly, the nurse to patient ratios were around 2:1

and 3:1 during daytime and night-time shifts, respectively. The

overall setting remained equivalent throughout the trial, meaning

that these ratios did not alter between the two crossover periods.

Furthermore, there was an absence of additional research staff

throughout these two phases.

Following randomization, the attending pediatric intensivist

determined the optimum range of oxygen saturation (SpO2) for

each patient, taking into account their specific clinical condition

and medical background. The term “optimal SpO2 target” does

not represent a universal optimal for all patients. Instead, the

optimal range is the ideal SpO2 level tailored to the patient’s

particular condition, taking into account factors such as lung

compliance, driving pressure (1P), plateau pressure (Pplat), and

positive end-expiratory pressure (PEEP). This approach ensures

sufficient oxygenation while mitigating the risks associated with

excessively high or low oxygen levels. Prior to moving on to the

second 2-h session using the alternative oxygen titration approach,

a 30-min washout interval was instituted after the first 2 h with

the initial oxygen titration approach (Supplementary Figure 1). By

using closed-loop oxygen control, the patients’ SpO2 levels were

maintained within a predetermined target range by the automated

adjustment of the FiO2. During the manual oxygen titration phase

of the trial, healthcare professionals at the bedside made manual

changes to the FiO2, while maintaining the same target range for

SpO2. For the two crossover stages of the study, the ventilation

settings were unchanged. The SpO2 target range was established

by determining four thresholds: an upper and lower threshold for

the “optimum” range, and an upper and lower threshold for the

“suboptimal” range. The optimum thresholds ranged from 94% to

98%, 93% to 97%, 92% to 96%, or 88% to 92%. The respective

suboptimal thresholds were reported in Supplementary Table 1.

The operational concepts of the closed-loop control are elaborated

in Supplementary Table 2 and in the protocol paper (57).

Data collection

Case report forms (CRFs) were used to record clinical

and epidemiologic data. Using the ventilator’s RS-232 interface

connector, a Memory Box (Hamilton Medical AG) was attached

to record ventilation data, including FiO2, SpO2, waveforms,

alarms, and manual titrations, breath by breath. Patients’ SpO2 was

meticulously monitored using a Masimo Set sensor, specifically the

Masimo RD model (Masimo Corp., Irvine, CA, USA), attached to

their finger. This sensor provided the signal utilized by the closed-

loop controller to ensure precise and automated FiO2 adjustments.

Definitions

Each SpO2 reading was categorized as either optimal if it fell

within the patient’s predetermined range, suboptimal high or low if

it fell outside of the optimal range but still within the suboptimal

cut-offs, or unacceptable if it fell outside of the suboptimal range

(Supplementary Table 1).

Outcomes

The main aim of the research was to evaluate the efficacy of

closed-loop oxygen control in the context of invasive ventilation

for pediatric patients. Hence, the main objective was to determine

the percentage of time spent within certain predetermined

SpO2 goal ranges throughout each 2-h interval. The secondary

outcomes included the percentage of time spent in suboptimal

and unacceptable SpO2 ranges, the FiO2 and SpO2/FiO2 ratio,
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FIGURE 1

Trial profile.

the frequency of manual oxygen changes, and the number

of alarms.

The goal of the research was to assess the effectiveness

of closed-loop oxygen control in the context of invasive

ventilation for pediatric patients. Hence, we selected the

primary objective to ascertain the proportion of time spent

within predetermined SpO2 goal ranges during each 2-h

interval. Secondary outcomes encompassed the percentage of

time spent in suboptimal and unacceptable SpO2 ranges, the

FiO2 and PaO2/FiO2 ratio, the frequency of manual oxygen

adjustments, and the number of alarms. Furthermore, we

evaluated the percentage of time with an available SpO2 signal

to gauge the reliability of the oxygen monitoring system.

Additionally, the study examined total oxygen consumption

to provide insights into overall oxygen utilization during the

research period.

Power calculation

The determination of the sample size was based on data

recorded from the pilot study involving seven patients (7 × 4 h =

28 h). This initial investigation aimed to assess the same disparity

in the percentage of time allocated to optimal SpO2 target ranges

during closed-loop vs. manual oxygen titrations. Utilizing the data

from this pilot study, G∗Power analysis indicated the necessity of

including an additional 32 patients to achieve a statistical power

of 95% (with a two-tailed α of 0.05) for detecting an effect size of

Cohen’s d= 0.68 in a Wilcoxon signed–rank test (58).

To accommodate potential dropouts, defined as instances

where patients required extubation or noninvasive ventilation

support, withdrew consent, experienced poor SpO2 readings for

over 1 h during either study phase, or encountered technical

recording issues, we opted for a final sample size of 35 patients.
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Statistical analysis

The normality of data distribution was assessed using Shapiro–

Wilk, skewness, and kurtosis tests. Continuous data were presented

as mean and standard deviation (SD) or median and interquartile

range [IQR], depending on the nature of the distribution.

Statistical analysis involved the use of either a paired samples

t-test or Wilcoxon test, selected based on appropriateness for the

data. Specifically, the Wilcoxon signed–rank test was employed

to compare the percentage of time spent within the target SpO2

range with manual FiO2 adjustments against the percentage with

closed–loop FiO2 control.

A significance level of <0.05 was deemed statistically

meaningful for all comparisons. Data were processed using

MATLAB (version 2021b) by The MathWorks, Inc., Natick,

Massachusetts, United States, while XLSTAT (version 2016) by

Addinsoft, Paris, France, was utilized for statistical testing. Visual

representations were generated using JASP (version 2022) by the

JASP Team, Amsterdam, The Netherlands, and GraphPad PRISM

(version 9) in San Diego, California, USA.

Results

Between June 2023 and December 2023, a total of 206 patients

underwent screening. Out of these, 81 patients were found to be

eligible, but 46 of them were excluded due to meeting one or

more exclusion criteria. Ultimately, 35 patients were included in the

study, with 2 patients dropping out. Therefore, a total of 33 patients

were analyzed (Figure 1). Table 1 displays basic characteristics.

The majority of patients were under 1.5 years old, weighed <15

kilograms, and in nearly half of the cases, AHRF was caused by a

respiratory infection.

When the oxygen controller was enabled, patients spent a

significantly higher amount of time within the ideal SpO2 ranges

compared to manual oxygen titrations (95.7% [IQR 92.1%−100%]

vs. 65.6% [IQR 41.6%−82.5%], mean difference 33.4% [95%–CI

24.5 to 42]); P < 0.001) (Table 2; Figures 2, 3).

Upon activating the oxygen controller, patients spent

considerably less time in the total unacceptably and suboptimal

SpO2 ranges (Table 2, Figure 2). Also, this activation significantly

reduced the duration patients were exposed to SpO2 levels

considered unacceptably high and sub-optimally high (Table 2,

Figure 2).

The adoption of closed-loop oxygen controller led to a

significant reduction in both the mean fraction of inspired

oxygen (FiO2) and total oxygen utilization (Table 2). Moreover,

the SpO2/FiO2 ratio was significantly increased under the closed-

loop oxygen controller (Table 2; Figure 3). Closed-loop controller

also markedly decreased the frequency of manual interventions

required (Table 2; Figures 2, 3).

Discussion

This multicenter randomized controlled crossover trial,

focusing on pediatric patients treated with invasive mechanical

ventilation for AHRF, reveals the following outcomes: The

TABLE 1 Baseline characteristics of the study cohort.

Variables Median (IQR 25–75) or
mean (SD) or n (%)

Gender ratio (%f/%m) 43/57

Age (months) 17 (13–55.5)

IBW (kg) 13 (10.3–20)

PIM3 10.5 (0.8–20.6)

PELOD 12.9 (1–32.7)

PICU duration (days) 18 (8–22.5)

PEEP (cmH2O) 7 (5–8)

PIP (cmH2O) 25.3 (19.9–33.1)

Admission diagnosis

Respiratory

A.pneumonia

A.bronchiolitis

Cystic fibrosis

15 (45)

Sepsis 8 (24)

Neurologic

SE

Meningoencephalitis

5 (15)

Renal/Metabolic

RTA

DKA

3 (9)

Cardiovascular

VSD

PDA

2 (7)

Lung physiology

Obstructive 5 (15)

Restrictive 10 (30)

Mixed 18 (55)

Ventilation Mode

APV-SIMV 19 (57)

P-SIMV 8 (24)

ASV 5 (15)

SPONT 1 (3)

Data are expressed as median (interquartile range, IQR) or as mean (standard deviation,

SD) or number and percentage. IBW, Ideal body weight; PIM3, Pediatric index of mortality

3, probability of death; PELOD, Pediatric logistic organ dysfunction, probability of death;

A.pneumonia, Acute pneumonia; A.bronchiolitis, Acute bronchiolitis; SE, Status epilepticus;

RTA, Renal tubular acidosis; DKA, Diabetic Keto Acidosis; VSD, Ventricular septal defect;

PDA, Patent ductus arteriosus; SIMV, Synchronized intermittent mandatory ventilation ASV;

APV, Adaptive Pressure Ventilation; ASV, Adaptive support ventilation; SPONT, Spontaneous

ventilation mode; PIM3, Pediatric Index of Mortality; PELOD, Pediatric Logistic Organ

Dysfunction; PICU, Pediatric Intensive Care Unit; PEEP, Positive End-Expiratory Pressure;

PIP, Peak Inspiratory Pressure.

implementation of a closed-loop oxygen controller within a

mechanical ventilator, as opposed to manual oxygen titration,

brought about numerous significant benefits: The closed-loop

system substantially increased the time that patients’ SpO2 levels

remained what we pre-defined as the optimal range. This precise

regulation ensures that patients receive oxygen to maintain

a reasonable range of oxygenation and avoid hypoxemia and

hyperoxia. The closed-loop controller effectively reduced the
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TABLE 2 Primary and secondary outcomes.

Variable Closed-Loop Manual Median di�erence (95%CI) P-value

Primary outcome

Time spent in optimal SpO2 range (%) 95.7 (92.1 to 100) 65.6 (41.6 to 82.5) 33.4 (24.5 to 42) < 0.001

Secondary outcomes

Time spent in suboptimal SpO2 range (%)

Low 0.2 (0 to 1.2) 0.3 (0 to 5.6) −1.7(−10.6 to 0.1) 0.147

High 0.3 (0 to 3.6) 14.2 (2.3 to 31.4) −18.6 (−27.3 to−11.4) 0.001

Total 1.7 (0 to 5.1) 27.2 (10.3 to 39.5) −22.8 (−29.4 to−15.8) < 0.001

Mean FiO2 (%) 32.1 (23.9 to 54.1) 40.6 (31.1 to 62.8) −6 (−8 to−3.9) < 0.001

Mean SpO2/FiO2 329.4 (180 to 411.1) 246.7 (151.1 to 320.5) 44.5 (20 to 69.8) < 0.001

Manual Adjustments (n/h) 0 (0 to 0) 1 (0 to 2.2) −1.7 (−3 to−1.2) < 0.001

Alarms (n/h) 0 (1 to 1.3) 0 (0 to 0.8) −0.3 (−3.8 to 2.5) 0.69

Percentage of time SpO2 available 99.9 (99.3 to 100) 99.9 (98.7 to 100) 0.8 (−0.003 to 3.4) 0.05

Percentage of time SpO2 < 88% 0 (0 to 0.2) 0 (0 to 0.4) −0.3 (−1.8 to 0.1) 0.22

Percentage of time SpO2 < 85% 0 (0 to 0.07) 0 (0 to 0.2) −0.4 (−0.9 to−0.06) 0.02

Number of events SpO2 < 88% 0 (0 to 0.4) 0 (0 to 0.5) −0.2 (−0.9 to 0.4) 0.29

Percentage of time FiO2 < 40% 83.9 (0 to 1) 48.6 (0 to 99.9) 15.9 (−1.6 to 36) 0.07

Percentage of time 40%≤ FiO2 ≤ 60% 0.5 (0 to 60.2) 0.7 (0 to 64.9) 1.3 (−25.5 to 16.5) 0.94

Percentage of time FiO2 >60% 0 (0 to 10.9) 0 (0 to 35.1) −5.6 (−30.7 to−0.01) 0.05

Total Oxygen Use (L/h) 19.8 (4.6 to 64.8) 39.4 (16.8 to 79.9) −11.7 (−20.9 to−7.7) < 0.001

Data are expressed as median (interquartile range, IQR) or as mean (standard deviation, SD). Wilcoxon or student’s t test were performed depending on each variable distribution according to

the Shapiro–Wilk test. 95%CI, 95% confidence interval; SpO2 , peripheral oxygen saturation; FiO2 , Fraction of inspired oxygen.

FIGURE 2

Time spent in optimal, suboptimal and unacceptable SpO2 ranges.

periods during which patients’ SpO2 levels were outside the

physician predefined optimal range. This reduction in time

spent at suboptimal levels means that patients are less likely

to experience the adverse effects associated with inadequate or

excessive oxygenation. The system’s ability to swiftly respond

to changes in the patient’s condition ensures a higher level of

care and reduces potential complications. One of the standout

advantages of the closed-loop system is its efficiency in oxygen

use. By delivering oxygen more precisely and only when necessary,

the system reduces overall oxygen consumption. This not only

has economic benefits but also lessens the burden on oxygen

supply systems, making it particularly valuable in resource-limited

settings. The meticulous management of FiO2 means that no excess

oxygen is wasted, contributing to more sustainable healthcare

practices. The closed-loop oxygen controller significantly lowered

the need for manual adjustments by healthcare providers. This

automation allows medical staff to focus more on other critical

aspects of patient care, enhancing overall efficiency within the
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FIGURE 3

E�ect of closed-loop control on time spent in optimum SpO2 zone, total oxygen use, manual FiO2 adjustments and SpO2/FiO2. The left panels
collectively illustrate the e�ectiveness of the closed-loop system compared to manual adjustments across several parameters. The time spent in the
optimum SpO2 zone is generally higher and more consistent with the closed-loop system, as indicated by the individual data points and box plots.
Additionally, total oxygen use is lower with the closed-loop system, reflecting its e�ciency in oxygen utilization. The need for manual FiO2

adjustments is significantly reduced when using the closed-loop system, highlighting its automation advantage. Furthermore, the SpO2/FiO2 ratio is
higher and more stable with the closed-loop system, demonstrating better oxygenation e�ciency. These findings suggest that the closed-loop
system provides superior control and management of oxygen levels in patients. The right panels depict the di�erences between the closed-loop and
manual methods for each parameter through density plots and scatter plots. For time spent in the optimum SpO2 zone, the closed-loop system
shows a higher and more consistent distribution compared to manual adjustments. The total oxygen use is clearly lower with the closed-loop
system, indicating its greater e�ciency. The need for manual FiO2 adjustments is considerably fewer with the closed-loop system, as shown by the
shift toward fewer adjustments. Lastly, the SpO2/FiO2 ratio is maintained at a higher level with the closed-loop system, reflecting better overall
oxygenation. These visualizations confirm the advantages of the closed-loop system in providing e�cient and e�ective oxygen management.

clinical environment. The reduction in manual intervention

also means that there is less room for human error, thereby

improving the safety and reliability of oxygen therapy. This feature

is particularly beneficial in busy or understaffed medical settings,

where it can greatly enhance the quality of patient management. In

summary, the introduction of a closed-loop oxygen controller in

mechanical ventilators offers a transformative approach to oxygen

therapy, ensuring precise, efficient, and safe management of SpO2
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levels. Its ability to maintain optimal oxygen saturation, reduce

suboptimal periods, lower oxygen consumption, and minimize

manual interventions makes it a superior alternative to traditional

manual oxygen titration methods. Our research has several

benefits, both conceptually and in terms of execution. We used a

crossover approach to compare the effectiveness of closed-loop

oxygen control and manual oxygen titrations for each participant,

making our findings statistically more robust. We conducted the

study across multiple centers, including universities and teaching

hospitals, to increase the generalizability of our results. We adhered

to a published protocol and used randomization mechanisms to

minimize the risk of bias. Additionally, we established an

analytic strategy before finalizing the database, which involved

predefining optimal, suboptimal, and unacceptable SpO2 values

based on previous consensus. This ensured the objectivity

and reliability of our results. To the extent of our knowledge,

this study is the inaugural effort to examine the effectiveness

of closed-loop oxygen management in pediatric patients

receiving invasive mechanical ventilation, regardless of ventilation

mode reliance.

The results of our investigation are consistent with previous

research studies that have evaluated the efficacy of closed-loop

oxygen regulation in groups of premature infants, pediatric

and adult patients undergoing either invasive or non-invasive

mechanical ventilation for acute respiratory failure caused by

various factors (15–56, 59–67).

Throughout these investigations, closed-loop oxygen control

consistently exhibited superior efficacy compared to manual

oxygen titration by healthcare personnel. This was demonstrated by

improved adherence to target peripheral oxygen saturation (SpO2)

ranges and decreased duration spent within potentially dangerous

SpO2 levels. Our study enhances the current understanding

of the effectiveness of closed-loop oxygen control in pediatric

patients with acute hypoxemic respiratory failure (AHRF). It

clarifies that closed-loop oxygen control is superior to manually

adjusting the FiO2 in cases where there is clinical instability.

This demonstrated superiority is particularly significant because

to its potential to alleviate the onerous tasks carried by healthcare

workers in the intensive care unit (ICU), whose workload

is sometimes exacerbated by the need of patient stabilization

(68, 69).

Our findings are also consistent with previous studies

investigating closed-loop oxygen controllers in invasively ventilated

neonates (19, 59–61). Similar results have been reported in

the pediatric population (53) and adult patients (62–67). This

body of research demonstrates the superiority of closed-loop

oxygen control compared to manual titration methods in patients

receiving respiratory support. Notably, oxygenation in these

patients is influenced not only by FiO2, but also by factors such

as delivered tidal volumes and airway pressures. Collectively,

these findings suggest a broad applicability of closed-loop oxygen

control for critically ill hypoxemic patients receiving various

forms of respiratory support. This includes both passive and

active breathers, too. Not all of our patients were under assisted

mechanical ventilation; some were in a passive state. This variation

in patient ventilation modes could be perceived as a limitation

of our study, as it introduces a level of heterogeneity that

might affect the generalizability of our findings. Additionally, the

generalizability of our results is limited to similar settings, and

this should be duly noted. It is widely recognized that medical

professionals specializing in intensive care, including physicians

and nurses, diligently prevent both hypoxemia and hyperoxemia

due to numerous justifiable concerns. This approach is especially

pertinent among healthcare providers who manage critically ill

neonatal and pediatric patients (6–9). This strategy necessitates

not only proficient health care providers but also a significant

number of intensive care unit (ICU) staff directly attending to

the patient. Minimizing hypoxemia can only be achieved if there

is a consistent presence of a nurse who can do manual oxygen

adjustments (59, 60). This condition can be deemed both unfeasible

and costly, and may not be regularly fulfilled.

Recent investigations, including an older Canadian study and

a more recent one from the Netherlands, have highlighted an

asymmetrical approach by physicians in managing SpO2 levels

beyond the optimal zones. While physicians strive to avert both

hypoxemia and hyperoxemia, there is a greater focus on preventing

hypoxemia. Consequently, this often leads to extended periods

within suboptimal or high SpO2 ranges when manually adjusting

oxygen levels (70, 71). In contrast, the implementation of a

closed-loop oxygen control system in our experimental arm,

demonstrates its efficacy by equally preventing deviations into both

lower and higher SpO2 ranges, thus maintaining a more stable

patient condition.

The observation that SpO2/FiO2 ratios were greater in the

context of closed-loop oxygen control indicates that this method

not only averts hypoxemic and hyperoxemic deterioration, but also

enhances overall oxygenation. Concurrently, it achieves the same

or better levels of oxygenation with reduced oxygen consumption,

which might be crucial in contexts with limited resources or during

times of increased demand, such as a pandemic. This finding

aligns with several previous studies that have shown patients

receiving closed-loop control of FiO2 got a lower quantity of

FiO2 than those who underwent manual titration (51, 53, 60,

62, 63, 72). Moreover, the utility of automatizing oxygen delivery

is especially significant in low- and middle-income countries

(LMICs), where the lack of personnel and the high consumption of

oxygen are prominent challenges. Automated systems can ensure

consistent and precise oxygen delivery, thereby alleviating the

burden on limited healthcare staff and conserving essential oxygen

supplies. Even in high-resource countries, replacing the nursing

workforce at the bedside has become increasingly difficult post-

pandemic. The implementation of closed-loop oxygen controllers

can therefore play a pivotal role in both high- and low-resource

settings by optimizing oxygen use and reducing the dependency

on manual titration, ultimately enhancing patient care and

resource management.

We selected the same SpO2 target range for both the closed-

loop group and the manual group. However, in the control

arm, patients spent more time in the suboptimal high SpO2

range, indicating that the mean SpO2 was higher during the

manual titration period. This discrepancy in SpO2/FiO2 ratios

could potentially be attributed to denitrogenation atelectasis, as

more than 25% of the patients in the manual arm were exposed

to FiO2 levels exceeding 60% at some point during the study
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(73). Nevertheless, we lack concrete evidence to substantiate the

occurrence of this type of atelectasis within our study group.

Moreover, no significant changes were observed in driving pressure

or tidal volume (TV) during the two phases of the study to support

this hypothesis.

Surprisingly, we saw far fewer manual adjustments, yet a

statistically significant reduction in the number of hourly alarms

with closed-loop oxygen regulation. This may potentially result

in decreased workloads, since our research indicates that the

implementation of a closed-loop oxygen controller requires trained

healthcare provider adjustments less than manual oxygen titration

(74). Increased ICU staff workloads are correlated with higher

mortality rates. Furthermore, our findings indicate a modification

in the intensity of alarms toward a more tolerable level, thereby

enhancing patient comfort and sleep hygiene while concurrently

mitigating the likelihood of delirium (75, 76).

The study reported here has certain limitations that should be

taken into account. Initially, the time allocated for both the manual

and automated oxygen titration procedures was limited to a mere

2 h, which is not enough to cover the whole spectrum of everyday

activities that patients go through. The restricted duration was

selected to ensure uniformity in patient circumstances throughout

both phases of the crossover trial, which is critical due to the fast

fluctuations that may occur in pediatric patients. In addition, both

stages were intentionally planned to be carried out inside a single

shift, which unavoidably limits the thorough examination of each

case within these time periods.

The crossover design of the study also restricts our ability

to assess the effects of closed-loop oxygen control on pertinent

clinical outcomes, such as the duration of invasive mechanical

ventilation, the shift from invasive to non-invasive ventilation,

and the process of gradually reducing respiratory support for

patients. Furthermore, the nature of the intervention precluded the

blinding of healthcare workers involved in the study. Nevertheless,

in order to adhere to regular clinical procedures, predetermined

SpO2 zones were used, mirroring the zones to which ICU nurses

often adapt FiO2.

We did not include patients with skin types darker than

Fitzpatrick scale 4 in this study. However, we acknowledge

that there is a significant difference in melanin levels between

Fitzpatrick skin types 1–2 and type 4. Consequently, it is possible

that adjustments for skin pigmentation could be necessary even

within the range of Fitzpatrick skin types included in our study.

This represents a limitation of our study, as the continuum of

melanin levels across the full Fitzpatrick scale, or more accurately,

the Monk Skin Tone Scale, should be considered to better

account for variations in skin pigmentation in future research It is

important to note that pulse oximetry can overestimate true SaO2

in individuals with darker skin tones. While the clinical relevance

of this bias remains unclear, its magnitude is likely to be more

significant when SaO2 is lower (77). Consequently, future research

should take into account skin color when defining personal optimal

targets to ensure accuracy and efficacy in oxygen therapy across

diverse patient populations.

Future research should prioritize investigating these

clinical goals to improve comprehension of the consequences

of closed-loop oxygen titration approaches in pediatric intensive

and emergency care.

In many liberal vs. limited oxygen trials, such as the most

recent OXY-PICU trial, researchers have struggled to maintain

low SpO2 levels in the restricted arm. Although the restricted

arm in the OXY-PICU study aimed for an SpO2 level of 88 to

92%, they could only achieve a median SpO2 of 94% (IQR 93–

96) for the conservative group, compared to 97% (96–98) for

the liberal oxygenation group (78). Therefore, closed-loop oxygen

controllersmay play a very important potential role in these types of

studies in the future, ensuring more precise maintenance of target

SpO2 levels. One significant limitation of our study is the use of the

terms “optimal” and “ideal oxygenation” without sufficient nuance.

Currently, there is insufficient data to definitively determine what

constitutes ideal or optimal oxygenation. Furthermore, the impact

of different oxygenation levels on clinical outcomes has not been

evaluated in this study. Future research is needed to establish clear

guidelines and evidence-based practices for optimal oxygenation to

improve patient outcomes. Until such data are available, the terms

“optimal” and “ideal” should be interpreted with caution, and our

findings should be viewed as preliminary in this context.

In conclusion, when evaluating the efficacy of closed-loop

oxygen control vs. manual oxygen titrations in pediatric patients

undergoing invasive mechanical ventilation for AHRF, significant

benefits are observed with the closed-loop system. Notably, it

enhances the duration that patients remain within optimal SpO2

ranges and diminishes the periods spent in SpO2 zones that

may pose risks. Furthermore, closed-loop oxygen control not

only improves overall oxygenation but also conserves oxygen

resources and reduces the necessity for manual adjustments. These

findings suggest that implementing closed-loop systems could offer

substantial clinical advantages in managing pediatric AHRF.
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