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Background: This study aims to screen inflammation-related genes closely 
associated with the prognosis of hepatocellular carcinoma (HCC) to accurately 
forecast the prognosis of HCC patients.

Methods: Gene expression matrices and clinical information for liver 
cancer samples were obtained from the Cancer Genome Atlas (TCGA) and 
the International Cancer Genome Consortium (ICGC). An intersection of 
differentially expressed genes of HCC and normal and GeneCards yielded 
inflammation-related genes associated with HCC. Cox regression and the 
minor absolute shrinkage and selection operator (LASSO) regression analysis to 
filter genes associated with HCC prognosis. The prognostic value of the model 
was confirmed by drawing Kaplan–Meier and ROC curves. Select differentially 
expressed genes between the high-risk and low-risk groups and perform GO 
and KEGG pathways analyses. CIBERSORT analysis was conducted to assess 
associations of risk models with immune cells and verified using real-time qPCR.

Results: A total of six hub genes (C3, CTNNB1, CYBC1, DNASE1L3, IRAK1, and 
SERPINE1) were selected using multivariate Cox regression to construct a 
prognostic model. The validation evaluation of the prognostic model showed 
that it has an excellent ability to predict prognosis. A line plot was drawn to 
indicate the HCC patients’ survival, and the calibration curve revealed satisfactory 
predictability. Among the six hub genes, C3 and DNASE1L3 are relatively low 
expressed in HCCLM3 and 97H liver cancer cell lines, while CTNNB1, CYBC1, 
IRAK1, and SERPINE1 are relatively overexpressed in liver cancer cell lines.

Conclusion: One new inflammatory factor-associated prognostic model was 
constructed in this study. The risk score can be an independent predictor for 
judging the prognosis of HCC patients’ survival.

KEYWORDS

hepatocellular carcinoma, inflammation-related genes, prognostic model, risk score, 
tumor immune infiltration

OPEN ACCESS

EDITED BY

Pradeep Kumar Shukla,  
University of Tennessee Health Science 
Center (UTHSC), United States

REVIEWED BY

Komal Ramani,  
Cedars Sinai Medical Center, United States
Da Sun,  
Wenzhou University, China

*CORRESPONDENCE

Chunxiao Wei  
 469077208@qq.com  

Zhong Huang  
 269481015@qq.com

†These authors have contributed equally to 
this work and share first authorship

RECEIVED 20 April 2024
ACCEPTED 01 July 2024
PUBLISHED 11 July 2024

CITATION

Li Y, Fang Y, Li D, Wu J, Huang Z, Liao X, Liu X, 
Wei C and Huang Z (2024) Constructing a 
prognostic model for hepatocellular 
carcinoma based on bioinformatics analysis 
of inflammation-related genes.
Front. Med. 11:1420353.
doi: 10.3389/fmed.2024.1420353

COPYRIGHT

© 2024 Li, Fang, Li, Wu, Huang, Liao, Liu, Wei 
and Huang. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 11 July 2024
DOI 10.3389/fmed.2024.1420353

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1420353&domain=pdf&date_stamp=2024-07-11
https://www.frontiersin.org/articles/10.3389/fmed.2024.1420353/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1420353/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1420353/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1420353/full
mailto:469077208@qq.com
mailto:269481015@qq.com
https://doi.org/10.3389/fmed.2024.1420353
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1420353


Li et al. 10.3389/fmed.2024.1420353

Frontiers in Medicine 02 frontiersin.org

1 Introduction

Worldwide, hepatocellular carcinoma (HCC) is the most common 
malignant tumor. HCC patients are mostly at an advanced stage when 
diagnosed and have a poor prognosis (1). The most severe result of 
uncontrolled hepatocyte growth is the occurrence of HCC, whose 
progression and metastasis are inseparable from the deterioration of 
the liver regeneration microenvironment (2). The drug therapy for 
HCC encompasses a variety of treatment modalities. As the first 
FDA-approved systemic therapy for advanced HCC, Sorafenib 
remains a cornerstone treatment, primarily due to its ability to extend 
survival (3, 4). Following Sorafenib, other drugs such as Regorafenib, 
Cabozantinib, and Lenvatinib have been approved for use (5). These 
drugs target various tumor growth pathways and angiogenesis 
pathways (3, 5). Drugs like Nivolumab and Pembrolizumab have 
shown promise in treating HCC by enhancing the body’s immune 
response against tumor cells (6). Combining Sorafenib with immune 
checkpoint inhibitors may improve treatment efficacy (7, 8). However, 
due to the insidious nature of HCC development, high recurrence rate 
after surgical resection, and high transplantation failure rate, 
improving the prognosis of HCC patients and identifying new 
molecular targets for drug development still faces multiple challenges, 
including those involved in cancer metabolism, immune evasion, and 
cell survival (9).

Chronic inflammation caused by viral infection significantly 
increases the possibility of HCC development by activating 
inflammatory signaling pathways and cytokines (10). The 
inflammatory pathways are complex and highly interconnected with 
multiple feedback loops and interactions. This complexity makes it 
difficult to predict how modulating one pathway might affect others, 
potentially leading to unintended consequences (11, 12). Thus, 
inflammation is a significant driver of cancer progression. The 
expression and role of inflammation-related genes can differ 
significantly among tumors, complicating the development of 
universally effective treatments (13, 14). Tumor cells can develop 
resistance to therapies that target inflammation-related pathways, 
often through genetic mutations or by activating alternative pathways 
(15). This adaptation can reduce the long-term efficacy of these 
treatments (16). Developing computational models that simulate 
individual responses to therapies targeting inflammation-related 
genes may help optimize treatment strategies (17, 18). Integrating 
inflammation-related genes into tumor therapy for conditions like 
HCC presents significant opportunities. Exploring the correlation 
between inflammation-related genes and tumor immune status may 
help further integrate targeted therapy and immunotherapy (19, 20).

Immune inflammation involves the immune system’s response to 
cancer cells, which can either suppress tumor growth or contribute to 
tumor development and progression (21). Inflammation-related genes 
are crucial in this context as they can influence the tumor 
microenvironment, affecting the behavior of HCC. HCC is a highly 
heterogeneous disease, and the genetic profile can vary significantly 
among patients, complicating creating a universally applicable model 
(22). Some studies have identified and evaluated the potential 
prognostic value of immune-autophagy-related genes in HCC patients 
(23). The study’s assessment was based on the complex interplay 
between the immune system, autophagy processes, and the tumor 
microenvironment in liver cancer (24). However, further research is 
still needed to explore the complex interactions between 

inflammation-related genes and other pathways in HCC. We identify 
inflammation-related genes that are significantly altered in 
HCC. Integrate data from different sources and use statistical and 
machine learning models to analyze the relationship between the 
expression of inflammation-related genes and patient survival. 
Techniques such as the proportional hazards model (25) can be used 
to estimate risk based on gene expression levels. Due to a more 
aggressive tumor microenvironment, certain patients with high 
expression of pro-inflammatory genes may have a poorer prognosis. 
We also used models to classify patients into risk groups and examine 
their immune microenvironment. Our model can predict patient 
survival while helping clinicians plan treatment more efficiently.

2 Materials and methods

2.1 Data acquisition and preparation

This study downloaded the normalized RNA-Seq data set of 371 
HCC samples and 50 adjacent normal samples and the corresponding 
clinical information from the UCSC Xena browser.1 The clinical 
information includes follow-up time, survival status, age, gender, 
TNM stage, and overall stage of HCC patients. Download the LIRI-JP 
HCC data set of the ICGC database from the Sangerbox platform2 as 
an independent validation set for the prognostic model containing 
RNA-Seq data of 240 HCC tumor samples and corresponding clinical 
information. The sample data uses standardized count values. 
Inclusion and exclusion processing criteria: (1) exclude samples 
without clinical follow-up data; (2) exclude those without TTL data; 
(3) exclude those without information related to patient survival 
status; (4) convert ENSEMBL ID to gene symbols, and (5) If multiple 
gene symbolic expressions exist, the median value is recorded. The 
clinical data of these samples are shown in Supplementary Table S1. 
Inflammation-related genes were searched in the GeneCard database 
using the keyword “inflammation.”

2.2 Screening of differentially expressed 
inflammation-related genes related to HCC

RStudio version 4.1.0 and the “Limma” software package (26) 
were used to screen differentially expressed genes (DEGs) between 
HCC and adjacent normal samples. First, genes with an average count 
of less than one were excluded, and genes were screened based on the 
criteria that the absolute value of the Log2-transformed fold change 
(FC) was more significant than or equal to 4, and the significance p 
value was less than 0.01. The genes that met the conditions were 
selected as DEGs, among which log2FC greater than 4 is an 
up-regulated gene, and less than −4 is a down-regulated gene. Use the 
“ggplot2” R software package (27, 28) to draw a volcano plot to 
visualize the results. Next, a correlation coefficient greater than six was 
used as the screening criterion to obtain inflammation-related genes 
from the GeneCards database (29). Finally, the intersection of DEGs 

1 https://xenabrowser.net/datapages/

2 https://dcc.icgc.org/
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and inflammation-related genes was used to obtain differentially 
expressed inflammation-related genes in HCC, and Venny online 
software3 (30) was used to draw a Venn diagram for visualization. The 
“survival” R software package (31) performed Univariate Cox 
regression analysis (25) on differentially expressed inflammation-
related genes in HCC. Genes with p less than 0.05 were differentially 
expressed inflammation-related genes related to prognosis. This gene 
is a risk factor for the prognosis of HCC (The hazard Ratio (HR) > 1). 
This gene is a protective factor for the prognosis of HCC(HR < 1).

2.3 Least absolute shrinkage and selection 
operator regression and construction of 
the prognostic model

The 50 paracancerous and HCC samples with missing survival 
information downloaded from the TCGA database were eliminated, 
and 365 hepatocellular carcinoma samples were retained as a training 
set for constructing the prognostic model. To further screen variables, 
the “glmnet” R software package (32) was used to perform Lasso 
(Least absolute shrinkage and selection operator is a type of linear 
regression that includes a penalty equal to the absolute value of the 
magnitude of coefficients.) regression analysis on the differentially 
expressed inflammation-related genes related to HCC prognosis 
screened out in the above Univariate Cox regression analysis to reduce 
the purpose of the fitting degree of the constructed prognostic model. 
During the Lasso regression analysis process, 10-fold cross-validation 
was used to determine the λ value, and the λ with the minor partial 
likelihood deviation was selected as the optimal λ. Cross-validation in 
Lasso regression ensures the model is tuned for optimal performance 
by finding the best regularization parameter (alpha). K-Fold Cross-
Validation: Choose the number of folds (typically 5 or 10). Split the 
dataset into 𝑘 folds. Each fold will be used once as a validation set, 
while the remaining 𝑘−1 folds form the training set. The genes 
screened by Lasso regression analysis in the previous step were further 
used to perform Multivariate Cox regression analysis using the 
“survival” R software package. In the Multivariate Cox regression 
analysis results, genes with p less than 0.05 were considered 
independent factors affecting the prognosis of HCC patients. The 
coefficients for Multivariate Curve Resolution (MCR) analysis (33) 
were adopted for calculating the RS.

In the TCGA-LIHC cohort, the samples were assigned to a high-
risk or low-risk group (cut-off: 50%). The risk score of each HCC 
patient was calculated according to the prognostic model, and the 
patients were divided according to the median risk score. Patients 
whose risk score was higher than the median risk score were divided 
into high-risk groups. Next, the “survival” software package is used to 
draw the Kaplan–Meier curve(a statistical tool used in survival 
analysis to estimate the survival function from lifetime data); the 
“survival,” “survminer,” and “timeROC” software packages (22) are 
used to evaluate the prognosis. The ability of the model to predict the 
1-year, 2-year, and 3-year survival rates of HCC patients. Finally, the 
ROC curves of the 1-year, 2-year, and 3-year survival rates of HCC 
patients in the prediction training set of age, gender, TNM stage, total 

3 https://bioinfogp.cnb.csic.es/tools/venny/

stage, and risk score prediction training set were plotted to compare 
the corresponding AUC values further to illustrate the predictive 
ability of the prognostic model. Clinicopathological characteristics, 
including age, gender, TNM stage, total stage, and risk score, were 
integrated, and the nomogram was constructed using “rms” 
packages in R.

Akaike information criterion (AIC) (34) is a standard for 
evaluating the complexity of a statistical model and measuring the 
goodness of fit of a statistical model to the data. AIC can 
be  expressed as AIC = 2 k − 2ln(L). Where k is the number of 
parameters and L is the likelihood function. When the complexity 
of the model increases (k increases), the likelihood function L will 
also increase, thereby making the AIC smaller. However, when k is 
too large, the growth rate of the likelihood function slows down, 
causing the AIC to increase. If the model is too complex, it is easy 
to cause an Overfitting phenomenon.

2.4 Gene enrichment analysis

To better understand the biological functions of DEGs between 
high-risk groups and low-risk groups in the training set, four R 
software packages: “clusterProfiler” (35), “org.Hs.eg.db” (36), “enrich 
plot,” and “GOplot” (37) were used. For GO and KEGG functional 
enrichment analysis, p < 0.05 after correction was set as the 
screening condition.

2.5 Tumor-infiltrating immune cells

To evaluate the difference in immune infiltration of tumor tissue 
between high-risk and low-risk groups in the training set and the 
association between risk score and immune infiltration of tumor 
tissue. This study used a gene expression matrix to perform 
ESTIMATE (38) analysis to calculate each sample’s stromal score, 
immune score, ESTIMATE score, and tumor purity. The TIMER 
algorithm calculated each sample’s infiltration of six tumor-infiltrating 
immune cell subsets (B cells, CD4+ T cells, CD8+ T cells, 
macrophages, neutrophils, and dendritic cells). Finally, the correlation 
between the risk score calculated based on the prognostic model and 
tumor immune infiltration was analyzed.

2.6 Cell line

The normal human liver cell line LO2 and two human 
hepatocellular carcinoma cell lines (97H and HCCLM3) were 
purchased from Saiku Biotech Co. The complete medium for culturing 
cells was prepared using Dulbecco’s modified medium (DMEM) with 
10% fetal calf serum and 1% double antibody (penicillin/
streptomycin).

2.7 Real-time fluorescence quantitative 
PCR experimental materials

The human regular liver cell line is LO2, and there are two human 
liver cancer cell lines (97H and HCCLM3). The complete medium for 
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culturing cells was prepared using Dulbecco’s modified medium 
(DMEM) with 10% fetal calf serum and 1% double antibody 
(penicillin/streptomycin). Total cellular RNA was extracted using the 
TRIZOL method. The concentration of extracted RNA was measured 
by NanoDrop2000 (UV spectroscopy) and was not less than 50ug. 
Intact total RNA produces clear 28S and 18S rRNA bands when 
subjected to denaturing gel electrophoresis (2:1). Carry out the entire 
reverse transcription reaction according to the instructions of TaKaRa 
Reverse Transcription Kit PrimeScrip™ RT reagent Kit with gDNA 
Eraser (Perfect Real Time), shown in Supplementary Table S2. 
Dissolve the FastStart Universal SYBR Green Master (ROX), the 
upstream primer (Forward primer), and the downstream primer 
(Reverse primer) on ice for later use. Follow the instructions to 
prepare the components and configure a 10 μL reaction system. 
Configure a main tube according to the above features, mix gently 
with a pipette and centrifuge, and add samples sequentially. Set 4 
duplicate wells for each sample. The real-time fluorescence quantitative 
PCR (qTOWER3 Series, Analytik Jena, Germany) reaction procedure, 
shown in Supplementary Table S3, is described in the instructions. 
The DNA solubilization curve verifies the specificity of the 
amplification product. From 60 to 98 degrees, the horizontal 
coordinates of the curve are each temperature point. The vertical 
coordinate is the change in fluorescence intensity. When the 
amplification rate of the target genes (C3, CTNNB1, CYBC1, 
DNASE1L3, IRAK1, SERPINE1) reaches 100%, the cycle threshold is 
obtained [Linear dynamic range (12–30)] and the relative expression 
of the target gene mRNA is calculated using the 2−△△Ct method. 
Experimental results were visualized using GraphPad Prism 8 
software. The specific primer sequences are shown in Table 1. The 
suppression test detects the extraction situation. 3 samples using the 
same method of repeatability (Intra-Assay Variation) to assess the 
intra-assay variation.

2.8 Statistical method

All statistical analyses were performed using R software 
(v4.1.0). The stepwise regression method was used to screen Hub 
genes to construct a prognostic model. The Kaplan–Meier curve 
compared the prognostic differences between HCC patients in the 
high-risk and low-risk groups. The t-test was used to compare the 
differences in risk scores between different clinicopathological 
characteristic groups. p < 0.05 (two-sided) was considered 
statistically significant.

3 Results

3.1 Screening of differentially expressed 
inflammation-related genes in HCC

Through differential expression analysis, 3,274 DEGs between 
HCC samples and normal liver samples were obtained, including 
2,789 up-regulated genes and 485 down-regulated genes, as shown in 
the volcano plot in Figure 1A. 303 inflammation-related genes were 
retrieved from the GeneCards database. Then, we take the intersection 
between the database and differential genes and call these 49 
intersection genes inflammation-related genes (Figure  1B). Then, 
we used the STRING database (39) to construct a Protein–Protein 
Interaction (PPI) network of HCC inflammation-related genes. The 
interaction score was set to 0.7 during PPI analysis, and Cystoscope 
software visualized the results (Figure 1C).

3.2 GO and KEGG enrichment analysis

We performed GO and KEGG functional enrichment analysis on 
49 inflammation-related genes. GO analysis results show that cell 
functions are significantly enriched in positive regulation of cytokine 
production, secretory granule lumen, cytokine receptor binding, etc. 
(Supplementary Figure S1); KEGG pathway analysis shows that it is 
mainly enriched in NF-κB signaling pathway, cytokine-cytokine 
receptor interaction, Th17 cell differentiation, etc. (Figure 1D).

3.3 Screening of prognostic model hub 
genes and construction of a prognostic 
model

Based on the prognostic information of tumor samples in the 
training set, univariate Cox regression analysis (p < 0.05) was 
performed on 49 differentially expressed inflammation-related genes 
in HCC, and 16 genes significantly related to the prognosis of HCC 
were screened out (C3, CASP3, CTNNB1, CYBC1, and DNASE1L3), 
(IRAK1, RELA, SERPINE1, SPP1, TGFB1, TNIP1, TTR, UBA1, 
UBAC2, UBE2L3, and VEGFA), as shown in Figure 1E. Then, Lasso 
regression analysis was further performed on 16 inflammation-related 
genes related to the prognosis of HCC patients to obtain 11 genes (C3, 
CTNNB1, CYBC1, DNASE1L3, IRAK1, SERPINE1, SPP1, UBA1, 
UBAC2, UBE2L3, and VEGFA), as shown in Figure 1F. Finally, the 

TABLE 1 Specific primer sequence.

Gene Upstream primer Downstream primer

GAPDH TGACTTCAACAGCGACACCCA CACCCTGTTGCTGTAGCCAAA

DNASE1L3 TGGTTGAGGTCTACACGGACGT GTCAGTCCTCAAGCGGATGTTC

C3 TCACCGTCAACCACAAAGCTGCTACC TTTCATAGTAGGCTCGGATCTTCCA

CTNNB1 GGCTCTTGTGCGTACTGTCCTTC CTTGGTGTCGGCTGGTCAGATG

CYBC1 TGTGAGCGTGGAGGAGGAGAAG CTGGTGATGAGCTTGGCGATGG

IRAK1 GACACGGACACCTTCAGCTTTGG CAGCCTCCTCAGCCTCCTCTTC

SERPINE1 GGTGCTGGTGAATGCCCTCTAC TGCTGCCGTCTGATTTGTGGAAG

https://doi.org/10.3389/fmed.2024.1420353
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Li et al. 10.3389/fmed.2024.1420353

Frontiers in Medicine 05 frontiersin.org

above 11 genes were screened using the Step calculation function in 
multifactor Cox regression analysis based on the AIC information 
statistic. When AIC was equal to 1316.19, the results were obtained 
based on 6 Hub genes (C3, CTNNB1, CYBC1, DNASE1L3, the 
optimal prognostic model constructed by IRAK1, SERPINE1). As 
shown in Figure 1G, multivariate Cox regression risk showed that 
CYBC1 (HR = 1.04, 95%CI = 1.01–1.09, p = 0.02) among the six Hub 
genes was an independent prognostic risk factor for HCC patients. A 
prognostic model is constructed through regression coefficients. In 
the prognostic model, the risk score calculation formula for each HCC 
sample is Risk score = (−0.000337128 × C3) + (0.009464722 × CTNNB1) 
+ (0.045920338 × CYBC1) + (−0.035384453 × DNASE1L3) + 
(0.007516301 × IRAK1) + (0.001958146 × SERPINE1). The risk scores 
of all HCC patients in the training set were calculated according to the 
prognostic model formula. Patients with risk scores higher than the 
median were classified into the high-risk group and others as the 
low-risk group. Figure 2A shows that the risk scores of HCC patients 
gradually increase from left to right. It can be seen from Figure 2A that 
as the risk score increases, the survival time of patients in the high-risk 
group is shorter (the trend of concentration of scattered points is 
downward), and the mortality rate is higher (red dots increase). 

Figure 2A shows the differential expression of six Hub genes between 
the high-risk and low-risk groups in the form of a heat map. The 
expression of four genes, SERPINE1, IRAK1, CTNNB1, and CYBC1, 
was relatively up-regulated in the high-risk group. The expression of 
C3 and DNASE1L3 Expression was moderately upregulated in the 
low-risk group.

3.4 Verification of pivot genes

The patients’ risk scores in the training set were comprehensively 
analyzed with the corresponding clinicopathological characteristics 
(age, gender, TNM stage, and total stage). Single-factor Cox regression 
analysis showed that the risk score (p < 0.001), M stage (p = 0.01), N 
Stage (p = 0.04), T stage (p < 0.001), and total stage (p < 0.001) are 
significantly related to the prognosis of HCC (Figure 2B). Multivariate 
Cox regression analysis showed that risk score (HR = 1.52, 
95%CI = 1.31–1.75, p < 0.001) and M stage (HR = 1.33, 95%CI = 1.02–
1.72, p = 0.03) are essential factors affecting the prognosis of HCC 
patients. Independent risk factors (Figure 2C). The ROC curve was 
used to evaluate the accuracy of the prognostic model, and the AUC 

FIGURE 1

Screening of inflammation-related genes in HCC. (A) Volcano plot of DEGs in liver cancer; (B) Venn diagram of DEGs and inflammation-related genes; 
(C) PPI network of inflammation-related genes in liver cancer. (D) KEGG analysis of inflammation-related genes. (E) The risk ratio forest plot showed 
the prognostic value of the genes based on univariate Cox regression analysis. (F) Lasso regression analysis and Cross-validation. (G) The risk ratio 
forest plot showed the prognostic value of the genes based on multivariate Cox regression analysis.
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values for predicting the 1-, 2-, and 3-year survival rates of HCC 
patients in the training set were 0.768, 0.693 and 0.716, respectively 
(Figure 2D). The Kaplan–Meier curve showed that the prognosis of 
the high-risk group was worse than that of the lower-risk group, and 
the difference was statistically significant (p < 0.0001) (Figure 2E). The 
ROC curve(is a graphical plot used to evaluate the performance of a 
binary classifier system. It plots the true positive rate (TPR) against the 

false positive rate (FPR) at various threshold settings) and was used to 
verify the predictive performance of the prognostic model. In the 
ROC curve predicting the 1-year (Figure 2F), 2-year (Figure 2G), and 
3-year (Figure 2H) survival rates of HCC patients in the training set, 
the AUC value of the risk score was always high. Compared with 
clinicopathological characteristics such as age, gender, TNM stage, 
and total stage, it indicates that the risk score may be  a reliable 

FIGURE 2

Construction and validation of prognostic models. (A) Prognostic distribution of HCC, differences in survival status between high-risk and low-risk 
groups, and heat maps of the expression profiles of the six hub genes. The risk score and clinicopathological features are subjected to univariate 
(B) and multivariate (C) Cox regression analysis, as illustrated in the forest plot. (D) Kaplan–Meier survival curves and (E) time-dependent ROC curves. 
ROC curve verified the significance of the prognostic model (F) 365  days, (G) 730  days, and (H) 1,065  days. (I) Distribution of prognostic index. Survival 
status of patients in different groups. Heat map of the expression profile of the included inflammation-related genes. (J-K) Kaplan-Meier survival curves 
and time-dependent ROC curves.
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predictor of the prognosis of HCC patients. 240 HCC samples from 
the ICGC database were used as a validation set further to verify the 
reliability and accuracy of the model. The same formula was used to 
calculate the risk scores of the 240 HCC samples, and patients higher 
than the median risk score were divided into high-risk groups; 
otherwise, they were split into low-risk groups. The risk score 
distribution, survival time, and mRNA expression level distribution 
of the six Hub genes of the patients in the validation set are shown in 
Figure 2I. The AUC values for predicting 1-year, 2-year, and 3-year 
survival rates were 0.711, 0.67, and 0.699, respectively, (Figure 2J). The 
Kaplan–Meier curve showed that the prognosis of patients in the 
high-risk group was worse than that of the lower-risk group, and the 
difference was statistically significant (p = 7.4e-4) (Figure 2K). The 
research results of the validation and training sets are consistent, 
indicating that this prognostic model can effectively predict the 
prognosis of HCC patients.

3.5 Immune infiltration analysis of high and 
low-risk groups

ESTIMATE analysis found that the stromal cell score difference 
between the high and low-risk groups in the training set was 
statistically significant, and the low-risk group had a higher stromal 
cell score (p < 0.001). There was no statistically significant difference 
in immune cell score, ESTIMATE score, and tumor purity between 
the high-risk and low-risk groups (Figure  3A). By studying the 
correlation between the risk score model and the four scores, it was 
found that the stromal cell score was negatively correlated with the 
risk score (R = −0.24, p = 3.9e-06); the ESTIMATE score was negatively 
correlated with the risk score (R = −0.13, p = 0.013); tumor purity was 
positively correlated with risk score (R = 0.13, p = 0.013) (Figure 3B). 
Through TIMER analysis, the infiltration abundance of B cells, 
macrophages, neutrophils, dendritic cells, CD4+ T cells, and CD8+ T 
cells in HCC was higher in the high-risk group than in the lower-risk 
group (p < 0.05) (Figure 3C). By analyzing the correlation between risk 
score and immune cell infiltration abundance, it was found that B 
lymphocytes were positively correlated with risk score (R = 0.22, 
p = 3.2e-05); dendritic cells were positively correlated with risk score 
(R = 0.26, p = 4.4e-07); macrophages were positively correlated with 
risk score (R = 0.26, p = 6.7e-07); neutrophils were positively correlated 
with risk score (R = 0.3, p = 6e-09) (Figure 3D).

3.6 Combining clinical data to construct an 
HCC prognostic nomogram

In this study, the nomogram constructed by combining the 
clinicopathological characteristics and risk scores of HCC patients in 
the training set was used to predict the 1-year, 3-year, and 5-year 
survival probabilities of HCC patients (Figure 4A). C-index equals 
0.697 (greater than 0.5). The 3-year actual survival rate was highly 
consistent with the predicted value, indicating that the constructed 
nomogram had good accuracy (Figure 4B). In this study, the risk score 
was closely related to the TNM stage and total Stage, indicating that 
the prognostic model helps predict the proliferation and metastasis of 
HCC (Figure 4C). The correlation between the expression of six Hub 
genes (C3, CYBC1, CTNNB1, DNASE1L3, IRAK1, and SERPINE1) 

constructed for prognostic modeling and the level of immune cell 
infiltration was analyzed using the TIMER database. The results 
showed that the expression of C3 in HCC was closely correlated with 
the infiltration of B cells, CD4+ T cells, macrophages, neutrophils, and 
dendritic cells (p < 0.05). The expression of CTNNB1 in HCC was 
closely correlated with the infiltration of B cells, CD4+ T cells, CD8+ 
T cells, and macrophages (p < 0.05). The expression of CYBC1 in HCC 
was closely correlated with the infiltration of B cells, CD4+ T cells, 
macrophages, neutrophils, and dendritic cells (p < 0.05). DNASE1L3 
expression in HCC was closely associated with infiltration of B cells, 
CD4+ T cells, CD8+ T cells, neutrophils, and dendritic cells (p < 0.05). 
IRAK1 expression in HCC was closely associated with infiltration of 
B cells, CD8+ T cells, macrophages, and dendritic cells (p < 0.05). The 
expression of SERPINE1  in HCC was closely associated with the 
infiltration of CD8+ T cells, macrophages, neutrophils, and dendritic 
cells (p < 0.05). These results suggest that the prognostic model Hub 
genes are closely associated with immune infiltration, and the results 
are shown in Supplementary Figure S2, with p < 0.05 indicated by red 
boxes. The GEPIA database was further analyzed for six Hub genes, 
mRNA expression of CYBC1 (HR = 1.7, Logrank p = 0.0036), 
DNASE1L3 (HR = 0.43, Logrank p = 2e-06), IRAK1 (HR = 1.7, 
Logrank p = 0.0042), SERPINE1 (HR =1.5, Logrank p = 0.027) mRNA 
expression correlated with overall survival of hepatocellular carcinoma 
patients as shown in Supplementary Figure S3. The mRNA expression 
of C3 (F = 6.02, p = 0.000524), CYBC1 (F = 2.66, p = 0.0478), 
DNASE1L3 (F = 6.63, p = 0.000229), IRAK1 (F = 4.67, p = 0.00327), 
SERPINE1 (F = 3.73, p = 3.73) and SERPINE1 (F = 3.73, p = 0.0116) was 
statistically significant among the groups with different hepatocellular 
carcinoma clinical staging as shown in Figure 4D.

3.7 Expression in human hepatocellular 
carcinoma cells and normal cells of the 
liver

As shown in Figure 5, the expression differences of the six Hub 
genes C3, CTNNB1, CYBC1, DNASE1L3, IRAK1, and SERPINE1 
between human liver cancer cell lines and normal liver cell lines are 
statistically significant. C3 and DNASE1L3 are significantly different 
in HCCLM3 and 97H liver cancer cells. The cell lines showed relatively 
low expression compared with normal liver cells, while CTNNB1, 
CYBC1, IRAK1, and SERPINE1 showed relatively high expression in 
HCCLM3 and 97H liver cancer cell lines compared with normal 
liver cells.

4 Discussion

Studies are developing and validating a systemic immune-
inflammatory index based on lymphocyte, neutrophil, and platelet 
counts and exploring its prognostic value in HCC (40). Other studies 
have found the prognostic value of prognostic nutritional index (PNI) 
and systemic immune-inflammatory index in hepatocellular 
carcinoma (41). Studies have reviewed the utility of inflammatory 
markers as prognostic tools in patients with resectable HCC (42). It is 
believed that there is currently a lack of reliable prognostic biomarkers 
to predict postoperative recurrence of HCC. However, we showed a 
prognostic model based on six inflammation-related genes, including 
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FIGURE 3

Training set immune infiltration analysis. (A) Analysis of differences in ESTIMATE scores, immune cell scores, stromal cell scores, and (B) tumor purity 
between high-risk and low-risk groups, and correlation analysis with risk scores. (C) Analysis of differences in the infiltration abundance of B cells, 
macrophages, neutrophils, dendritic cells, CD4+ T cells, and CD8+ T cells between high-risk and low-risk groups, and (D) correlation analysis with 
their respective risk scores.
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C3, CTNNB1, CYBC1, DNASE1L3, IRAK1, and SERPINE1, which 
was established through multi-factor Cox regression analysis. 
According to the formula, the risk score of each patient is calculated 
and used as a standard to predict the outcome of HCC patients. The 
study found that High-risk scores among HCC patients have a worse 
prognosis than those in the low-risk group. ROC curve analysis of the 
survival rate of HCC patients found that the risk score has good 
sensitivity and specificity. The AUC values for predicting 1-year, 
2-year, and 3-year survival rates are 0.768, 0.693, and 0.716, 
respectively, which can be used to predict prognosis for HCC patients. 
In addition, the predictive ability of the constructed prognostic model 
was successfully verified using the HCC data set of the ICGC database.

Current studies suggest that changes in the C3 gene and its 
expression can affect tumor immune response. Excessive activation 
or inhibition of complement components may lead to tumor 
progression or immune escape. At the same time, chronic 
inflammation caused by chronic hepatitis B is usually mediated by 
complement activation and is a known risk factor for liver cancer. 
Elevated levels of C3 and other complement components have been 
observed in HCC patients. Changes in the levels of complement 

proteins (including C3) in the blood of HCC patients may serve as 
biomarkers for the diagnosis or prognosis of HCC (43–46). The 
CTNNB1 gene encodes β-catenin and is involved in the regulation 
and coordination of cell–cell adhesion and gene transcription. 
Mutations in the CTNNB1 gene in HCC often lead to the 
stabilization and accumulation of β-catenin in the nucleus and 
abnormal activation of the Wnt/β-catenin signaling pathway is 
associated with the pathogenesis of HCC. HCC tumors with 
CTNNB1 mutations often show unique histological features and 
may have a better prognosis than HCC without these mutations. 
The level and activity of β-catenin represented by CTNNB1 can 
serve as a biomarker for diagnosing and classifying HCC. The 
presence of CTNNB1 mutations can also affect the prognosis of 
HCC patients. Studies have shown that patients with CTNNB1 
mutant HCC may respond better to certain treatments, and the 
role of CTNNB1 in HCC helps develop targeted therapies aimed 
at inhibiting the Wnt/β-catenin signaling pathway. At the same 
time, targeting β-catenin signaling with other treatments (such as 
immune checkpoint inhibitors or traditional chemotherapy) can 
provide a more effective treatment strategy for HCC patients 

FIGURE 4

Clinical correlation analysis based on training set risk score. (A) Nomogram model to predict 1-, 3-, and 5-year survival rates of HCC cases. 
(B) Calibration graphs indicated that predicted 1-, 3-, and 5-year survival rates were close to the actual survival rates. (C) Results of correlation analysis 
between risk score and gender, TNM, and stage. (D) Analyze the correlation between the mRNA expression of 6 hub genes based on the GEPIA.
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(47–53). The CYBC1 gene encodes a protein that acts as a 
chaperone for cytochrome b-245, which is a component of the 
NADPH oxidase complex. The CYBC1-cytochrome b-245 complex 
is essential for producing ROS, and NADPH oxidase and its ROS 
can affect cancer’s development and progression. In chronic 
inflammation caused by HCC, dysregulated ROS production, 
which CYBC1 may affect, may lead to a pro-inflammatory 
environment and promote the development of liver cancer. 
Alterations in CYBC1 expression or function may affect the 
immune system’s ability to respond to tumor cells (54, 55). The 
DNASE1L3 gene encodes an enzyme that digests extracellular 
DNA released during cell death processes such as apoptosis and 
necrosis. Clearing these DNA fragments maintains homeostasis 
and prevents excessive inflammation. Chronic inflammation is an 
important risk factor for liver cancer. The normal function of 
DNASE1L3 may help maintain genomic stability by preventing the 
accumulation of DNA fragments, which may otherwise lead to 
mutations and cancer. Changes in DNASE1L3 expression or 
activity may serve as a biomarker for HCC (56–62). IRAK1 is a 
serine/threonine protein kinase that participates in downstream 
signaling of the IL-1 and TLR pathways. It is essential for activating 
nuclear factor kappa B (NF-κB) and mitogen-activated protein 
kinase (MAPK) signaling. Through its role in IL-1 and TLR 
signaling, IRAK1 can promote the inflammatory microenvironment 
that promotes the development of liver cancer. Abnormal 
activation of IRAK1 can lead to sustained activation of the NF-κB 
and MAPK pathways, promoting cell proliferation, survival, and 
anti-apoptosis. Elevated IRAK1 expression or activity levels may 
serve as a biomarker for HCC. At the same time, studies have 

shown that high IRAK1 expression is associated with poor 
prognosis in HCC patients (63–66). SERPINE1 (serine protease 
inhibitor family E member 1) is a gene that encodes a protein that 
regulates fibrinolysis and plays a role in cell migration, invasion, 
and angiogenesis. Elevated levels of SERPINE1 are associated with 
increased tumor growth, invasion, and metastasis in multiple 
cancers, including HCC. It also plays a role in angiogenesis 
(forming new blood vessels), essential for tumor growth and 
metastasis. It interacts with vitronectin and integrins, influencing 
endothelial cell migration and blood vessel formation. High 
expression of SERPINE1 is often associated with poor prognosis in 
HCC patients (67–72). In summary, the six Hub genes in the 
prognostic model have been confirmed in multiple studies to 
be involved in the occurrence and development of HCC.

This study also showed a close correlation between HCC and 
stromal cells (73, 74). ESTIMATE (75) analysis showed that the 
stromal score in the low-risk group was significantly higher than 
in the high-risk group, and the difference was statistically 
significant. Correlation analysis showed that stromal cell and 
ESTIMATE scores negatively correlated with risk scores. Dense 
immune cell infiltration is generally associated with a better 
prognosis because it indicates that the immune system is actively 
responding to the presence of the tumor. Lower immune cell 
infiltration or an immune desert state (few immune cells in the 
tumor microenvironment) is often associated with a poorer 
prognosis because it indicates that the tumor may have evaded 
surveillance by the immune system (76). TIMER’s (77) algorithm 
analysis found that the infiltration of B lymphocytes, macrophages, 
dendritic cells, and neutrophils in HCC tumor cells was positively 

FIGURE 5

Comparison of the mRNA expression levels of six modeled genes in hepatocellular carcinoma and normal liver cells.
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correlated with the risk score. Immune cell infiltration plays an 
important prognostic role in hepatocellular carcinoma (HCC). 
Studies have shown that immune cells’ composition and infiltration 
level in the tumor microenvironment are closely related to the 
patient’s prognosis (78). Researchers have developed prognostic 
models based on immune cell infiltration by integrating large-scale 
and single-cell RNA sequencing data. These models can predict the 
survival rate and immune checkpoint blockade response of HCC 
patients (79). The distribution and activity status of different types 
of immune cells, such as T cells, B cells, and macrophages in the 
tumor microenvironment, are key prognostic indicators. High 
levels of anti-tumor immune cells (such as cytotoxic T cells) are 
generally associated with a better prognosis. In contrast, 
immunosuppressive cells (such as regulatory T cells) may indicate 
a poor prognosis (80). Multiple studies have evaluated the effect of 
immune cell infiltration on HCC prognosis through survival 
analysis and found that patients with higher immune scores 
generally have longer survival (52, 78, 81, 82). These patients tend 
to have higher anti-tumor immune cell infiltration and lower 
immunosuppressive cell infiltration (83). Studies have shown that 
combining ICIs with other treatments, such as chemotherapy, 
radiotherapy, or targeted therapy, can enhance the therapeutic 
effect. For example, the effect of immunotherapy can be enhanced 
by inhibiting immunosuppressive cells or promoting the 
infiltration of anti-tumor immune cells. Suppose there are more 
regulatory T cells (Tregs) and M2 macrophages in the tumor 
microenvironment (84, 85). In that case, this may promote tumors 
to escape immune surveillance, thereby increasing the risk of 
tumor survival and growth. The high density of cytotoxic T cells 
(such as CD8+ T cells) and M1 macrophages may enhance the 
ability to attack tumors and promote the clearance of tumor cells, 
thereby potentially reducing tumor invasiveness and patient risk 
(86). Immunotherapy, such as immune checkpoint inhibitors, may 
be more effective for tumors with high immune cell infiltration 
(87). Other strategies, such as immune modulators or cell 
therapies, may be needed for tumors in immune deserts to attract 
more immune cells to the tumor microenvironment (88, 89).

However, this study also has limitations. First, this study’s 
analysis data come from public data resources such as TCGA, 
ICGC, and GEPIA (90). They lack their sequencing data. Specific 
clinical cases need to be collected for experiments to verify the 
credibility of the constructed prognostic model in predicting the 
prognosis of HCC patients. In addition, the data sources in public 
databases also have limitations. The experimental techniques used 
in different studies, such as different sequencing platforms or chip 
technologies, may be different. These technical differences will lead 
to incomparability between data. The data processing and 
standardization methods may vary, affecting the consistency of the 
data. Differences in the geographical origin, collection time, and 
sample processing methods will also introduce variability. Some 
gene expression data may have missing values, resulting in 
incomplete data. At the same time, biological differences between 
different samples in sequencing data, such as individual differences, 
mixed cell types, etc., may lead to variability in gene expression. 
Different conditions for sample collection and processing (such as 
temperature, culture medium, etc.) will affect gene expression. 
We use different databases and statistical schemes to verify each 
other to minimize the differences caused by different databases and 

sequencing batches. Secondly, this study lacks sufficient in vitro or 
in vivo experiments to explore the molecular mechanisms by which 
differentially expressed inflammation-related genes in liver cancer 
affect the prognosis of HCC patients to confirm the reliability of 
the GO and KEGG enrichment analysis results of differentially 
expressed inflammation-related genes in this study. Therefore, 
Many experiments are needed to prove the mechanical connection 
between the differential expression of inflammation-related genes 
and HCC proliferation and metastasis. Finally, the underlying 
specific mechanisms between differentially expressed 
inflammation-related genes in HCC and tumor immunity are 
poorly understood and require further experimental and clinical 
studies to verify.

5 Conclusion

The mRNA expression of six inflammation-related genes (C3, 
CTNNB1, CYBC1, DNASE1L3, IRAK1, and SERPINE1) is closely 
related to the overall survival rate, tumor immune infiltration, and 
clinical stage of HCC patients. Among them, CYBC1 is an 
independent risk factor affecting the prognosis of HCC patients. These 
findings provide a basis for the pathogenesis and clinical treatment of 
HCC and improve treatment strategies and early screening for 
HCC patients.
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