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Rett syndrome (RTT) and Rett-like syndromes [i.e., CDKL5 deficiency

disorder (CDD) and FOXG1-syndrome] represent rare yet profoundly impactful

neurodevelopmental disorders (NDDs). The severity and complexity of

symptoms associated with these disorders, including cognitive impairment,

motor dysfunction, seizures and other neurological features significantly affect

the quality of life of patients and families. Despite ongoing research efforts

to identify potential therapeutic targets and develop novel treatments, current

therapeutic options remain limited. Here the potential of drug repurposing (DR)

as a promising avenue for addressing the unmet medical needs of individuals

with RTT and related disorders is explored. Leveraging existing drugs for new

therapeutic purposes, DR presents an attractive strategy, particularly suited for

neurological disorders given the complexities of the central nervous system

(CNS) and the challenges in blood-brain barrier penetration. The current

landscape of DR efforts in these syndromes is thoroughly examined, with

partiuclar focus on shared molecular pathways and potential common drug

targets across these conditions.

KEYWORDS

Rett syndrome, CDKL5 deficiency disorder, FOXG1-syndrome, shared molecular
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1 Introduction

Rett syndrome (RTT, #312750) and Rett-like syndromes, e.g., CDKL5 deficiency
disorder (CDD, #300672) and FOXG1-syndrome (or FOXG1-related encephalopathy,
#613454) are rare monogenic neurodevelopmental disorders (NDDs). The relative recent
recognition of their distinct clinical entities (1, 2) has deepened our understanding of
their underlying pathogenic mechanisms and clinical characteristics (Table 1). Although
each disorder exhibits unique clinical features, they share common core symptoms and
neurological traits (Table 1), suggesting that these disorders share critical molecular
etiology.
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Identifying shared pathways holds significant implications
for targeted therapies development and drug repurposing (DR).
DR, which involves using existing drugs for new therapeutic
purposes, represents a promising approach in the treatment
across multiple diseases especially for neurological disorders (3,
4). The complex structure of the central nervous system (CNS),
coupled with the challenge of penetrating the blood-brain barrier,
poses significant hurdles in the development of new drugs for
neuropathological conditions, making DR of particular interest for
these disorders. Notable successes of DR in NDDs include e.g.,
repurposing of fenfluramine in Dravet syndrome (5) or bumetanide
(6) and pregnenolone (7) for autism spectrum disorders. These
studies validate DR as a valid treatment approach for multiple
neuropathological conditions.

We here discuss the current state of art of DR efforts in RTT,
CDD and FOXG1-syndrome, with particular emphasis on the
shared molecular pathways and the identification of common drug
targets across the three conditions. For a more detailed overview on
the molecular and circuit mechanisms underlying each syndrome,
please refer to (8–10) for RTT, (11, 12) for CDD and (2, 13) for
FOXG1-syndrome (2, 13).

2 Molecular mechanisms underlying
RTT, CDD, and FOXG1-syndrome

As shown in Figure 1, pathways across the three diseases can be
categorized in three main categories.

2.1 Synaptic proteins and
neurotransmitter signaling pathways

Synaptic proteins and neurotransmitter signaling pathways
are crucial for correcting brain function. Disruptions in these
components are linked to alterations in excitatory/inhibitory
(E/I) balance, synaptic transmission, and neuronal network
activity: common features in many NDDs (14, 15). Neuronal
hyperexcitability is a common causative feature contributing to the
high prevalence of seizures observed in all three disorders (Table 1).
It is intricately linked to the “GABA switch” phenomenon (16):
during critical stages of brain development, GABA initially exerts
excitatory effects due to high intracellular chloride concentrations.
As development progresses, the expression and activity of
involved chloride co-transporters shifts, leading to a corresponding
change in the polarity of GABAergic signaling from excitatory
to inhibitory. Disruptions in this transition, such as delayed
maturation or altered expression of chloride co-transporters, can
prolong the excitatory phase of GABAergic signaling, resulting in
neuronal hyperexcitability. This phenomenon has been extensively
studied in NDDs, including RTT (17–20). Multiple studies have
investigated the effects of NKCC1 inhibition by the FDA-approved
diuretic bumetanide as therapeutic option for multiple NDDs (21)
(see section 3.1 - Bumenatide).

Epilepsy is prevalent in RTT and RTT-like disorders (Table 1),
particularly in CDD, where seizures commonly manifest within the
first 3 months of life (22, 23). Ganaxolone, a synthetic analogue
of the neurosteroid allopregnanolone, which is a positive allosteric

modulator of the GABAA receptor, has recently been approved for
use in CDD, showing promise in managing seizures (see section 3.2
- Ganaxolone).

Dysfunctions in GABAergic signaling pathways contribute
to various other RTT-related symptoms, including breathing
abnormalities. Respiratory abnormalities in RTT mouse
models can be significantly improved by manipulating diverse
neurotransmitter systems (24, 25). Benzodiazepine like midazolam,
generally used for anesthesia and procedural sedation, alleviate
breathing defects in MeCP2-null mice (26) and has also been used
for the acute management of prolonged seizures in RTT (27).
Interestingly, Chen et al. showed that treatment with clonazepam,
a long-acting tranquilizer of the benzodiazepine class, alleviates
cognitive defects, limited social interactions, and depression-like
behaviors in FOXG1 mutant mice (28).

In addition, changes in excitatory glutamatergic pathways and
monoamine neurotransmitters, such as serotonin, dopamine and
noradrenaline play a significant role in RTT and RTT-related
disorders (26, 27) and several drugs targeting these changes
have been tested. Of particular interest is ketamine, a NMDAR
antagonist used as dissociative anesthetic and currently repurposed
for the treatment of RTT (see section 3.3 - Ketamine).

Among the different monoamine neurotransmitters implicated
especially serotonin has gained great attention in RTT and CDD.
Different groups have shown a complex dysregulation of the
serotoninergic system in mice and individuals with RTT and
CDD [RTT: (29–31), CDD: (32, 33)]. Serotoninergic dysregulation
in the brainstem contributes to breathing abnormalities and
sarizotan, a 5-HT1A and D2-Like Receptor agonist, has been
tested on respiratory dysfunction in RTT (34) (see section
3.4 - Sarizotan). A preclinical repurposing study showed that
treatment with sertraline, a selective serotonin reuptake inhibitor
(SSRI) and commonly used antidepressant improves behavioral
abnormalities in CDD mice (33) (see section 3.5 - Sertraline). Many
other antidepressants/drugs targeting the serotonergic pathway,
including desipramine (35, 36) and tianeptine (37) have shown
promising results in RTT and CDD models [reviewed in (35,
36)]. Interestingly, the antidepressant mirtazapine (acts as a
potent antagonist of 5-HT2A and 5-HT3 receptors) was shown to
ameliorate motor and social behaviors in RTT mice and patients
(38, 39).

Different other drugs targeting monoamine neurotransmitter
defects in RTT mice were tested. Szczesna and colleagues used
the combination of L-Dopa with the dopa-decarboxylase inhibitor
(Ddci) benserazide, a combination frequently used in Parkinsonism
and related disorders, to stimulate dopaminergic deficiency in
RTT mice (37). Mello and colleagues showed that treatment
with the adrenergic receptor agonist clenbuterol, primarily used
as a bronchodilator to treat conditions like asthma and chronic
obstructive pulmonary disease (COPD), increased survival and
improved behavioral deficits in RTT mice (40).

2.2 Growth factor signaling pathways

Dysregulations in growth factor signaling pathways has been
widely implicated in the pathogenesis of RTT and RTT-like
disorders. The role of brain-derived neurotrophic factor (BDNF)
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TABLE 1 Genetic, molecular and symptomatic aspects of Rett syndrome (RTT) and Rett-like syndromes, i.e., CDKL5 deficiency disorder (CDD) and
FOXG1-syndrome.

Genetics Function and molecular effects Clinical features

Rett
syndrome
(RTT)

• Caused by mutations in the
X-linked methyl CpG-binding
protein 2 gene (MECP2; Xq28)

– In 90 - 95% of cases RTT is
caused by loss-of-function
mutations in MECP2 (100)

– Despite hundreds of different
mutations in MECP2 have been
identified, eight hotspot
mutations account for more than
60% of all cases (101)

– MECP2 mutations arise
predominantly in the paternal
germ line (102)

• MeCP2 is a nuclear protein highly expressed in the
brain

• MeCP2 is a multifunctional "hub" involved in
numerous pathways that support brain function, acting
as transcriptional repressor or activator (depending on
the context), facilitating chromosome looping or
compaction, regulating miRNA processing or splicing
(103)

• Incidence: 1/10.000 live births (second most common
cause of intellectual disability in females). RTT mainly
affects females.

• RTT patients exhibit apparently typical early postnatal
development followed by rapid developmental
regression/ stagnation (commonly the first signs appear
of 6–18 months of age)

• The hallmark symptoms of RTT include:
– Verbal and nonverbal communication deficits > partial

or complete loss of purposeful hand movements,
stereotypic hand movements, loss of speech

– Loss of motor skills
– Gait abnormalities
– Severe intellectual disability, (seizures)
– Breathing abnormalities, sleep problems,

gastrointestinal problems, . . .

CDKL5
deficiency
disorder
(CDD)

• Caused by mutations in the
X-linked cyclin-dependent
kinase-like 5 gene (CDKL5,
Xp22.13)

– Most pathogenic missense
mutations cluster in the highly
conserved N-terminal catalytic
domain (contains an
ATP-binding side, an activation
side and a TEY motif activation
loop), suggesting that the
enzymatic activity of CDKL5 is
essential for normal brain
development/ function.

• CDKL5 is a serine/threonine kinase. CDKL5 shows
homologies to serine/threonine kinase and was initially
named as STK9 (serine/threonine kinase 9).

• CDKL5 is highly expressed in the brain; predominantly
in neuronal nuclei and dendrites, with peak expression
in early postnatal life (12), when symptoms typically
begin.

• CDKL5 has been implicated in several essential
neuronal functions through interaction or association
with other proteins, or by direct
phosphorylation/modification of target proteins
[reviewed in (11, 12)].

• Incidence: 1/40.000−60.000 live births. Female-to-male
ratio 4:1 (23).

• Initially known as early seizure or Hanefeld variant of
RTT, now considered an independent clinical entity (1).

• CDD clinical symptoms overlap in part with those of
RTT but distinguish for one prominent and unique
feature: epileptic seizures usually begin within the first
3 months of life (median age of refractory epilepsy)
onset is 6 weeks with 90% onset by 3 months, (1, 22, 23)

• Clinical features of CDD include (23):
– Severe global developmental delays and intellectual

disability (no regression period)
– Stereotypic hand movements, repetitive leg crossing
– Loss of speech
– Loss of motor skills and movement disorders
– Cortical visual impairment
– Breathing abnormalities, sleep problems,

gastrointestinal problems, . . .

FOXG1-
syndrome

• Caused by mutations in the
forkhead box G1 gene (FOXG1;
14q12)
(FOXG1-syndrome is generally
caused by mutations within the
FOXG1 gene itself, while other
results from a deletion or
duplications of genetic material
from a region of the long (q) arm
of chromosome 14 (104).

• FOXG1 is a transcription factor that serves as a master
regulator for brain development. FOXG1 interacts with
multiple signaling pathways and is essential for the
proliferation of the progenitor cells of the cerebral
cortex (2, 13).

• Incidence: 1/30.000 live births.
• Initially known as congenital variant of RTT.
• Over the past years increasing reports on individuals

harboring FOXG1 mutations have allowed further
expansion and delineation of the clinical phenotypes of
FOXG1 mutations, thus progressing parting from RTT.
Nevertheless, a combination of developmental and
anatomical features distinguishes FOXG1-syndrome
from the typical RTT. Individuals with
FOXG1-syndrome show a more severe clinical
phenotype compared to RTT.

• Core clinical features of FOXG1syndrome include (2):
– Microcephaly
– Severe developmental delay and cognitive disability
– Absence or minimal language development
– Complete lack of “eye gaizing/pointing”
– Early-onset dyskinesia and hyperkinetic movements
– Stereotypies
– Seizures
– Cerebral malformations

The table outlines the genetic cause of each disorder and provides a brief overview of the molecular pathways involved and the hallmark symptoms typically observed in affected individuals.
Although each syndrome/disorder exhibits unique clinical features, they share common core symptoms and neurological traits, suggesting that these disorders share a critical molecular etiology.
This commonality underscores the interconnectedness of these conditions at the molecular level and highlights the potential for shared pathways and targets for therapeutic interventions.

in promoting neuronal and synaptic development and function
[reviewed in (38, 39)], as well as its implication in RTT [reviewed in
(41)] and CDD (42) have been widely described. The involvement
of BDNF dysregulation in the pathogenesis of FOXG1-syndrome
remains to be elucidated (43). Several drugs targeting BDNF

dysregulation have been repurposed in addition to different SSRIs
and tianeptine, known to also enhance BDNF expression: BDNF
boosters such as glatiramer acetate (copaxone) and fingolimod
were recently investigated in RTT (see section 3.6 - BDNF-
boosters).
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FIGURE 1

Therapeutic targets and potential repurposing strategies currently being explored in Rett syndrome (RTT) and Rett-like syndromes [i.e., CDKL5
deficiency disorder (CDD)] and FOXG1-syndrome. Shared molecular pathways across these disorders can be categorized in three main categories:
(1). Synaptic proteins and neurotransmitter signaling pathways. (2). Growth factor signaling pathways. (3). Metabolic pathways. The figure illustrates
the interconnectedness of molecular pathways across these disorders, highlighting common themes and potential targets for therapeutic
intervention. Understanding these shared pathways may guide the development of repurposing strategies aimed at addressing the underlying
molecular mechanisms of these neurodevelopmental disorders (NDDs). The figure highlights also the current repurposed drugs approved or being
investigated for the treatment of RTT, CDD, and/or FOXG-1 syndrome. In bold, repurposing candidates described in detail in the main text of the
manuscript.

Similarly, insulin-like growth factor 1 (IGF-1) is essential for
neuronal maturation, survival, and plasticity [reviewed in (44)].
Alterations in IGF signaling pathways have been investigated
in both mice and humans with RTT (45) and advanced the
development of potential therapeutic strategies targeting IGF
signaling in RTT. Interestingly, several studies in RTT mice have
shown, that recombinant human IGF-1 (rhIGF-1) rescues RTT-
related phenotypes in mice (46, 47). These experimental findings
have led to a phase I and II clinical trial with rhIGF-1 (mecaserim)
and two phase II trials with the IGF1 peptide analogue trofinetide
in RTT patients (see section 3.7 - IGF-1).

2.3 Metabolic pathways

Several studies have shown that perturbations in metabolic
pathways, influence neurological and non-neurological features in
RTT [reviewed in (48–50)]. Alterations in the blood metabolite
levels associated with RTT, support the concept that RTT and RTT-
related disorders are systemic diseases affecting neurodevelopment.

Abnormalities in lipid metabolism and alterations in lipid
profiles, including changes in cholesterol levels have been found
in mice and individuals with RTT [reviewed in (51)]. Some
studies have suggested that statins, a class of medications
primarily used to lower cholesterol levels in the blood may have
neuroprotective effects and could potentially offer benefits in
RTT and RTT-like syndromes (see section 3.8 - Statins/Lovastin).
Disruptions in metabolic pathways are very complex in RTT
and RTT-like disorders and offer a broad array of potential

therapeutic targets beyond statins. Several studies have investigated
abnormalities in brain glucose metabolism in individuals with
RTT (52), and investigated the possibility to pharmacologically
intervene using for example glucocorticoid (see section 3.9 -
Glucorticoids/Corticosterone).

3 Examples of repurposed drugs in
RTT and RTT-related disorders

In this section, we will explore specific examples of repurposed
drugs used in RTT and RTT-related disorders, drawing from our
experience and understanding of common pathways (Figure 1).
Rather than conducting a comprehensive review, we will highlight
notable instances of DR within this context.

3.1 Bumetanide

The FDA-approved diuretic bumetanide, acting as an NKCC1
chloride importer antagonist, has garnered great interest for its
potential in multiple NDDs (21, 53, 54). Lozovaya et al. have
recently demonstrated that in a RTT mouse model the GABA
shift is abolished at birth and that this alteration persistent in
juvenile offspring can be alleviated by maternal administration
of bumetanide (55), suggesting that repurposing of bumetanide
might be promising in RTT. However, its use across multiple
neurological disorders faces several limitations: bumetanide has
low brain penetration and is associated with several collateral issues
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due to excessive diuresis caused by NKCC2 inhibition in the kidney
(21). Ongoing drug discovery efforts seek to develop novel NKCC1
inhibitors and modulators with fewer adverse effects (21) and
evaluate their potential across multiple NDDs, including RTT and
RTT-related disorders.

3.2 Ganaxolone

Ganaxolone (3-hydroxy-3β-methyl-5δ-pregnane-20-one)
belongs to a novel group of neuroactive steroids called epalons
that act as positive allosteric modulators of GABAA receptors to
enhance GABAergic inhibition (56). FDA approved since 1983,
ganaxolone has been investigated in various indications, including
epilepsy and psychiatric disorders (57–61). A recent phase III trial
(NCT03572933) has shown that ganaxolone reduces the frequency
of CDD-associated seizures and is generally well tolerated (62,
63). Ganaxolone has been approved (US: March 2022, Europe:
July 2023) for the treatment of seizures in CDD patients aged
2 years and older.

3.3 Ketamine

Channel-blocking NMDAR antagonists such as ketamine
have shown significant promise in addressing the complex E/I
imbalance associated with RTT and RTT-like disorders. Several
preclinical studies have shown that ketamine improves cognitive
function and behavior in animal models of RTT (64). Ketamine, a
dissociative anesthetic initially used for induction and maintenance
of anesthesia and repurposed for depression and related disorders
(65) has shown promising results in RTT patients. A recently
completed phase II clinical trials (NCT03633058) to assess the
safety, tolerability and efficacy of low-dose oral ketamine in
RTT patients has shown improvements across a broad range of
symptoms (unpublished data). Ketamine has currently (in February
2023) been granted Orphan Drug Designation by the FDA and a
phase III clinical trial is planned.

3.4 Sarizotan

Although sarizotan, a phase III 5-HT1A receptor agonist used
for the treatment of dyskinesias in Parkinson’s disease (PD) (66,
67) has shown beneficial effects on respiratory dysfunction in
different RTT models (34), a phase III clinical trial conducted
in 2020 (NCT02790034) has not confirmed these results in a
clinical setting. Low and high dose daily oral administration of
sarizotan was ineffective in meeting its primary goal of reducing
the percentage of apneas in children and adults with RTT-related
breathing abnormalities. A new chemical entity acting as selective
5-HT1A agonist (NLX-101), which has shown antidepressant and
cognitive enhancing properties, is currently under development
(68, 69).

3.5 Sertraline

Sertraline, a widely used antidepressant to treat panic,
generalized and social anxiety and obsessive compulsive disorders

has been tested in a preclinical setting for CDD (70). The study has
shown that treatment with sertraline improved several behavioral
abnormalities in CDD mice (70). As sertraline is currently not
approved for the use in children, it is widely described “off-label”
for certain mental health conditions (71, 72). Different studies have
evaluated the long-term impact of treatment with sertraline on
cognitive, emotional and physical development in pediatric subjects
(73–75) and the drug seems quite well tolerated. Interestingly, the
sertraline study also included preliminary results on the off-label
use of lorcaserin in CDD patients (33). Locaserin, like fenfluramine,
acts as a selective 5-HT2C receptor agonist and was initially
developed and approved as appetite suppressor. Although the
use of both medications was discontinued in the treatment of
severe obesity, due to safety and toxicity concerns, lorcaserin and
fenfluramine are currently repurposed for the treatment of seizures
associated with Dravet syndrome and Lennox-Gastaut syndrome
[reviewed in (5, 76)]. A phase II open label trial to investigate the
effects of repurposing of fenfluramine to control seizures in CDD
patients is currently ongoing (NCT03861871) and preliminary
results were published (77).

3.6 BDNF-boosters

3.6.1 Glatiramer acetate
Glatimarer acetate, sold under the name copaxone is an

immunomodulator medication to treat multiple sclerosis (MS).
As glatiramer acid stimulates the secretion of BDNF in the brain
and the levels of BDNF expression seem to be directly correlated
with the severity of RTT related symptoms (78), a small phase II
clinical trial (NCT02153723) was run in 2014. Although the trial
showed improvements in gait analyses, respiratory dysfunction,
electroencephalographic findings, and quality of life, there were
severe safety concerns (79, 80).

3.6.2 Fingolimod
Like copaxone, fingolimod is an immunomodulating

medication used for the treatment of MS. Interestingly this
sphingosine-1-phosphate analog, has been shown to upregulate
BDNF mRNA levels and increase BDNF protein release (81)
and to increase cognitive impairment in Huntington’s disease
and Alzheimer’s diseases (82, 83). A recent phase II clinical trial
to assess safety and efficacy of fingolimod in children with RTT
(NCT02061137) has shown that treatment with fingolimod was safe
but had no significative effects on RTT-associated symptoms (84).

3.7 IGF-1

3.7.1 Mecasermin (recombinant human IGF-1,
rhIGF-1)

Mecasermin is FDA-approved for the long-term treatment of
growth failure in children with severe primary IGF-1 deficiency
(85). A phase I and II clinical (NCT01777542) study assessed safety
and efficacy of mecasermin treatment in RTT patients. Both studies
(86, 87) reported that a significant proportion of RTT patients
exhibited limited response to mecasermin treatment, suggesting
that further studies are needed.
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Trofinetide, a synthetic analogue of IGF-1 originally
developed as potential treatment for stroke (88) has been
successfully repurposed for RTT. A recent phase III clinical trial
(NCT04181723) has shown that trofinetide improves behavioral,
communication, and physical RTT symptoms (89, 90) and
trofinetide has gained FDA approval in 2023. Trofinetide is the first
FDA-approved drug for the treatment of RTT.

3.8 Statins/Lovastatin

Statins, commonly used to lower cholesterol, have widely been
explored in NDDs due to their ability to reduce neuroinflammation
and enhance synaptic function and neuronal survival [reviewed in
(91)]. Several studies have suggested that cholesterol metabolism
is perturbed in mice and individuals with RTT [reviewed in
(58)]. Interestingly, initial research showed promising effects of
statin treatment (fluvastatin and lovastatin) in RTT mice (92),
but subsequent studies in a mouse model with a different genetic
background yielded in conflicting results (93), illustrating the
complexity of genetic and pharmacological interactions in NDDs
like RTT. Therefore, personalized DR approaches may be necessary
to optimize therapeutic outcomes in individuals with RTT. In
2015, a phase II open label dose escalating study of lovastatin
in a small group of RTT patients (NCT02563860) has shown
some preliminary positive results in improving visual recognition,
memory and eye tracking.

3.9 Glucocorticoids/Corticosterone

Glucocorticoids are steroid hormones well known for their
use in the treatment of inflammation, autoimmune diseases,
and cancer. Corticosteroids (predominantly prednisolone and
hydrocortisone) and adrenocorticotropic hormone (ACTH) are
widely used as anti-epileptic drugs in pediatric populations,
including RTT and CDD (94, 95). Interestingly, different
studies have shown that pharmacological intervention with the
glucocorticoid system using low-dose corticosterone has an impact
on the symptoms and lifespan in an RTT mice (96, 97).
Interesting pre-clinical studies have recently investigated the effects
of pregnenolone-methyl-ether, a synthetic neuroactive steroid and
derivative of pregnenolone on CDD cell and mouse models (98,
99). However, further research is needed to confirm these findings
and determine the safety and efficacy of glucocorticoid therapies in
humans with RTT and RTT-like disorders.

4 Discussion

RTT and RTT-like syndromes pose significant challenges for
therapeutic strategies due to their rarity, complex etiology, and
multifaceted symptomatology (Table 1). Traditional drug discovery
pipelines often struggle to navigate these complexities. However,
given the urgent need for effective treatments in RTT and related
disorders, DR emerges as a pragmatic and resource-efficient
strategy to expedite clinical translation and enhance treatment
availability for affected individuals. In this discussion, we briefly

examine the challenges and limitations of DR in RTT and RTT-
related disorders and suggest potential solutions to advance the
field.

One of the primary hurdles in drug development for RTT
and RTT-like disorders undoubtedly lies in their rarity. Traditional
drug development necessitates substantial financial investment to
design, conduct, and analyze large-scale clinical trials involving
significant numbers of participants.

Nevertheless, owing the rarity of RTT and related disorders,
recruiting an adequate number of eligible participants for such
trials can be extremely challenging and costly.

The heterogeneity and the diverse array of symptoms
manifested by these disorders pose additional challenges. While
the underlying genetic and molecular mechanisms overlaps to
some extent, individual variability demands tailored therapeutic
approaches. Grouping patients by shared clinical symptoms instead
of genetic diagnosis, and developing DR strategies targeting
symptoms that can likely be treated by DR candidates, such as
proposed in the recently EU-funded SIMPATHIC project,1 may
increase the efficiency of DR.

Repurposing existing drugs with pleiotropic effects or
multitargeted mechanisms of action can address multiple aspects
of the disorders simultaneously, offering holistic treatment
approaches. Furthermore, combinatory repurposing targeting
different pathways can be tailored to specific symptoms/domains
which may lead to greater therapeutic benefits than any single agent
alone. However, it is essential to note that combinatory therapies
also pose challenges in terms of optimizing drug combinations,
dosing regimens, and potential interactions. Rigorous preclinical
and clinical studies are imperative to evaluate their safety
and efficacy in RTT and RTT-like syndromes, considering the
unique characteristics and variability of these disorders among
affected individuals.

Rigorous preclinical and clinical studies are also crucial
for better understanding the complex pathophysiology of these
syndromes. To date, the precise molecular mechanisms underlying
these complex disorders are still not fully understood; hindering
the identification and validation of potential drug targets. This
specifically applies to CDD and FOXG1-syndrome: both conditions
were identified as distinct clinical entities only recently and it
is understandable that research efforts initially focused primarily
on “classical” RTT. This discrepancy is reflected also in the
very different numbers of repurposing studies highlighted in
Figure 1. Continued efforts in pre-clinical (identification of
valuable cell and animal models etc.) and clinical research (better
understanding of the natural history, clinical manifestations,
disease progression, biomarkers etc.) will be essential for advancing
our understanding and improving outcomes for individuals
affected by these syndromes. In particular, better characterizing the
shared symptoms and pathways across these entities, will provide
valuable insights into the underlying biology and potentially
uncover new common mechanisms and targeted therapies. If the
disorders demonstrate convergence in their underlying molecular
pathways, this provides an opportunity for designing joint DR

1 www.simpathic.eu
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strategies across RTT and RTT-like disorders. This could reduce the
time needed for the development of DR and increase the number of
patients benefiting from the treatments, resulting in more attractive
business models.

Despite promising DR results in preclinical or early-phase
clinical trials for RTT and related disorders in our opinion DR
is still underrated and underutilized in this kind of disorders.
DR holds immense potential for addressing the unmet medical
needs and therapeutic challenges posed by such complex NDDs,
and recent advancements screening and computational techniques,
offer the unique opportunity to predict drug-disease interactions
and prioritize candidate compounds for further investigation.
By leveraging existing drugs and repurposing them for new
indications, this approach offers a pragmatic and efficient strategy
to accelerate the development of treatments for individuals affected
by these debilitating conditions.
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