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Cardiac surgery with cardiopulmonary bypass results in global myocardial 
ischemia–reperfusion injury, leading to significant postoperative morbidity 
and mortality. Although cardioplegia is the cornerstone of intraoperative 
cardioprotection, a number of additional strategies have been identified. The 
concept of preconditioning and postconditioning, despite its limited direct 
clinical application, provided an essential contribution to the understanding 
of myocardial injury and organ protection. Therefore, physicians can use 
different tools to limit perioperative myocardial injury. These include the 
choice of anesthetic agents, remote ischemic preconditioning, tight glycemic 
control, optimization of respiratory parameters during the aortic unclamping 
phase to limit reperfusion injury, appropriate choice of monitoring to optimize 
hemodynamic parameters and limit perioperative use of catecholamines, and 
early reintroduction of cardioprotective agents in the postoperative period. 
Appropriate management before, during, and after cardiopulmonary bypass will 
help to decrease myocardial damage. This review aimed to highlight the current 
advancements in cardioprotection and their potential applications during 
cardiac surgery.
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1 Introduction

Cardiac surgery with cardiopulmonary bypass (CPB) includes an expected ischemia–
reperfusion (I/R) sequence, leading to myocardial injury and significant postoperative morbidity 
and mortality. The unavoidable and sustained elevation of postoperative serum troponin is 
multifactorial because of direct surgical trauma, systemic inflammation, and reversible ischemia 
or irreversible necrosis. Its short- and long-term prognosis value has been validated for years 
(1–3). Irrespective of the surgical procedure itself, the early or late elevation of peak serum 
troponin I has probably a distinct meaning, with a pejorative value in cases of elevation beyond 
the 24th postoperative hour (4, 5). A large prospective cohort study recently demonstrated that 
threshold values of hypersensitive troponin I above 5,670 ng/L on postoperative day 1 after 
coronary artery bypass grafting (CABG) or aortic valve surgery and above 12,981 ng/L following 
other cardiac surgeries were associated with increased mortality at day 30 (6). A whole literature 
on myocardial protection techniques during cardiac surgery has therefore emerged. While 
cardioplegia remains the cornerstone of intraoperative cardioprotection, the lack of consensus 
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on its practice is striking. The concept of cardioplegia is based on the 
administration of a hyperkalemic solution that induces a rapid diastolic 
arrest by depolarizing cardiomyocytes. Different solutions and 
components (crystalloids, warm or cold blood cardioplegia, 
anterograde, retrograde, or combined delivery approaches) are used by 
surgical teams and make synthesis difficult (7). It is beyond the scope 
of this review to provide a detailed overview of the different cardioplegia 
solutions and practices. In this update, we  will focus on other 
cardioprotection approaches administered during cardiac surgery that 
have been developed in addition to cardioplegia techniques.

2 The concept of preconditioning and 
postconditioning

In 1986, Murry et al. (8) published an experimental study that had 
a major impact and proved to be  a turning point in the field of 
cardioprotection. Using an in vivo animal model, they demonstrated 
that four brief sequences of 5 min I/R, applied just before a lethal 
40-min ischemia, reduced the size of myocardial infarction by more 
than 75% (Figure 1). The ischemic preconditioning concept was born. 
Then, we learned that patients presenting with an inaugural myocardial 
infarction have greater myocardial damage than those whose infarction 
is preceded by a period of angina (9). Shortly after, Ishihara et al. (10) 
demonstrated that prodromal angina occurring before the onset of 
infarction had a beneficial effect on long-term prognosis. The human 
myocardium is therefore just as receptive as the animal myocardium to 
the preconditioning signal. It is possible to modify the phenotype of the 
myocardium before an ischemic process so that it increases its tolerance 
to oxygen deprivation. By shifting the time-dependent necrosis curve 
to the right, preconditioning reduces the lesion for a given time.

Myocardial reperfusion, while essential to limit the infarct size, can 
itself induce injury, thereby reducing its expected beneficial effects (11). 
It is described as a double-edged sword. Several abrupt metabolic and 
biochemical changes occur within minutes of reperfusion, including 
the generation of reactive oxygen species (ROS), intracellular calcium 
overload, and rapid restoration of normal intracellular pH. In 2003, 
Zhao et al. (12) demonstrated that the application of brief I/R sequences 
in the early stages of reperfusion limited myocardial injury. By analogy 
with the preconditioning phenomenon, this strategy applied following 
ischemia is known as ischemic postconditioning (Figure 1) and has 
been described in humans. Indeed, in patients with ongoing acute 
myocardial infarction, necrosis size has been significantly reduced by 
36% using sequential re-inflation of the intracoronary balloon 
upstream of the stenting zone (13). Moreover, postconditioning by 
angioplasty has shown better long-term benefits in patients with acute 
myocardial infarction, including a reduction in infarct size at 6 months 
and an improvement in myocardial contractile function at 1 year (14).

Preconditioning and postconditioning are ubiquitous processes that 
protect organs against I/R injury. Many organs other than the 
myocardium (such as the brain, lung, kidney, digestive tract, and skeletal 
muscle) respond to conditioning. We  also know that the various 
protective signals are transmitted remotely within the body via neuronal 
and humoral pathways, a process known as remote ischemic 
preconditioning (RIPC, Figure  2) (15). Finally, preconditioning can 
protect an organ for up to 24–72 h before an ischemic episode. This 
phenomenon, known as the late phase of preconditioning, follows the 
activation of protein neo-syntheses such as nitric oxide (NO) synthases 
and cyclooxygenase-2 (COX-2) in response to the administration of a 
signal-inducing protection (16). A vast body of literature has been 
devoted to deciphering the cellular mechanisms of conditioning (17, 18). 
Experimental studies carried out on both in vivo and in vitro models 
(isolated perfused heart, cell culture preparation, etc.) clarified the more 
intimate mechanisms (Figure 3). In brief, the protective signal travels to 
the cellular level, involving various surface receptors (notably those 
coupled with inhibitory G proteins), leading to the production of 
diacylglycerol, the activation of different protein kinases (such as protein 
kinase C), and the opening of various channels, such as ATP-gated 
potassium channels (KATP). This information will then trigger different 
protective cascades via the reperfusion injury salvage kinases (RISK) and 
survivor activating factor enhancement (SAFE) pathways to lead to 
intracellular mitochondrial effectors. In the event of I/R, those organelles 
are the site of membrane permeabilization, known as the mitochondrial 
permeability transition pore (mPTP) opening (19). Permeabilization 
induces mitochondrial swelling, which causes them to lose their capacity 
to produce ATP at the level of the respiratory chain, ultimately dislocating 
within the cytoplasm and releasing pro-apoptotic substances such as 
cytochrome C. Conditioning works through several mechanisms: (i) 
delaying the mPTP opening, in particular through its action on a matrix 
protein (cyclophilin D); (ii) modifying the ROS production at the level 
of the mitochondrial respiratory chain (inhibition of complex I); and (iii) 
acting at the mitochondria-associated membrane, junction zones 
between the mitochondria, and the sarcoplasmic reticulum (20–23).

3 Volatile halogenated agents-induced 
myocardial protection

3.1 Experimental approach to myocardial 
conditioning with volatile halogenated 
agents

Ischemic conditioning has little direct clinical application in 
cardiac surgery. Numerous experimental studies have therefore 
focused on identifying the mechanisms of conditioning to decrypt, 
mimic, or amplify them. Volatile halogenated agents (VHAs) are the 
typical pharmacological application of the concept of conditioning in 
the operating room (Figure 1). Following several studies published in 
the late 80s, three independent teams demonstrated in 1997 the 
preconditioning effect of VHA (24–26). Comparing total intravenous 
anesthesia to VHA on a rabbit model, they reported a significant 
cardioprotective effect of VHA depending on both adenosine 
receptors and protein kinase C (24) and found that temporary 
administration of isoflurane reduced infarct size in dogs (25). The 
sulfonylurea glyburide abolished VHA-induced cardioprotection, 
highlighting the role of KATP channels in this mechanism (25). Since 
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then, numerous studies have shown that VHA, administered before 
ischemia, reduced the size of myocardial infarction (27). This 
protective effect persists for several hours, a phenomenon called 

VHA-induced late preconditioning or second window of 
preconditioning (16). Meanwhile, Tanaka et  al. (28) showed that 
animals anesthetized for 120 min with isoflurane had more than a 40% 

FIGURE 2

Remote ischemic conditioning.

FIGURE 1

Ischemic and pharmacological preconditioning and postconditioning.

https://doi.org/10.3389/fmed.2024.1424188
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Chiari and Fellahi 10.3389/fmed.2024.1424188

Frontiers in Medicine 04 frontiersin.org

reduction in myocardial infarct size. This process results from the 
neosynthesis of proteins such as COX-2 (28) and endothelial NO 
synthases (eNOS) in response to VHA administration (29). In the late 
1990s, several studies demonstrating the postconditioning effect of 
VHA were published (30–32). On isolated perfused hearts or in vivo 
models, halothane, enflurane, isoflurane, sevoflurane, and desflurane 
reduced myocardial injury when applied only during reperfusion. 
Sevoflurane-induced protection was observed at one minimal alveolar 
concentration (MAC), with no additional benefit at a higher dose (32). 
Even after cardioplegia, sevoflurane and desflurane provided 
additional protection when administered at the early phase of 
reperfusion (33). Intriguingly, 2 min of administration during 
reperfusion provided maximum protection, whereas less protective 
effects were observed with longer administration (34). The 
administration of one MAC isoflurane started 3 min before coronary 
reperfusion and maintained for only the first 2 min of reperfusion 
reduced myocardial infarct size by 50%, a phenomenon mediated by 
the activation of phosphatidylinositol-3-kinase (PI3K) signal 
transduction (35). VHA administration at this point could have a 
preferential impact at the mitochondrial level, resulting in a temporary 
inhibition of respiration, depolarization, and mitochondrial pH, 
subsequently slowing the opening of mPTP during the first time of 
reperfusion (36). Thus, VHAs are able to induce both valuable 
preconditioning and postconditioning (27, 37). Importantly, any 
postconditioning treatment must be applied at the initial phase of 
reperfusion before irreversible damage occurs. If the intervention is 
delayed for even 10 min, the protection is lost (38). In other words, 

VHA administration must be started a few minutes before reperfusion 
(before aortic unclamping) and continued immediately afterward in 
order to have a full protective effect.

3.2 Clinical studies of volatile halogenated 
agents in cardiac surgery

As early as 1999, Belhomme et al. (39) demonstrated that the 
administration of 5 min of isoflurane before aortic clamping during 
CABG surgery induced the activation of protein kinase C (a decisive 
step in the protective signaling pathway) as well as a decrease in 
postoperative troponin I. Subsequently, several studies by de Hert 
et al. (40–42) found marked cardioprotective effects of sevoflurane 
compared to propofol, responsible for the improvement in 
postoperative myocardial function, lower postoperative troponin 
I  release, and shorter stay in the intensive care unit and hospital. 
Sevoflurane (43) and desflurane (44) significantly reduced 
postoperative troponin release in off-pump CABG surgery. However, 
those initial encouraging results have not been confirmed by other 
teams (45–48). More recently, the large MYRIAD trial (49), 
prospectively including over 5,000 patients in 36 centers, failed to 
demonstrate a benefit of VHA on 1-year mortality compared to 
intravenous anesthesia: 2.8% versus 3.0% (RR 0.94 [95% CI: 0.69–
1.29], p = 0.71).

Several points need to be discussed. Anesthetic preconditioning 
seems to be more effective following repeated administration spaced 

FIGURE 3

Signaling pathway of conditioning. KATP, ATP-dependent potassium channel; Gi Prot, inhibitory G protein; PLC/PLD, phospholipase C/D; gp130, 
glycoprotein 130; TNFr, tumor necrosis factor receptor; RISK, reperfusion injury salvage kinase; SAFE, survivor activating factor enhancement; MEK, 
mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; GSK-3β, glycogen synthase kinase-3β; PI3K, phosphatidylinositol-3-
kinase; Akt, protein kinase B; NO, nitric oxide; eNOS, endothelial NO synthase; DAG, diacylglycerol; PKC, protein kinase C; JAK, Janus kinase; STAT3, 
signal transducer and activator of transcription 3; ROS, radical oxygen species; mPTP, mitochondrial permeability transition pore.
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by washout periods than continuous administration before ischemia. 
Two administrations of sevoflurane at one MAC spaced for at least 
10 min significantly reduced serum troponin T release compared to a 
single continuous administration in patients undergoing CABG (50). 
Similarly, better cardioprotection following the administration of two 
sequences of one MAC sevoflurane for 5 min interspersed by a 5-min 
washout was found when compared with a single administration 
before CPB (51). The VHA administration protocol during surgery 
plays certainly a key role in the success of perioperative conditioning. 
Thus, the administration of VHA throughout surgery, including CPB, 
provided better protection than administration only before or after 
CPB (52). This specific efficiency of VHA, when administered during 
CPB, could be related to their immunomodulatory effects (53, 54). 
Finally, those cardioprotective effects of VHA must also be linked to 
their potential beneficial renal effects. It was reported in patients 
scheduled for CABG surgery that 10 min administration of two MAC 
sevoflurane during CPB and before aortic clamping significantly 
decreased postoperative release of brain natriuretic peptide and 
plasma cystatin C, biochemical markers of myocardial contractile, and 
renal dysfunction (55). The 1-year follow-up of this last cohort showed 
a reduced incidence of late cardiac events after surgery (56). Among 
the many meta-analyses published on the topic, Uhlig et  al. (57) 
reviewed 45 cardiac surgery clinical studies involving 4,840 patients 
and found a reduction in overall mortality with VHA (OR 0.55; 95% 
CI: 0.35–0.85), as well as a reduction in perioperative complications. 
Similar results have been reported when VHAs were used throughout 
the surgical procedure (OR 0.66 [95% CI: 0.49–0.89]) (58). Those 
meta-analyses included small and sometimes single-center studies 
(59). International guidelines are in favor of the use of VHA during 
cardiac surgery (60, 61).

4 Remote ischemic preconditioning

The heart and other organs can be  protected against I/R by 
applying brief periods of non-lethal I/R sequences to remote tissues, a 
phenomenon called RIPC (15). The simplest way to perform RIPC is 
to repeatedly inflate above systolic blood pressure, a blood pressure cuff 
placed at the root of the upper and/or lower limb (Figure 2). Numerous 
experimental studies demonstrated that the protective signal was 
transmitted to other organs, including the heart, via humoral and 
neuronal pathways. In a proof-to-concept study, Hausenloy et al. (62) 
demonstrated that a RIPC protocol consisting of three 5-min cycles of 
upper limb ischemia significantly reduced the postoperative troponin 
T release in patients undergoing CABG surgery. Other studies 
subsequently confirmed these initial encouraging results (63, 64). 
Meanwhile, Zarbock et al. (65) investigated the benefit of RIPC on 
renal protection during CPB and found that RIPC reduced acute 
kidney injury by 15% in high-risk patients. In a follow-up study of the 
same cohort, they showed persistent renal protection at 90 days with 
an 18% absolute risk reduction of acute kidney injury (66). However, 
those promising results have not been confirmed by others. A cycle of 
3 × 5-min cuff inflations to 200 mmHg separated by 5-min periods of 
cuff deflation did not reduce troponin release or other organ protection 
during cardiac surgery (67). More recently, two multicenter, 
prospective, randomized trials involving a large number of patients 
were unable to demonstrate any benefit of RIPC. The RIPHeart study 
(68) found that a RIPC protocol did not modify the rate of a composite 

endpoint (postoperative myocardial infarction, stroke, renal failure, 
and death within 90 days) in 1,385 patients undergoing cardiac surgery. 
Similarly, the ERICCA trial (69) included 1,612 patients and, using a 
similar design and endpoint, found no benefit of RIPC. Moreover, a 
protocol combining RIPC and postconditioning (four cycles of 5-min 
ischemia/5-min reperfusion applied before and after CPB) did not 
improve the outcome in 1,280 patients scheduled for cardiac surgery 
(70). Finally, meta-analyses confirmed that RIPC could reduce 
postoperative troponin release without clinical benefit to overall 
outcomes (71, 72).

Several factors are expected to interfere with the clinical 
effectiveness of RIPC. The algorithm is probably of major importance 
in terms of the number of cycles, the duration of each ischemic 
sequence, and the RIPC application site (arm and/or thigh) (73, 74). In 
an ex vivo mice Langendorff model, Johnsen et al. (73) found that four, 
six, or eight cycles were effective, while two were not. Ischemic cycles 
lasting 2 min or 5 min reduced infarct size, but 10 min abolished 
cardioprotection. In clinical studies, the majority of medical staff use a 
5-min ischemia protocol. There may be a dose dependence on the RIPC 
protocol, as previously suggested (74). Increasing the power of the 
stimulus could also be  more effective, as demonstrated in patients 
undergoing cardiac surgery and having received a RIPC protocol by 
simultaneous inflation of a balloon on both the arm and the thigh (75). 
Drugs administered during cardiac surgery may also interfere with the 
effectiveness of a RIPC protocol. Thus, nitrates (despite their intrinsic 
cardioprotective properties) can inhibit the beneficial effect of RIPC 
(75, 76). Nitrates could inhibit RIPC-induced cardioprotection by NO 
inhibiting afferent nerve conduction in the limb. In the ERIC-GTN 
study (76), intravenous infusion of nitrates during surgery abrogated 
RIPC protection. Anesthetic agents could also affect the cardioprotective 
effectiveness of RIPC. Kottenberg et al. (77) reported that RIPC reduced 
the postoperative troponin release after CABG surgery in patients 
receiving isoflurane but not propofol. This latest study can 
be interpreted in two ways. Either the RIPC protocol was insufficiently 
powerful to protect the myocardium under clinical conditions and 
required synergistic protection by isoflurane or propofol by itself 
negated the protective effect of RIPC. Indeed, experimental studies 
have shown that propofol abolishes desflurane-induced preconditioning 
and RIPC (78, 79). In a recent meta-analysis focusing on the renal 
protective effects of RIPC, the authors emphasized that RIPC’s 
beneficial effects were mainly found during anesthesia with VHA (80).

5 Glycemic balance

Hyperglycemia is both a common phenomenon observed during 
cardiac surgery and a well-known independent risk factor of mortality 
(81, 82). In a large cohort including more than 8,000 patients undergoing 
cardiac surgery, Ascione et al. (83) found that 15% of them had blood 
sugar levels above 200 mg/dL, more than half of perioperative 
hyperglycemia occurring in non-diabetic patients. Hyperglycemia was 
associated with postoperative myocardial infarction (OR: 2.73 [95% CI, 
1.74–4.26]). Among various processes, acute hyperglycemia increases 
ROS production, leading to endothelial dysfunction and worsening of 
myocardial I/R injury (84–86). Experimentally, myocardial infarct size 
was linearly related to blood glucose concentration (87). Several studies 
have also demonstrated that cardioprotective strategies such as 
VHA-induced preconditioning and postconditioning were abolished in 
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hyperglycemic conditions (88–90). In addition, oral antidiabetic drugs 
such as glyburide could also inhibit preconditioning (25). Insulin is 
therefore a first-line therapy during cardiac surgery. In addition to 
lowering blood glucose levels, insulin has cardioprotective properties by 
activating the RISK pathway, especially when administered during 
reperfusion (91–93). It is important to emphasize the benefit of 
continuous infusion of insulin rather than boluses (94, 95). Beyond 
hyperglycemia, the variability of blood glucose concentration is harmful 
(96). If hyperglycemia must be undoubtedly treated (97), the current 
objective is to determine the optimal blood glucose threshold to 
be reached during cardiac surgery. Several studies reported an increased 
incidence of stroke (98) and delirium (99) during intraoperative tight 
glucose control. In a retrospective study of 4,000 patients treated at the 
Cleveland Clinic, Duncan et  al. (100) reported that maintaining 
intraoperative blood glucose levels below 140 mg/dL increased morbidity 
and mortality. However, the same team conducted a prospective study 
in which a treated group received a fixed high-dose insulin and 
concomitant variable glucose infusion during cardiac surgery (101). In 
more than 1,400 randomized patients, they observed a 38% reduction of 
30-day morbimortality in the treated group, demonstrating once again 
the intraoperative protective effect of insulin. The current consensus is, 
therefore, to treat with continuous insulin infusion when intraoperative 
blood glucose values are 180 mg/dL (10 mM) or higher; the target range 
is between 140 and 180 mg/dL (7.7–10 mM) (102–106). Finally, glycemic 
management appears to be  an integral part of the cardioprotection 
strategy during cardiac surgery (Figure 4).

6 The challenge of aortic unclamping

6.1 Oxygenation control

Uncoupling of the mitochondrial respiratory chain during 
ischemia induces ROS overproduction in the event of excessive 

oxygenation at reperfusion (107). In vitro and in vivo experiments 
demonstrated that hyperoxic reperfusion increased inflammatory 
response and apoptosis and altered hemodynamic performances 
(108). Additionally, hyperoxia causes a significant reduction in 
coronary blood flow, which can further exacerbate reperfusion 
injury (109). Several clinical studies emphasized the potentially 
harmful effects of high-concentration oxygen therapy for the 
treatment of heart disorders in the medical setting (110, 111). The 
AVOID trial (112) showed, in non-hypoxemic patients suffering 
from ST-segment elevation myocardial infarction, that high-flow 
O2 therapy at reperfusion increased the peak of creatine kinase and 
the rate of recurrent myocardial infarction. Similarly, a recent meta-
analysis (113) did not find evidence to support the use of oxygen 
therapy in normoxemic patients with acute myocardial infarction. 
Although debated, those questions arise in the context of cardiac 
surgery with CPB (114–116). In pediatric heart surgery, controlled 
reoxygenation during CPB decreased the markers of inflammation 
and organ damage (117). In patients scheduled for CABG surgery, 
hyperoxia (PaO2 = 400 mmHg) compared to normoxia 
(PaO2 = 140 mmHg) during CPB increased oxidative myocardial 
damage (118). Inoue et al. (119) explored the effects of reducing 
hyperoxia (PaO2 = 450–550 mmHg versus 200–250 mmHg) during 
reperfusion in cardiac surgery. They found that lowering the 
reperfused PaO2 after aortic unclamping significantly reduced 
oxidative damage and myocardial enzyme release. Conversely, 
McGuinness et al. (120) failed to demonstrate any difference in 
myocardial ischemia damage when comparing modest hyperoxia 
(178 mmHg) with normoxia. Interestingly, there was significant 
pre- and post-CPB hyperoxia (approximately 200 mmHg) in both 
groups, precisely during high-risk periods of hyperoxia-induced 
cellular damage. It is therefore quite likely that hyperoxia at the 
time of aortic unclamping may worsen myocardial lesions. 
Moreover, intraoperative oxidative damage is associated with 
postoperative delirium and neuronal injury (121). To sum up, it 

FIGURE 4

Bundle of care combining different cardioprotective interventions during cardiac surgery.
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seems reasonable to advise that excessive use of supplemental 
oxygen in normoxic patients, particularly at the time of aortic 
unclamping, could potentially lead to exacerbated myocardial 
injury (Figure 4).

6.2 Impact of acid–base balance

Using a pH electrode on a rabbit heart model, Cobbe et al. (122) 
demonstrated that tissue pH fell continuously during ischemia 
because of progressive H+ ion accumulation, with a rapid recovery of 
pH during the first minutes of reperfusion. However, it has been 
shown that part of reperfusion injury comes from the rapidity of the 
pH rise. In rat livers, a slow increase in pH over 15 min after 
reperfusion dramatically reduced LDH release, a phenomenon known 
as pH paradox (123). Some years later, this result was confirmed on a 
cardiomyocyte model (124). It is well established that sudden 
reperfusion generates ROS production and induces calcium overload 
(125). Rapid recovery of cellular acidosis during the first moment of 
reperfusion ultimately leads to hypercontraction of the myocardium. 
At this point, ROS production at the mitochondrial level induces 
mPTP opening and subsequent myocyte death, a phenomenon that 
can be  prevented by initial acidotic reperfusion (126). Several 
techniques, such as hypercapnic acidosis and Na+/H+ exchange 
inhibition, used during reperfusion attenuate lethal damage, whereas 
an alkaline solution (pH = 7.6) aggravated it (127). How long this 
temporary acidosis should be maintained after reperfusion is probably 
a pivotal question. Using a Langendorff-isolated rat heart model, 
Ohashi et al. (128) found that reperfusion for less than 3 min with an 
acid solution provided better recovery. Experimentally, acid 
reperfusion for 3 min delays the normalization of myocardial tissue 
pH and enhances myocardial salvage (129). Several studies suggest 
that the protective effect of postconditioning could be mediated by 
prolonged transient acidosis (130–133). Experimentally, infusion of 
NaHCO3 during a postconditioning protocol abolished 
cardioprotection and blunted the activation of RISK pathways (130). 
It is postulated that postconditioning prevents mPTP opening by 
maintaining temporary acidosis during the first minutes of reperfusion 
(131). VHA could also induce postconditioning through inhibition of 
respiration, depolarization, and ultimately mitochondrial acidification 
upon reperfusion (36). A complementary approach to maintaining a 
temporary acidosis during reperfusion is to inhibit Na+/H+ exchange. 
Administration of cariporide reduced Na+ overload and contributed 
to H+ extrusion during reperfusion (134, 135). Interestingly, this 
process also leads to a drop in Ca++ level during reperfusion (136). 
This proof of concept was demonstrated in the prospective, 
multicenter EXPEDITION study (137), which included 5,761 patients 
undergoing high-risk CABG surgery. The administration of cariporide 
before, during, and after surgery significantly reduced the incidence 
of myocardial infarction from 18.9% in the placebo group to 14.4% in 
the treatment group. However, because of an increase in 
cerebrovascular events in the treated group, the clinical use of 
cariporide was halted. Surprisingly, the EXPEDITION study design 
required cariporide administration to be  continued for 48 h after 
surgery, i.e., a potentially too long way from the time of myocardial 
reperfusion. To summarize, the myocardial tissue is subject to 
significant pH variations at the time of aortic unclamping. At the very 
least, the clinician should avoid any alkalosis just before and just after 

myocardial reperfusion, which is very likely to be deleterious at this 
stage (Figure 4).

6.3 Controlling reperfusion pressure

Reperfusion injury may also be the result of excess pressure in the 
first moments following aortic unclamping. Okamoto et  al. (138) 
demonstrated that early gentle reperfusion (50 mmHg versus 
80 mmHg during the first 20 min of reperfusion) limited the post-
ischemic damage in animals subjected to 4 h of ischemia. Similarly, a 
staged reperfusion protocol in which the coronary perfusion pressure 
was maintained at 40% of control for 0–3 min after the onset of 
reperfusion, 60% of control for 4–6 min, and 80% of control for 
7–10 min has been suggested (139). This graduated reperfusion could 
mitigate myocardial stunning via transient acidosis during early 
reperfusion. Controlled reperfusion decreases calcium deposition and 
increases both mitochondrial oxidative phosphorylation rate and 
myocardial ATP content (140). Furthermore, low-pressure reperfusion 
limited myocardial necrosis by inhibiting mPTP opening on an 
isolated Langendorff heart model (141). Low-pressure reperfusion 
appears to offer similar protection to that provided by 
postconditioning, both techniques involving the activation of the 
PI3K-mPTP pathway (142). Testing this concept of gradual 
reperfusion on a population of patients undergoing CABG surgery, 
other authors (143) found a significant regression of interstitial edema 
at 60 min reperfusion. Although it is well established that excessive 
pressure worsens myocardial damage during reperfusion, there is 
currently no precise scheme for gentle reperfusion that can 
be clinically applied. Consequently, the practical implementation of 
this concept varies widely from one center to another (144).

7 The postoperative period

During the postoperative period, several factors will also influence 
myocardial tolerance to cardiac surgery with CPB. Maintaining the 
right balance between myocardial oxygen supply and demand remains 
a key issue. A transfusion threshold adapted to the needs of the 
myocardium and resumption of treatments such as beta-blockers at 
an early stage is traditionally part of good practices. In addition, two 
other specific points are worth mentioning here. During cardiac 
surgery, catecholamines are widely used to prevent or treat low-cardiac 
output syndrome, depending on preoperative patients’ status, the 
complexity of the surgical procedure, and, above all, the physician’s 
decision (145, 146). However, those drugs should be used only as 
needed to maintain adequate organ perfusion (147). Because of their 
positive inotropic and/or chronotropic effects, the overuse of 
catecholamines can lead to cardiac arrhythmias and myocyte death. 
Studying a large cohort of patients undergoing conventional cardiac 
surgery, we found (148) that perioperative use of dobutamine, simply 
based on the clinical judgment of the anesthesiologist, increased 
postoperative major cardiac morbidity. Exploring the data of a 
national cohort of 6,005 consecutive cardiac surgery patients, Nielsen 
et al. (149) demonstrated that inotropic therapy was independently 
associated with short- and long-term postoperative myocardial 
infarction and death. It seems essential to carefully monitor the 
patients’ macrohemodynamic parameters to correctly assess volemia 
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and cardiovascular function so that catecholamines can be judiciously 
used and discontinued as soon as possible. In addition, the pleiotropic 
beneficial effects of statins have been widely described, hence their 
widespread use in cardiac surgery patients (150, 151). Although the 
administration of statins in the preoperative phase of cardiac surgery 
has recently been shown to be ineffective, physicians must be aware 
that these drugs can cause a rebound effect (152–154). Postoperative 
statin withdrawal was an independent predictor of postoperative 
myocardial infarction after major vascular surgery (155). Initiation of 
statin treatment results in endothelial eNOS upregulation due to the 
inactivation of a Rho protein, which usually inhibits eNOS. In the case 
of statin chronic therapy discontinuation, there is an overshoot 
translocation and activation of Rho, causing downregulation of eNOS 
production below baseline levels (156).

8 Modulating factors

During the intraoperative period, due to the multiplicity of 
patient-related factors (comorbidities and treatments) as well as 
operative techniques (anesthetic agents, CPB, and cardioplegia), the 
efficacy of cardioprotective techniques is questionable. First, the 
phenomenon of cardiac conditioning is influenced by age, with 
drop-in effectiveness in elderly patients (157). Senescent myocardium 
is particularly sensitive to ischemia, probably due to metabolic 
degradation and impaired mitochondrial function (158, 159). A 
progressive loss of response to preconditioning was demonstrated by 
comparing three cohorts of 3-, 12-, and 20-month-old rats subjected 
to 1 or 3 cycles of ischemic preconditioning (160). It has also been 
shown that the protective effect of sevoflurane gradually disappeared 
with age (161). Second, the cardioprotective effects of estrogens and 
their possible interference with preconditioning have been regularly 
reported. Estrogens are thought to be  protective via several 
mechanisms: activation of KATP channels, reduced leukocyte adhesion, 
ROS, and NO production, and reduced calcium influx during 
ischemia (162–166). In an experimental study, the injection of 
17b-estradiol was shown to induce cardioprotection mediated by 
mitochondrial KATP channels, identical to that of ischemic 
preconditioning (162). It was also found under similar conditions that 
female mice were already protected and that ischemic preconditioning 
did not provide any additional protection (167). Myocardial infarct 
size was significantly smaller in female rabbits compared to male 
rabbits, and isoflurane did not provide any additional benefit (166). 
Third, many pharmacological agents used during surgery could 
interfere with perioperative cardioprotection (Table  1). Several 
reviews have focused on the cardioprotective effects of opioids (168–
170). These agents act via activation of κ-, δ-, and/or even μ-opioid 
receptors, leading to protein kinase C activation and potentiation of 
KATP channels opening (171, 172). Propofol is known to abolish 
myocardial conditioning, possibly due to its ROS scavenger effects (79, 
173). Ketamine inhibits ischemic preconditioning through its action 
on KATP channels (174). This pharmacological effect appears to 
be linked to the stereoselectivity of ketamine since the S(+)-form is 
neutral on both early and late preconditioning (175, 176). Lidocaine 
could also interfere with either anti-apoptotic cardioprotective or 
antagonist effects (177–179). A large prospective, comparative, 
randomized, multicenter study demonstrated that xenon, known to 
induce preconditioning and postconditioning (180, 181), significantly 

reduced postoperative troponin release in patients undergoing CABG 
surgery when compared to total intravenous anesthesia (182). 
Cyclosporine, in addition to its immunosuppressive properties, is a 
potent inhibitor of mPTP opening by preventing the calcium-induced 
interaction of cyclophilin D with a pore component (183). A single 
intravenous bolus of cyclosporine administered before CPB—as 
preconditioning (184)—or 10 min before aortic cross-unclamping—as 
postconditioning (185)—reduced the extent of myocardial injury in 
patients undergoing CABG or aortic valve surgery. However, clinical 
trials about the use of cyclosporine in cardiac surgery were interrupted 
following the publication of the large-scale multicenter CIRCUS study 
(186), which failed to demonstrate any improvement in patients with 
ST-segment elevation myocardial infarction.

9 Synergistic approaches

Experimental studies have suggested that a bundle of care 
could reinforce myocardial conditioning (187, 188). The interaction 
between several interventions to mitigate cardiac reperfusion 
injury has been shown between VHA and a postconditioning 
intervention (35). These results further suggest that the 
administration of 0.5 MAC isoflurane at reperfusion, a 
concentration that does not provide cardioprotection alone, 
reduces the threshold of ischemic postconditioning. Huhn et al. 
(89) showed that hyperglycemia abolished sevoflurane-induced 
postconditioning and that cyclosporine A reversed this loss of 
protection. The combination of RIPC with local ischemic 
postconditioning has previously been tested in ST-elevation 
myocardial infarction (189, 190). However, the efficacy of those 
multimodal interventions on surrogate markers of reperfusion 
injury, such as serum creatine kinase-MB isoenzyme for the 
RIPOST-MI study (189) or the salvage index by cardiac magnetic 
resonance imaging for the LIPSIA CONDITIONING study (190), 
is controversial. The ProCCard study (191) evaluated the relevance 
of a cardioprotective bundle of care during cardiac surgery with 
CPB. A total of 210 patients were randomized into a standard-of-
care group and a treatment group simultaneously combining five 
modes of cardioprotection: sevoflurane administration, RIPC, tight 
intraoperative blood glucose control, induction of a moderate 
respiratory acidosis to prevent the pH paradox phenomenon, and 

TABLE 1 Positive and negative clinical modulators of myocardial 
protection by conditioning.

Factors inducing 
cardioprotection

Factors inhibiting 
cardioprotection

Volatile halogenated agents Hyperglycemia

Insulin Diabetes

Estrogens Aging

Opioids Sulfonylureas

Xenon Hyperoxia

Cyclosporin A Alkalosis

Nitric oxide Nitrates

Statins

Lidocaine
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gentle reperfusion to limit myocardial reperfusion injury 
(Figure 4). Unfortunately, the primary endpoint (the postoperative 
72-h area under the curve of high-sensitivity cardiac troponin I) 
was not significantly modified: the mean ratio between control and 
treatment groups was 0.92; 95%CI: 0.71–1.21; p = 0.55. However, 
VHA administration modalities during CPB could be a crucial 
point in that study (192). These various factors indicate that the 
notion of synergy in cardioprotection remains a point that needs 
to be further explored.

10 Conclusion

After many years of translational research in the field of 
perioperative cardioprotection with inconsistent results, many 
questions remain. The specificity of the pathophysiology of I/R 
during cardiac surgery with CPB makes the equation complex. 
Notably, the myocardium is subjected to global ischemia on a 
non-beating heart, to which are added the effects of cardioplegia 
as well as those of CPB. This review highlighted different 
perioperative strategies to limit perioperative myocardial injury in 
patients undergoing cardiac surgery with CPB. Myocardial 
preconditioning and postconditioning, despite their limited 
clinical applications, have highlighted the understanding of the 
underlying mechanisms of intraoperative I/R myocardial injury. It 
is now up to the healthcare providers to integrate these different 
elements and maintain a comprehensive approach pre-, intra-, and 
post-CPB to limit intraoperative myocardial injury as effectively as 
possible during cardiac surgery.
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