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We introduce a novel AI-driven approach to unsupervised fundus image

registration utilizing our Generalized Polynomial Transformation (GPT) model.

Through the GPT, we establish a foundational model capable of simulating

diverse polynomial transformations, trained on a large synthetic dataset to

encompass a broad range of transformation scenarios. Additionally, our

hybrid pre-processing strategy aims to streamline the learning process by

o�ering model-focused input. We evaluated our model’s e�ectiveness on

the publicly available AREDS dataset by using standard metrics such as

image-level and parameter-level analyzes. Linear regression analysis reveals

an average Pearson correlation coe�cient (R) of 0.9876 across all quadratic

transformation parameters. Image-level evaluation, comprising qualitative

and quantitative analyzes, showcases significant improvements in Structural

Similarity Index (SSIM) andNormalizedCross Correlation (NCC) scores, indicating

its robust performance. Notably, precise matching of the optic disc and

vessel locations with minimal global distortion are observed. These findings

underscore the potential of GPT-based approaches in image registration

methodologies, promising advancements in diagnosis, treatment planning, and

disease monitoring in ophthalmology and beyond.

KEYWORDS

image registration, unsupervised learning, polynomial transformation, foundational

model, color fundus photography

1 Introduction

Image registration is an essential process in vision applications where multiple images

obtained from different viewpoints or spaces, are aligned. In medical imaging, this

technique holds significant importance, enabling the comparison and analysis of images

to gain insights into structural changes, disease progression, and treatment efficacy. The

primary objective of image registration is to align two images, denoted as a fixed image

(target) F and a moving image (source) M, by establishing spatial correspondence within

a shared coordinate system. In a simpler term, assuming x and y represent the column

and row indices, image registration involves mapping a position (x, y) from M to a new

warped/aligned image W at position (u(x, y), v(x, y)), where u and v denote different

types of transformation functions. Image registration encompasses linear and non-linear

transformations. Linear transformations involve global geometric adjustment of the
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moving image, while non-linear transformations allow for

local or regional deformations to the moving image. Linear

transformations often serve as the prerequisite step for non-

linear registration techniques by addressing global distortions from

differing viewpoints, making them an essential component in the

image registration pipeline. The most basic linear transformation

type for image registration is translation, wherein u and v can be

expressed in Equation (1):

u = x+ tx and v = y+ ty (1)

Here, tx and ty represent the translation lengths along the respective

axes. Affine transformation is a common linear technique

employed in image registration to address distortions arising

from non-ideal camera angles. Typically, an affine transformation

encompasses four fundamental operations: rotation, translation,

scaling, and shearing. The expressions for u and v in the context

of affine transformation are given (see Equation 2):

u = a00x+ a01y+ tx and v = a10x+ a11y+ ty (2)

where, a00, a01, a10, a11, tx and ty are the transformation

parameters. The planetary of surfaces, parallelism and angles

between lines are all preserved in affine transformation.

Furthermore, projective transformation is a type of geometric

transformation that maps points in one plane to another plane

using a projective matrix. It involves transforming points in a two-

dimensional space, such as an image, to another two-dimensional

space, allowing for changes in perspective, rotation, skewing, and

other distortions. The expressions for u and v in the context of

projective transformation is given in Equation 3:

u =
b00x+ b01y+ b02

b03x+ b04y+ c
, v =

b10x+ b11y+ b12

b13x+ b14y+ c
(3)

where b00-b14 are the projective transformation parameters; c

represents the coefficient associated with the z-coordinate in

homogeneous coordinates. It is commonly referred to as the

projective invariant and is used to represent the translation

component of the transformation. Projective transformations

are frequently employed in retinal image registration and

geometric correction (1, 2). Retinal image registration is crucial

in the diagnosis of eye diseases as it enables the accurate

assessment of disease-related features and progression. Fundus

imaging, including color fundus photography, optical coherence

tomography (OCT), fluorescein angiography and other advanced

imaging modalities, provides essential visual information for

the diagnosis and management of retinal diseases and systemic

diseases (3–5). The registration of fundus images allows for

the alignment and comparison of images over time, facilitating

the identification of changes in related features such as drusen,

geographic atrophy (GA), and choroidal neovascularization (CNV)

(6, 7). Fundus image registration is particularly important in the

context of multi-modal imaging, where the integration of different

imaging modalities such as OCT and fluorescein angiography

enhances the comprehensive assessment (4, 5). By registering

fundus images with other imaging modalities, clinicians can

obtain a more comprehensive understanding of the structural and

functional changes, leading to improved diagnostic accuracy and

prognostic evaluation (8, 9). Moreover, the application of advanced

technologies such as deep learning has shown promise in leveraging

fundus image registration for the differential diagnosis, as well as

for the automated segmentation of related lesions such as GA (10–

12). These technological advancements enable the precise analysis

of fundus images, contributing to the development of prognostic

biomarkers and the prediction of disease progression (13). Deep

learning-based image registration has emerged as a promising

approach, offering solutions for linear transformations using

convolutional neural networks (CNNs). The Spatial Transformer

Network (STN) was among the pioneering CNN-based methods,

focusing on learning two-dimensional affine transformations for

distorted MNIST digit classification through supervised learning.

Miao et al. (14) introduced a supervised CNN approach to regress

three-dimensional transformation matrices for affine registration

of X-ray images, utilizing synthesized transformation parameters

as ground truth. However, the reliance on labeled ground truth for

supervised methods can be limiting, prompting the development

of unsupervised models that do not require transformation

ground truth. De Vos et al. (15) proposed an unsupervised

Deep Learning Image Registration (DLIR) framework, enabling

joint affine and nonlinear registration without the need for

labeled ground truth. The affine transformation framework within

DLIR employs a multi-stage approach tailored for multi-temporal

image registration. Additionally, Chen et al. (16) proposed

an unsupervised CNN approach focused on explicitly learning

specific geometric transformation parameters such as translations,

rotations, scaling, and shearing. Unlike traditional methods that

regress affine transformation matrices, this approach targets

individual transformation parameters, offering a tailored solution

for affine registration tasks in multi-modality image registration

scenarios.

Current limitations in deep learning-based models for image

registration are: (1) While much attention has been devoted to

affine transformation for linear registration in deep learning-

based models, real-world scenarios often involve more complex

distortions that may not be adequately addressed by affine

transformation alone. Powerful and complex linear registration

techniques, such as projective transformation or polynomial

transformation, offer additional flexibility in capturing the

intricacies of image distortions. Affine transformations, while

effective for linear registration tasks, have limitations in capturing

non-linear distortions or irregular deformations present in many

medical imaging applications. By incorporating projective or

polynomial transformations, which allow for non-linear and

higher-order transformations, these techniques can better model

the intricate variations and deformations encountered in medical

images. This enhanced flexibility enables more accurate alignment

and registration of images, leading to improved diagnostic and

analytical outcomes. However, the exploration of these techniques

in the context of deep learning-based image registration remains

limited. (2) Lack of generalized models for image transformation:

One significant limitation in the realm of deep learning-based

image registration lies in the absence of generalized models

capable of learning image transformations universally. Many

existing models are meticulously designed for specific images and

modalities, hindering their adaptability to a broader range of

scenarios. This limitation restricts the scalability of these models,
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making them less effective in scenarios where a diverse set of

images or modalities is encountered. Consequently, the field faces

challenges in achieving a more comprehensive and generalized

approach to image transformation learning and expansion.

2 Methods

Addressing the constraints observed in existing deep learning-

based fundus image registration models, we proposed a generalized

model that introduces an unsupervised approach tailored

specifically for quadratic transformations, the second degree

of polynomial transformation. Polynomial transformation is a

process in which the input features are transformed by using a

polynomial function of a certain degree. The goal of polynomial

transformation is to capture more complex relationships between

the features and the target variable than a simple linear model

would. It can be useful when the relationship between variables is

curvilinear rather than linear. However, higher-degree polynomials

can also lead to over-fitting, so the degree of the polynomial

should be chosen carefully based on the characteristics of the data.

Mathematically, the u and v for polynomial transformation can be

defined in Equation 4:

u =

p
∑

d=0

p−i
∑

d=0

adx
dyd and v =

p
∑

d=0

p−i
∑

d=0

bdx
dyd (4)

where p is the degree of polynomial and ad, bd, are the

transformation parameters. These transformations include linear

(p = 1), quadratic (p = 2), cubic (p = 3), bi-quadratic (p = 4)

and quintic (p = 5) ones as special cases. For this work, quadratic

(p = 2) transformation is used and can be expressed as:

[

u

v

]

= Q

[

x2 y2 xy x y 1
]T

=

[

q00 q01 q02 q03 q04 q05
q10 q11 q12 q13 q14 q15

]

[

x2 y2 xy x y 1
]T

(5)

where Q is the quadratic transformation matrix. For image

registration tasks, quadratic transformation can be formulated as

an energy minimization problem (see Equation 6):

Q∗ = argmax
Q

{

Q | S(F,QM))
}

(6)

where S is the metrics to measure the similarity between a fixed

image F and the warped image QM. Our model aims to optimize

each individual transformation parameter q00 - q15, instead of

directly optimizing the transformation matrix Q. In the following

sections, we providemore details of our framework, highlighting its

two distinct features: the Generalized Polynomial Transformation

(GPT) model and an unsupervised GPT-based transformation

model specifically tailored for fundus image registration. The

overview of our proposed model is represented in Figure 1.

Firstly, we propose the GPT model, serving as a foundational

model to emulate diverse polynomial transformations. To

construct a synthetic dataset to acquire knowledge of the quadratic

transformation, we randomly selected each q parameter from

the raw Q and then generated a synthetically wrapped image by

the new Qs matrix according to Equation (5). More specifically,

each q ∈ Qs is derived from the distribution of the corresponding

q ∈ Q. For example, q15 ranges from 651.0 to –278.0 across the

non-hold out testing set, so the new q15 is assigned a random value

within this range. Given unlimited combination, we developed an

"on-the-fly" synthetic dataset generation approach during training

steps, continuously generating synthetic data until the model

achieved full convergence. To achieve full convergence, the "on-

the-fly" synthetic data generator continuously produces random

parameters for each epoch. This process involves generating a

diverse set of synthetic image pairs by applying various quadratic

transformations. The synthetic data generator operates iteratively,

introducing new transformation parameters in each epoch to

ensure that the model is exposed to a wide range of transformation

scenarios. The training continues until the evaluation accuracy

on the validation dataset stabilizes, indicating that the model

has effectively learned the transformation characteristics and can

generalize unseen data. This dynamic approach helps prevent

over-fitting and ensures robust performance by leveraging an ever-

expanding dataset that reflects the complex nature of real-world

transformations. This step offers the advantage of automatically

generating ground truth data without the need for manual

annotations. It enables GPT to investigate a broad spectrum

of polynomial transformation scenarios, encompassing nearly

all possible transformation combinations. This strategy allows

its convolutional neurons to be activated appropriately when

capturing relevant features for geometric transformation. Without

employing the "on-the-fly" synthetic dataset generation approach,

the convolutional neurons in the model might be influenced by

potential biases arising from a limited number of training samples.

This could lead to sub-optimal learning outcomes and reduced

model generalization ability, as the network may not adequately

capture the full variability and complexity of the transformation

space in Q. By continuously generating synthetic data on the

fly, the model receives a diverse and extensive training dataset,

mitigating the risk of over-fitting and enhancing its ability to learn

robust representations of quadratic transformations.

In this study, the GPT model is trained using binary masks

extracted from fundus images, where non-black areas are encoded

as 1, and black areas are assigned a value of 0. This strategic

approach enables the model to focus on capturing the global

features of transformation between images while filtering out

irrelevant local features such as vessels. By prioritizing the

essential structural elements of the images, the GPT model can

effectively learn and reproduce accurate geometric transformations,

leading to improved image registration performance. A well-

tuned GPT model can be extended as a generalized model across

various imaging modalities where polynomial transformations are

required, providing a versatile solution for image registration tasks.

The development of our GPT model is based on the

EfficientNetV2 architecture (17), which is chosen for its well-

established balance between model complexity and computational

efficiency, rendering it ideal for training on a large synthetic dataset.

The global max pooling layer was introduced in GPT because

it can enhance the GPT model’s ability to focus on essential

features contributing to overall image transformation. The output

layer is a linear activation function, facilitating the generation of
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FIGURE 1

Overview of our proposed model for unsupervised polynomial image registration.

regressed parameters for the randomly polynomial-transformed

image. To guide the training process effectively, we propose a

hybrid loss function in Equation 7, denoted as Lhybrid, which

combines Mean Squared Logarithmic Error (MSLE) (Equation 8)

and Cosine Similarity (CoS) (Equation 9). In which, ω represents

the weighting factor for balancing between two terms. Specifically,

in our implementation, we set ω to 0.5 to ensure equal contribution

from both terms.

Lhybird(Q,Q′) = ωMSLE+ (1− ω)(1− CoS) (7)

where,

CoS(Q,Q′) =
Q ·Q′

‖Q‖ × ‖Q′‖
=

∑

(Q×Q′)
√

∑

Q2 ×
√

∑

Q′2
(8)

MSLE(Q,Q′) =
1

N

N
∑

i=0

[ log (Qi + 1)− log (Q′
i + 1)]2 (9)

Given the diverse ranges of parameters (N = 16) within Q,

MSLE serves as a robust loss measure. By utilizing a logarithmic

scale, MSLE effectively addresses large outliers, treating them

comparably to smaller deviations. This feature is particularly

advantageous for ensuring model balance, especially when striving

for uniform percentage errors across Q. To address negative values

of parameters within Q, CoS evaluates the directional consistency

between vectors of Q and Q′, offering significant utility when

handling transformations that incorporate negative values. Our

Lhybrid loss functions fortify the GPT model, empowering it to

adeptly capture and mimic diverse polynomial transformations

with resilience and efficacy.

Note that the pre-trained GPTmodel cannot be directly applied

to real fundus image pairs because it was tuned using binary masks

and is not trained with any local features such as vessels and the

optic disc. In the methodology of our model for unsupervised

fundus image registration, the pre-trained GPT model is severed

as the foundation, namely pre-trained weights, leveraging its

capabilities in capturing diverse polynomial transformations to

train a new tailored model for fundus image registration. In which,

we proposed a new Polynomial Transformation Layer (PTL) to

warpM by the regressed transformationsQ′. In PTL, interpolations

of Q′M can be formulated in Equation (10) according to Equation

(5):

u = q00x
2 + q01y

2 + q02xy+ q03x+ q04y+ q05,

v = q10x
2 + q11y

2 + q12xy+ q13x+ q14y+ q15 (10)

The objective is tomaximize the similarity between the transformed

image Q′M and the target image F, facilitating unsupervised image

registration as the model encounters real transformed images. The

loss functionLunsupervised (see Equation 11) is based on Normalized

Cross Correlation (NCC) by measuring the correlation between

corresponding pixel values.

Lunsupervised(F,Q
′M)

= 1−

∑

x,y(F(x,y)−F̄)(Q′M(x,y)− ¯Q′M)
√

∑

x,y(F(x,y)−F̄)2
∑

x,y(Q
′M(x,y)−M̄)2

(11)

3 Experiments

In this section, we detail experiments conducted to validate

our GPT-based model for unsupervised fundus image registration.

Through a series of experiments and analyzes, we aim to assess

the model’s ability to accurately align fundus images without the

need for ground truth transformation parameters. By detailing
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the experimental methodology, dataset characteristics, evaluation

metrics, and results, we provide insights into the robustness and

reliability of our proposed approach in the context of ophthalmic

imaging and clinical practice.

3.1 Dataset

Our methodology is applied to a longitudinal dataset

comprising color fundus images from the AREDS study (18),

captured using the Zeiss FF-series 30-degree fundus camera

at baseline, 2-year, and subsequently annually (19). Extracting

longitudinal color fundus images from 4,903 eyes (involving

2,702 participants) sourced from the AREDS study, each patient

underwent a minimum of three follow-up visits after the baseline

examination. Categorizing the fundus images into non-advanced

(early/intermediate stage) and advanced (late stage) AMD, with

advanced AMD characterized by the presence of drusen or

geographic atrophy, the dataset is publicly available upon request

from the database of Genotypes and Phenotypes (dbGaP; accession:

phs000001.v3.p1). All analyzes adhere to the approved research use

statement.

3.2 Pre-processing

In our approach to unsupervised fundus image registration, we

recognize the significance of targeted pre-processing to enhance

the model’s focus on crucial features. We introduced a hybrid

pre-processing approach incorporating both Contrast Limited

Adaptive Histogram Equalization (CLAHE) (20) and bilateral filter

(21).

CLAHE is a preprocessing technique particularly beneficial for

enhancing contrast and improving image quality in fundus images.

By locally adapting the contrast enhancement process, CLAHE

ensures that the contrast improvements are tailored to the specific

characteristics of different regions within the image. This helps in

bringing out subtle details and structures in fundus images, such

as blood vessels and pathological features. Additionally, CLAHE

helps in reducing the impact of uneven illumination and varying

brightness levels often present in fundus images, thereby aiding in

standardizing the image appearance and facilitating more reliable

analysis algorithms. However, as observed in Figure 2C, CLAHE

may inadvertently over-enhance unnecessary features in fundus

images. Consequently, to address this issue and further denoize the

images, a bilateral filter was introduced as a subsequent step in the

preprocessing pipeline.

A bilateral filter is employed to systematically eliminate

irrelevant and non-diagnostic elements from fundus images. The

bilateral filter acts as a selective tool, smoothing the images while

preserving essential features such as the optic disc and blood

vessels. By doing so, we effectively reduce noise and unwanted

details, creating a cleaner input for the subsequent learning stages.

This refined dataset allows our model to concentrate on the

pertinent anatomical structures, namely the optic disc and vessels,

optimizing its ability to learn and predict image transformations

accurately. The impact of the bilateral filter can be observed in

Figures 2B, D, where a bilateral filter is applied to raw images

(Figure 2A) and post-CLAHE images (Figure 2C), respectively.

With our hybrid pre-processing strategy, the objective is to

optimize the learning process by offering the model a concentrated

and pertinent input (see Figure 2D). This approach enhances the

model’s interpretability and fosters a more efficient understanding

of fundus images.

3.3 Training

The dataset was partitioned at the patient level, with 60%

allocated for training, 20% for validation, and 20% for hold-out

testing purposes. Training employed the Adam optimizer, a widely

embraced algorithm in deep learning, with an initial learning rate of

0.001, facilitating effective model convergence. Input images were

resized to 256x256 pixels, and for normalization, we adopted a scale

spanning from –1 to 1 instead of the conventional 0–1 range. This

deliberate choice prevents the suppression of convolutional neuron

activation in black areas, which often contain relevant features for

geometric transformation. To enhance model generalization, we

applied data augmentation techniques, including flipping, rotation,

random brightness, and random contrast.

Our GPT-based model, constructed upon the pre-trained GPT

architecture, served as the foundational framework for image

registration. Fine-tuning the training set showcased the model’s

adaptability in capturing diverse Polynomial Transformations,

proving advantageous for aligning fundus images. Transparency in

our methodology is maintained by providing access to the code,

models, and data employed in this experiment, implemented using

TensorFlow (version 2.10). During the training phase, where the

regression work involves various parameter ranges, we took into

account the potential inefficiency of the last linear layer. To address

this, our model regressed on normalized values within the [0, 1]

range. This strategic approach facilitated a more effective learning

process. Once the model converged, we implemented a scaling

process to transform each parameter back to its actual range. This

scaling step is particularly crucial for subsequent interpolation

work, ensuring that the model’s learned parameters align accurately

with the original data characteristics. By incorporating this

normalization and scaling strategy, our methodology enhances the

model’s adaptability to diverse parameter ranges and contributes to

the precision of the final predictions.

3.4 Evaluation metrics

To assess the effectiveness of our model, we employed

standard evaluation metrics for image registration at both the

image level and parameter level. At the parameter-level, Bland-

Altman plots and Pearson correlation coefficients were utilized

to evaluate the agreement between predicted and ground truth

parameters. Bland-Altman plots visually display the agreement

between two quantitative measurements by plotting the difference

between the pairedmeasurements against their mean. Additionally,

correlation coefficients provide a numerical measure of the

strength and direction of the linear relationship between two
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FIGURE 2

Our hybrid pre-processing strategy incorporates both Contrast Limited Adaptive Histogram Equalization (CLAHE) and bilateral filter. From left to

right, raw images (A), post-bilateral filtering (B), post-CLAHE (C) and images after hybrid pre-processing for a pair of fundus images are displayed,

respectively.

variables, indicating the degree of agreement between predicted and

ground truth parameters. Meanwhile, at the image level, Structural

Similarity Index (SSIM) and Normalized Cross Correlation

(NCC) were employed. These metrics provided a comprehensive

assessment of the overall quality of image alignment by measuring

both structural and pixel-wise similarity between the predicted and

target images (see Equations 11 and 12).

SSIM(It , Iw) =
(2µItµIw + C1)(2σItσIw + C2)

(µ2
It
+ µ

2
Iw
+ C1)((σ

2
It
+ σ

2
Iw
+ C2)

(12)

4 Results

In the results section, we extensively assess the performance of

our GPT-based model for unsupervised fundus image registration

using the AREDS dataset.

Firstly, We normalized the predicted and target transformation

parameters to a range of 0 to 1 to ensure consistency and

comparability between the values. This normalization allows for

a standardized scale across all parameters, facilitating easier

interpretation and analysis of the data. Additionally, by scaling

the parameters to a common range, we mitigate the effects of

varying magnitudes and ensure that each parameter contributes

proportionally to the overall transformation. Upon comparison of

their distributions (see Figure 3), it allows us to visually assess the

similarity between the predicted and target parameter distributions,

providing insights into the model’s performance in capturing the

transformation characteristics accurately.

Then, we analyzed the non-zero parameters individually,

examining their respective distributions and correlations with

the target parameters in terms of the correlation coefficient R.

For each non-zero parameter in Q, the correlation coefficient R

ranges from 0.895 to 0.990, with associated p-values <0.00001,

indicating a strong linear relationship between the predicted and

target values. These correlation coefficients signify the degree of

agreement between the predicted and target parameters. Figure 4

illustrates the corresponding Bland-Altman plots, showcasing the

mean difference and upper/lower limits, providing visual insights

into the agreement and potential biases between the predicted and

target parameters.

While individual parameters show promising results, the

overall mean performance of GPT lacked evaluation. To address

this, linear regression analysis was conducted across all quadratic

transformation parameters, yielding an average correlation

coefficient R of 0.9876. Figure 5 illustrates the regression results

and corresponding Bland-Altman plot. This high level of

correlation underscores the GPT model’s ability to accurately

predict transformation parameters, demonstrating its efficacy

in aligning fundus images without the need for ground truth

transformation data.

At the image level evaluation, we conducted both qualitative

and quantitative analyzes to comprehensively assess the

performance of our model. For the quantitative analysis, we

initially evaluated the SSIM and NCC scores before alignment

to establish a baseline measurement of similarity between

the fixed and moving images prior to any transformations.

This baseline provides insights into the initial degree of

correspondence before considering the contributions of our

models. The SSIM and NCC scores before alignment are 0.6096

and 0.524, respectively. According to Equation (9), the warped

images were generated using the transformation parameters

(model outputs) based on the corresponding moving images.
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FIGURE 3

Comparison of normalized distributions of each quadratic transformation parameter.

FIGURE 4

Bland-Altman plots illustrating the distribution of each non-zero quadratic transformation parameter, accompanied by correlation coe�cient R,

p-value, mean di�erence, and upper/lower limits.

The SSIM and NCC scores after alignment by our model

are 0.8075 and 0.6765, respectively, demonstrating a huge

improvement over the baseline. Additionally, the contribution

of the pre-processing steps is significant. When these steps are

omitted, the SSIM and NCC scores decrease to 0.7649 and

0.6305, respectively.

For qualitative analysis, overlapping and heat maps are

employed to visualize differences between images. Figure 6
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FIGURE 5

Comparison of the overall mean performance of the generalized polynomial transformation (GPT) model. The (left figure) displays the results of

linear regression analysis, while the (right figure) presents the Bland-Altman plot.

FIGURE 6

Qualitative analysis with overlapping and heat maps reveals four di�erent visits of one eye.

illustrates the fixed images, moving images, and our warped

images in the first three columns across four different visits of

one eye. Subsequent columns display the overlap between the

fixed images and the moving/warped images, followed by heat

maps showcasing differences. Significant differences are observed

between fixed images and moving images in the overlapping and

heat maps, attributed to variations in image acquisition such as

differing camera angles or positions. However, comparing fixed

images with our warped images reveals a reduction in differences.

Particularly, global distortion is minimized, and the locations of
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the optic disc and vessels are matched precisely. To the best of our

knowledge, our work represents the first unsupervised registration

method specifically targeting polynomial transformations. This

novel approach sets it apart from the majority of existing models,

which predominantly focus on nonlinear or affine transformations.

The unique nature of our method introduces challenges in direct

comparisons with other models, as their underlying objectives

differ significantly.

A limitation of our work is that image intensity-based

metrics like SSIM and NCC may not be sufficient for evaluating

performance. Variations in illumination or field of view between

image pairs can lead to an underestimation of our model’s

capabilities. It would be beneficial to use ground truth segmentation

of the optic disc or vessels for evaluation, as this approach

can eliminate irrelevant features from images taken from

different viewpoints, providing a more accurate assessment of

performance. Moreover, exploring alternative evaluation metrics

without segmentation labels that account for these challenges,

such as domain-specific similarity measures or perceptual metrics,

could provide a more comprehensive assessment of performance

in real-world scenarios. In addition to the limitations mentioned,

variations in image quality across different datasets or imaging

devices may also pose challenges for our model. Addressing these

factors and developing robust techniques to handle artifacts could

further enhance the reliability and applicability of our approach.

Overall, our GPT model showcases its efficacy in aligning

fundus images, presenting a notable advancement in the field

of medical image registration. By harnessing the power of deep

learning and unsupervised learning techniques, our model achieves

remarkable results without relying on ground truth transformation

data. This not only streamlines the registration process but

also mitigates the need for labor-intensive manual annotation,

making the approach more scalable and applicable to large-scale

datasets. Furthermore, the versatility of the GPT model allows

it to adapt to diverse transformation scenarios, offering a robust

solution for aligning fundus images acquired from different sources

and modalities.

5 Conclusion

Our work presents a novel approach to unsupervised fundus

image registration using the GPT model. Through GPT, we

introduced a foundational model capable of emulating diverse

polynomial transformations, trained on a large synthetic dataset to

cover a wide spectrum of transformation scenarios. Additionally,

our hybrid pre-processing strategy aims to optimize the learning

process by providing the model with focused input. To assess our

model’s effectiveness, we employed standard evaluation metrics

on the publicly available AREDS dataset, including image-level

and parameter-level analyzes. Linear regression analysis yielded

an average correlation coefficient R of 0.9876 across all quadratic

transformation parameters. In image-level evaluation, both

qualitative and quantitative analyzes were conducted, revealing

significant improvements in SSIM (20%) and NCC (15%)

scores, indicating robust performance. Particularly noteworthy

is the precise matching of optic disc and vessel locations and

the minimization of global distortion. Our findings highlight

the potential of GPT-based approaches in image registration

methodologies, and promising advancements in diagnosis,

treatment planning, and disease monitoring in ophthalmology.
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