
Frontiers in Medicine 01 frontiersin.org

Acute kidney injury after 
intracerebral hemorrhage: a mini 
review
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Intracerebral hemorrhage (ICH) stands as a prevalent and pivotal clinical 
condition. The potential cooccurrence of acute kidney injury (AKI) among afflicted 
individuals can profoundly influence their prognosis. In recent times, there has 
been a growing focus among clinical practitioners on researching the relationship 
between ICH and AKI. AKI occurring concurrently with ICH predominantly arises 
from both hemodynamic and non-hemodynamic mechanisms. The latter 
encompasses neurohumoral regulation, inflammatory response, oxidative stress, 
and iatrogenic factors such as contrast agents, dehydrating agents, antibiotics, 
and diuretics. Moreover, advanced age, hypertension, elevated baseline creatinine 
levels, chronic kidney disease, and larger hematomas predispose patients to 
AKI. Additionally, the current utilization of biomarkers and the development of 
predictive models appear promising in identifying patients at risk of AKI after ICH. 
This article aims to underscore the potential of the aforementioned insights to 
inspire novel approaches to early clinical intervention.
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Background

Intracerebral hemorrhage (ICH) represents a subtype of stroke, comprising 15–30% of all 
stroke cases (1, 2). The prognosis for individuals affected by ICH is frequently bleak, with many 
experiencing residual neuropsychiatric symptoms that hinder daily functioning. Studies have 
documented the mortality rate of ICH as elevated as 50% (3). Acute kidney injury (AKI) is a 
frequent clinical complication in individuals with ICH. However, due to variations in AKI 
definitions and differences in study populations, the reported incidence of AKI in ICH patients 
varies considerably. Studies indicated an incidence ranging from approximately 15–40% (4–6), 
with the incidence of AKI necessitating dialysis reaching up to 3.5% (7). Patients experiencing 
AKI following ICH demonstrate elevated mortality rates and a heightened incidence of 
neurological deterioration compared to those without AKI (8, 9). Therefore, comprehending 
the pathophysiological mechanisms, risk factors, and current methodologies for AKI diagnosis 
in individuals with ICH may hold significant importance for patient prognosis.

The pathological mechanisms of AKI in ICH patients

The pathophysiological mechanisms of AKI following ICH are complex, involving both 
hemodynamic and non-hemodynamic factors that interact and promote each other. 
Non-hemodynamic mechanisms include neurohumoral mechanisms, inflammation and 
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oxidative stress, and iatrogenic factors such as the use of contrast 
medium, mannitol, and nephrotoxic drugs. We primarily discuss 
widely accepted pathophysiological mechanisms (Figure  1). 
However, the exact mechanisms remain inconclusive, and further 
experimental research is needed to explore these potential pathways.

Hemodynamic mechanisms

ICH can induce neurogenic stunned myocardium. Intracranial 
pressure increases during brain injury, affecting the right insular cortex/
Amygdala Hypothalamus, leading to autonomic nervous dysfunction 
and significant sympathetic system activation. Cardiomyocytes release 
excessive catecholamines, which open calcium channels and cause 
contraction band necrosis and myocyte dysfunction (10). This results in 
neurogenic stunning of the myocardium, leading to kidney injury 
through two main pathways. Firstly, myocardial cell damage and heart 
pump function failure lead to a reduction in cardiac output and impaired 
blood circulation. This compromised circulation fails to meet the normal 
renal perfusion requirements, resulting in kidney ischemia, hypoxia, and 
subsequent kidney injury. Moreover, to prioritize blood perfusion to vital 
organs like the brain and lungs, the renin-angiotensin-aldosterone system 
is activated. This activation leads to renal artery constriction, exacerbating 
the decrease in renal perfusion and contributing to the development of 
AKI (11). Secondly, neurogenic stunned myocardium after intracerebral 
hemorrhage can lead to congestive heart failure, with or without 
pulmonary edema (12). Blood stasis in the pulmonary capillary network 
increases vena cava pressure, blocks venous return, causes renal vein 
congestion, and decreases the glomerular filtration rate (13).

Non hemodynamic mechanisms

Neurohumoral mechanisms

When patients experience ICH, activation of the hypothalamic–
pituitary axis, sympathetic-adrenal axis, and renin-angiotensin-
aldosterone axis occur. Animal models have further substantiated this 
by demonstrating a significant increase in cortisol, adrenaline, and 
angiotensin II levels in collagenase-induced ICH mice, indicating 
activation of these three systems during ICH (14, 15). Additionally, 
vasoconstrictors are present, contributing to the constriction of 
glomerular arterioles and enhancing renal tubular reabsorption, 
ultimately leading to a decrease in glomerular filtration rate (GFR) (16).

Inflammatory and oxidative stress

In an experiment inducing ICH in rats with collagenase, notable 
increases were observed in the levels of cytokine-induced neutrophil 

chemoattractant-1 (CINC-1) and malondialdehyde (MDA) in urine. 
They also detected the presence of podocalyxin DNA, indicative of 
podocyte detachment (17). CINC-1 serves as a neutrophil chemotactic 
agent, recruiting concentrated granulocytes to trigger an inflammatory 
cascade response in distant organs such as the kidney (18). MDA 
represents the primary stable product following oxidative stress and 
has been extensively implicated in the pathogenesis of kidney injury 
(19). Hence, these findings suggest the involvement of inflammation 
and oxidative stress in disrupting podocyte function, consequently 
contributing to AKI. Additionally, the authors postulated that 
activation of the NF-κB pathway may also contribute to kidney injury 
(17). However, further fundamental research is warranted to elucidate 
the specific mechanism.

Iatrogenic factors

Contrast medium
Etiological identification in ICH patients often necessitates 

computed tomography angiography (CTA) examination for 
diagnostic assistance. However, the use of contrast medium poses a 
significant concern for AKI in such patients. The renal damage 
caused by contrast medium has been internationally recognized (20), 
particularly concerning high-osmolarity contrast medium. Close 
monitoring of renal function and urine output is imperative. The 
American Radiological Society recommended administering 
physiological saline hydration therapy before and after contrast 
medium administration to mitigate the risk of AKI (21). Nonetheless, 
a study reported that the incidence of AKI in ICH patients after CTA 
was merely 25%, and correlation analysis indicated no association 
between AKI and CTA performance (p = 0.187) (22). Another study 
also found no significant relationship between contrast medium use 
in CTA and AKI [Odds Ratio (OR) = 1.16, 95%Confidence interval 
(CI): 0.72–1.95, p  = 0.5548] (23). This may be  attributed to the 
widespread use of low-or iso-osmolar contrast medium in clinical 
practice, as well as the relatively small doses administered during 
CTA. Nevertheless, clinical vigilance regarding the frequency and 
dosage of contrast medium administration remains paramount, 
especially for patients with preexisting chronic kidney disease (CKD).

Mannitol and hypertonic solution
Patients with ICH frequently present with elevated intracranial 

pressure. Currently, common drugs used in clinical practice include 
mannitol and hypertonic sodium solutions. A multicenter study 
involving 9,649 cases of ICH demonstrated that mannitol significantly 
contributes to AKI (OR = 1.986, 95%CI: 1.426–2.813, p < 0.001) (24). 
Mannitol initially induces renal vasoconstriction, leading to inadequate 
renal perfusion. Subsequently, its robust diuretic effect may precipitate 
volume depletion, alter blood flow distribution, and culminate in renal 
medullary ischemia and hypoxia (25). Moreover, it can cause swelling 
of renal tubular cells, resulting in osmotic nephropathy (26). 
Additionally, hypernatremia and hyperchloremia induced by 
hypertonic solutions may also correlate with AKI (27). A study on the 
rapid infusion of a high-sodium solution in dogs demonstrated that 
despite the decrease in renin secretion, concurrent contraction of renal 
artery and a reduction in GFR were observed. Authors proposed that 
this vasoconstriction might be independent of renin and constitutes a 
“tubular feedback” mechanism of kidneys toward blood sodium (28). 

Abbreviations: ICH, Intracerebral hemorrhage; AKI, Acute kidney injury; GFR, 

Glomerular filtration rate; CINC-1, Cytokine-induced neutrophil chemoattractant-1; 

MDA, Malondialdehyde; CTA, Computed tomography angiography; OR, Odds 

ratio; CI, Confidence interval; CKD, Chronic kidney disease; CysC, Cystatin C; 

β2-MG, β2-microglobulin; PCT, Procalcitonin; LASSO, Least absolute shrinkage 

and selection operator; AUC, Area under curve.
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Consequently, hypernatremia from hypertonic solutions could induce 
kidney damage (29). Hyperchloremia is also a significant cause of AKI 
in ICH patients. Yunos et al. demonstrated that restricting treatment 
with chlorine-containing drugs significantly reduced creatinine levels 
compared to the control group (14.8 μmol/L vs. 22.6 μmol/L, p = 0.003). 
Notably, it also decreased the incidence of AKI (8.4% vs. 14%, 
p < 0.001) and dialysis rates (10% vs. 6.3%, p = 0.005) (30). Studies have 
revealed that a variety of vasoactive substances can activate chloride 
ion channels in vascular smooth muscle cells through calcium ions, 
inducing chloride ion efflux, cell membrane depolarization, and 
subsequent calcium ion influx, ultimately leading to vasoconstriction 
(31). Hence, chloride ions can induce constriction of the afferent 

arterioles, resulting in diminished renal perfusion and a decline in 
GFR. Additionally, chloride ions can elevate thromboxane synthesis, 
further constricting renal blood vessels (32). Furthermore, studies have 
indicated that hyperchloremia is a significant factor contributing to the 
delayed resolution of cerebral edema (OR = 5.24, 95%CI: 1.64–16.76) 
(33). Accordingly, certain scholars have suggested that in cases of ICH, 
proactive management of blood sodium and chloride levels may help 
mitigate the incidence of AKI and mortality (5, 34).

Nephrotoxic drugs
Some nephrotoxic drugs commonly used in clinical practice can 

also induce AKI in patients with ICH. Among these, antibiotics such 

FIGURE 1

The pathological mechanism of acute kidney injury after intracerebral hemorrhage. It is mainly divided into hemodynamic mechanism and non-
hemodynamic mechanism. The latter includes neurohumoral mechanism, inflammation and oxidative stress, as well as iatrogenic factors.
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as vancomycin and diuretics are frequently implicated. She et  al. 
utilized the random forest algorithm and found that vancomycin 
emerged as a significant predictive factor for AKI in patients with ICH 
(35). Additionally, another study noted that diuretic escalated the risk 
of AKI in individuals with acute stroke (OR = 8.5, 95%CI: 3.46–20.86, 
p < 0.001) (26). This phenomenon could be attributed to the capacity 
of diuretics to alter renal microcirculation, potentially leading to renal 
ischemia, hypoxia, and inflammatory reactions, ultimately resulting 
in AKI. Consequently, it is imperative to judiciously select nephrotoxic 
drugs in clinical settings to mitigate adverse renal outcomes in ICH 
patients. Figure 1 shows the relevant mechanisms of acute kidney 
injury after intracerebral hemorrhage.

Risk factors for AKI in ICH patients

In patients with ICH, the risk of AKI varies. It is essential to 
understand the clinical characteristics of patients susceptible to AKI, 
including specific risk factors. This understanding can assist clinical 
practitioners in identifying high-risk populations for AKI among 
patients with ICH.

Age

Advanced age is often regarded as one of the risk factors for AKI in 
patients with ICH. Zhang et al.’s study on ICH patients revealed that age 
serves as an independent predictor of AKI, irrespective of whether the 
patient has CKD or not (p = 0.002 and p = 0.008) (36). Another 
retrospective study similarly discovered that ICH patients aged over 
70 years are at higher risk of AKI (OR = 14.652, 95%CI: 1.397–153.634, 
p = 0.003) (37). This susceptibility in older patients may stem from 
insufficient residual renal units, rendering them more vulnerable to AKI 
triggers such as ischemia, hypoxia, inflammatory stimuli, and oxidative 
stress. Given the advanced age of patients with ICH, some researchers 
have posited that the association between age and AKI remains 
uncertain (38). Hence, large-scale clinical studies and fundamental 
experiments are warranted to provide further confirmation.

Hypertension

Hypertension, as a significant risk factor for AKI in patients with 
ICH, has been extensively documented. A retrospective study found 
that the incidence of AKI increased with the level of blood pressure at 
admission (mild, moderate, and severe: 28.2, 37.1, 56%, p < 0.001), 
with severe hypertension closely associated with AKI (OR = 2.6, 
95%CI: 1.5–4.3, p < 0.001) (39). Furthermore, the magnitude of blood 
pressure reduction is also linked to AKI. Tanaka’s study demonstrated 
that the risk of AKI was significantly higher in the group with a high 
to low systolic blood pressure reduction compared to the group with 
a medium to low reduction (OR = 3.50, 95%CI: 1.83–6.69, p < 0.01) 
(40). Another study also observed a correlation between systolic blood 
pressure reduction and AKI (9). On one hand, hypertension can lead 
to kidney damage due to endothelial dysfunction in arteries (41). On 
the other hand, hypertensive patients have a high demand for renal 
perfusion pressure, which can result in renal ischemia and hypoxia 
when there is a rapid and significant reduction in blood pressure (42).

Elevated baseline creatinine and CKD

Qureshi’s research indicated that patients with ICH who had a 
baseline blood creatinine level ≥ 110 μmol/L faced an elevated risk 
of AKI and renal adverse events, with OR of 2.4 (95%CI, 1.2–4.5) 
and 3.1 (95%CI, 1.2–8.1), respectively (4). A study involving 1,366 
ICH patients similarly highlighted creatinine as a characteristic of 
AKI (35). However, some studies have found no correlation 
between renal function and AKI, and the presence of CKD 
alongside AKI did not correlate with long-term mortality 
(OR = 3.13, 95%CI: 0.65–15.01, p = 0.154) (43). The author posited 
that this may be due to the resistance of patients with CKD to 
kidney damage. However, in reality, the mortality rate in the later 
stages of CKD significantly increased (41). This underscores the 
importance for clinicians to remain vigilant in monitoring the 
renal function of ICH patients. Indeed, certain risk factors for AKI 
in patients with ICH are commonly observed in ischemic stroke 
as well, including significant blood pressure fluctuations and 
chronic kidney disease (44, 45). This indicates that the treatment 
of ICH should avoid aggravating kidney injury by causing 
cerebral ischemia.

Large intracranial hematoma

Burgess et al.’s study revealed that compared to non-AKI patients, 
those with AKI presented with a larger hematoma volume upon 
admission (15.5 ± 17.8 vs. 12.0 ± 14.0, p = 0.045). Patients with larger 
hematoma volumes may experience more pronounced activation of 
the sympathetic nervous system, potentially leading to kidney damage 
through the neurohumoral regulatory mechanisms mentioned earlier 
(43). Furthermore, there are reports indicating abnormal coagulation 
function in ICH patients, which could contribute to hematoma 
enlargement. Clinicians should therefore closely monitor the patient’s 
coagulation status and judiciously select medications to mitigate the 
risk of kidney injury (46).

Early prediction of AKI in ICH patients

Biomarkers

Cystatin C
Cystatin C (CysC) in renal injury has been widely 

acknowledged (47). Jiang’s study demonstrated that the level of 
CysC could more accurately predict the occurrence of AKI in 
patients with acute stroke [Area under the Receiver Operating 
Characteristic Curve (AUC) = 0.772, 95%CI: 0.726–0.813], 
surpassing traditional creatinine (AUC = 0.660, 95%CI: 0.610–
0.708) (38). Additionally, CysC level were associated with the 
mortality prognosis of ICH patients (48). Hence, CysC may serve 
as a more comprehensive biomarker.

β2-microglobulin
β2-microglobulin (β2-MG) is a peptide unaffected by gender or 

age that serves as a reflection of renal function. A prospective study 
involving 403 ICH patients revealed that β2-MG exhibited strong 
predictive efficacy for AKI, with an AUC of 0.712 (95%CI: 
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0.652–0.772). Additionally, ICH patients with β2-MG levels 
exceeding 2123.50 mg/L faced a significantly elevated risk of 
developing AKI (OR = 2.606; 95%CI: 1.315–5.166), which was also 
associated with in-hospital and 1-year mortality (49). These 
findings suggest the potential for β2-MG to emerge as a novel 
predictive indicator.

Procalcitonin
Procalcitonin (PCT) is a widely used indicator in clinical practice 

to assess infection and inflammation. However, a recent study 
suggested that PCT could also serve as a risk factor for AKI in 
non-sepsis patients (OR = 4.430, 95%CI: 1.464–13.399) (50). In studies 
related to ICH, a PCT value exceeding 0.5 μg/L upon admission was 
identified as a significant predictor for dialysis in ICH patients 
(OR = 7.7, 95%CI: 1.4–43.3, p = 0.02) (51), and is independently 
associated with poor prognosis and 3-month mortality (52). This 
could be  attributed to the activation of immune cells by 
pro-inflammatory products generated during ICH and kidney injury, 
leading to an exacerbation of the inflammatory response and 
subsequent elevation of PCT levels in the patient’s blood (53). Given 
the widespread use of PCT in clinical practice, understanding its 
predictive role for AKI in ICH patients is crucial for optimizing 
medical resource allocation.

Prediction model

Presently, research on predictive models for AKI in ICH patients 
is highly significant. Tian et al. utilized the least absolute shrinkage 
and selection operator (LASSO) in conjunction with multivariate 
logistic regression methods to construct a model comprising 9 clinical 
and laboratory examination features. Through internal and three 
external validations, they demonstrated the model’s strong predictive 
performance, with AUCs of 0.816, 0.776, 0.780, and 0.821, respectively 
(24). Furthermore, Lin et al.’s acute stroke model exhibited notable 
predictive efficacy, reaching up to 0.839 (26). In addition, She et al. 
used six machine learning algorithms—extreme gradient boosting, 
logistic, light gradient boosting machine, random forest, adaptive 
boosting, and support vector machine—to develop the model. They 
found that the random forest algorithm performed the best in both 
the training and validation sets, achieving an AUC of 1.000 in the 
training set and 0.698  in the validation set (35). However, these 
models are constrained by relatively small sample sizes, limiting their 
credibility. Understanding the timing of AKI occurrence in patients 
is crucial for facilitating early clinical intervention. Furthermore, the 
practicality of the model for clinical application should be considered, 
including the development of simple scoring tables or prediction web 
platforms. Therefore, further research is imperative to refine and 
enhance these models.

Conclusion

Patients with ICH are critically ill, and AKI represents a 
significant clinical complication for them. Those who develop AKI 
often face a poor long-term prognosis. Currently, there is no 
specific treatment for AKI following ICH. Therefore, understanding 
the mechanisms, risk factors, and early diagnosis of this type of 
AKI is crucial. Further basic and clinical research is needed to 
improve our understanding of the disease. In the future, we aim to 
develop better models to identify high-risk patients and create new 
interventions to improve patient prognosis.
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