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Exosome prospects in the
diagnosis and treatment of
non-alcoholic fatty liver disease

Amirhossein Tamimi *, Mona Javid ,

Nasrin Sedighi-Pirsaraei and Arian Mirdamadi

School of Medicine, Guilan University of Medical Sciences, Rasht, Iran

The growing prevalence of NAFLD and its global health burden have provoked

considerable research on possible diagnostic and therapeutic options for NAFLD.

Although various pathophysiological mechanisms and genetic factors have been

identified to be associated with NAFLD, its treatment remains challenging. In

recent years, exosomes have attracted widespread attention for their role in

metabolic dysfunctions and their e�cacy as pathological biomarkers. Exosomes

have also shown tremendous potential in treating a variety of disorders. With

increasing evidence supporting the significant role of exosomes in NAFLD

pathogenesis, their theragnostic potential has become a point of interest in

NAFLD. Expectedly, exosome-based treatment strategies have shown promise

in the prevention and amelioration of NAFLD in preclinical studies. However,

there are still serious challenges in preparing, standardizing, and applying

exosome-based therapies as a routine clinical option that should be overcome.

Due to the great potential of this novel theragnostic agent in NAFLD, further

investigations on their safety, clinical e�cacy, and application standardization

are highly recommended.
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Highlights

• Different exosomes participate in the development of non-alcoholic fatty liver disease.
• Exosomes are ideal biomarkers for the diagnosis of non-alcoholic fatty liver disease.
• Exosomal microRNAs can differentiate the different stages of non-alcoholic fatty
liver disease.

• Stem cell-derived exosomes can ameliorate the course of non-alcoholic fatty
liver disease.

• Exosomal blocking can prevent non-alcoholic fatty liver disease progression.

1 Introduction

Affecting one out of four adults globally, Non-alcoholic fatty liver disease (NAFLD)
remains a growing worldwide health issue (1). It is highly associated with metabolic
syndrome and commonly accompanies insulin resistance, obesity, and dyslipidemia (1).
Moreover, it is increasing due to the Growing obesity and diabetes prevalence (2, 3).

NAFLD is a histological definition describing macrovesicular steatosis in more than
5% of hepatocytes in people with no or little alcohol consumption. It includes two
major types: non-alcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH).
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Non-alcoholic fatty liver (NAFL), or simple steatosis, is a form
of NAFLD. While NAFL is typically accompanied by a lower
risk of liver-related mortality, it can progress to non-alcoholic
steatohepatitis (NASH) (4). NASH is more commonly associated
with cirrhosis and hepatocellular carcinoma (HCC), both of which
can lead to liver-associated death (4). Histologically, NASH consists
of ballooning degeneration and lobular inflammation along with
steatosis, with or without perisinusoidal fibrosis (5). However,
present theories propose a dynamic two-way cycling betweenNAFL
and NASH, with fibrosis advancing slowly in most patients (4).
The reality that the initiation of progressive fibrosis ultimately
determines clinical results raises doubts about the importance of
differentiating between NAFL and NASH (4).

Although there has been a lot of effort in developing non-
invasive tools for NAFLD diagnosis, the diagnosis of NAFLD
is mainly based on liver biopsy (6, 7). However, it is an
invasive and costly procedure, and, considering the prevalence
of the disease, impractical. Therefore, non-invasive diagnostic
methods that could be accurate can be crucial in this area.
Along with lifestyle modification and weight loss, several agents,
including pioglitazone, semaglutide, and obeticholic acid, have
shown promise in the therapy of NAFLD (7). However, with
more than 50 treatment agents currently being studied in different
clinical phases, the treatment of NAFLD remains challenging (7).

Exosomes are nanosized extracellular vesicles that have
significant roles in the pathogenesis of different diseases (8).
Recently, their theragnostic potentials have been broadly discussed
in various diseases, including cardiac, renal, hepatic, and
neurological diseases, as well as neoplasms (8). In the presenting
paper, we aimed to review the potential and perspectives of
exosomes as a diagnostic and therapeutic agent in NAFLD.

2 Exosomes

Exosomes are bi-lipid membrane extracellular vesicles sized
from 50 to 140 nm (9–11). They are secreted by nearly all
cells and can be found in all body fluids (12–15). Exosomes
carry a wide variety of proteins, DNAs, RNAs, and lipids,
with specific characterization based on the secreting cell (16–
19). They have higher levels of specific proteins [such as heat
shock protein 70 (HSP 70), tetraspanins (CD9, CD 63, CD
81, and CD 82), ALG-2-interacting protein X (ALIX), tumor
susceptibility gene 101 (TSG101)] and lipids [such as flotillin and
glycosylphosphatidylinositol-anchored protein (LBPA)] (20–22).

Exosome biogenesis involves complex intracellular pathways
with distinct mechanisms for different EV subtypes (23). The
endosomal system plays a central role in exosome biogenesis
(24). Traditionally, the endosomal sorting complex required for
transport (ESCRT) machinery has been considered essential for the
biogenesis of exosomes (24). The biogenesis of exosomes involves
four key steps: cargo sorting, the development and maturation
of MVBs, the transportation of these MVBs, and finally, the
fusion of MVBs with the cellular membrane (25). Each process is
modulated through the competition or coordination of multiple
mechanisms, whereby diverse repertoires of molecular cargos are
sorted into distinct subpopulations of exosomes, resulting in the
high heterogeneity of exosomes.

Recognition of Ubiquitinated Cargo is the first step in exosome
biogenesis (24). The process begins with the recognition of
ubiquitinated cargo by the ESCRT-0 complex (24). Ubiquitination
is a post-translational modification where a small protein called
ubiquitin is attached to a target protein (26). This serves as a
recognition signal for ESCRT-dependent cargo sorting. Once the
ubiquitinated cargo is recognized, it is sequestered into endosomal
microdomains by the ESCRT-I and ESCRT-II complexes (25).
These complexes also initiate the budding of the endosomal
membrane into the lumen of the endosome, forming the nascent
ILV. The ESCRT-III complex is responsible for driving the budding
process to completion, leading to the formation of ILVs (24).
It does this by assembling into a spiral-shaped structure on the
endosomal membrane, which constricts the neck of the budding
ILV. ILVs are formed within the lumen of an endosome through
the inward budding of the endosomal membrane. When multiple
ILVs accumulate within an endosome, it is then referred to as a
multivesicular body (MVB). MVBs can either fuse with lysosomes
for degradation or with the plasma membrane, releasing ILVs
as exosomes.

Recent findings suggest the existence of an alternative pathway
for sorting exosomal cargo into MVBs in an ESCRT-independent
manner (24). Nonetheless, the pathways may not be completely
distinct (27). This ESCRT-independent pathway seems to depend
on raft-based microdomains for the lateral segregation of cargo
within the endosomal membrane (28). For instance, the nSMase2-
ceramide pathway is vital for ESCRT-independent exosome
biogenesis (29). Besides, Tetraspanins are a family of proteins
that play a crucial role in the biogenesis of exosomes, including
the ESCRT-independent pathway (30). They are characterized
by their four transmembrane domains, which allow them to
interact with various other proteins, cholesterol, and gangliosides.
These interactions lead to the formation of tetraspanin-enriched
microdomains (TEMs) on the membrane (30). These TEMs can
influence membrane bending and actin polymerization, which
are essential steps in the formation of multivesicular bodies
(MVBs) and, subsequently, exosomes (30). In addition to their
role in exosome biogenesis, tetraspanins are also sorted into
exosomes in an ALIX- and ESCRT-III-dependent manner (31).
This sorting process occurs independently of other ESCRTs but
requires lysobisphosphatidic acid (LBPA) in vivo.

Lately, exosomes have got much attention in diagnostics. They
constitute a key intracellular communication system and act as a
key factor in the pathogenesis of different diseases via intercellular
signaling cascades (23, 32–35). Therefore, detecting exosomes,
molecules carried by them such as nucleic acids, and their surface
proteins may be used as an early, non-invasive, and potentially
accurate diagnostic tool in different diseases (8). Their potential
diagnostic value has been proven in cancers and diseases of the
lungs, kidneys, liver, and central nervous system (36–42).

Exosome offers favorable features as a therapeutic agent. It
has the same homing behavior as the secreting parent cell (43).
Additionally, it benefits from a bilipid membrane, which allows it
to carry considerable amounts of contents and protect its cargo
from degradation by chemicals and enzymes. Considering that
along with their targeted activity, exosomes are fruitful options
in drug delivery applications. Moreover, they have significantly
lower immunogenicity than virus-based drug delivery systems and
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liposomes (44). Besides, exosomes derived frommesenchymal stem
cells provide immunomodulatory and anti-inflammatory effects,
promote cellular viability, and facilitate cellular proliferation and
neoangiogenesis (45–50). In certain settings, exosomes can have
regenerative and homeostatic, thus therapeutic effects on diseased
tissue (51). On top of that, exosomes lack risks of carcinogenesis
and immune response to cancers and infections, compared with
cell therapies, offering high therapeutic potential with appreciable
safety (9).

3 Pathophysiology of NAFLD

The complex pathophysiology of NAFLD has not yet been fully
clarified. However, it is believed that it is related to the interaction
among genetic, environmental, and individual factors (52).

There are different hypotheses about NAFLD pathophysiology.
In the past, the “two-hit hypothesis” was used to explain the
mechanism of NAFLD and NASH pathophysiology, but currently,
the “multiple-hit model” is suggested (52). According to the
two-hit model, the initial phase, often referred to as the “first
hit,” involves the build-up of fat, specifically triglycerides, within
the liver tissue and the development of insulin resistance.
These elements are considered the key drivers of hepatic
steatosis when the accumulation surpasses the threshold of 5%
(53). The “second hit” is characterized by alterations in the
levels of inflammatory cytokines and adipokines, mitochondrial
dysfunction, and oxidative stress. These changes can trigger
necroinflammation and fibrosis within the liver tissue (54, 55).
However, recent investigations have shown that the “two-hit
hypothesis” cannot fully explain the exact mechanism of human
NAFLD. Therefore, the “multiple-hit model” is currently the most
recognized theory. It suggests a broader metabolic dysfunction due
to the interplay of genetic and environmental influences, as well as
alterations in the crosstalk between the liver and various organs and
tissues, such as the adipose tissue, pancreas, and gut (52, 54–57).
Despite this, the initial stages, or “first hits,” are still believed to be
the accumulation of fat in the liver triggered by obesity and insulin
resistance (52).

NASH and NAFLD begin with the excessive accumulation
of triglycerides (TG) in the liver (58). The fatty acids used for
this hepatic TG accumulation are derived from three sources: (I)
dietary fat taken up in the intestine, (II) de novo lipogenesis from
glucose and fructose, and (III) dysregulated adipocytes’ triglyceride
lipolysis leading to excessive fatty acid transport to the liver (58–
60). When the liver’s capacity to utilize carbohydrates and fatty
acids, as the primary metabolic energy substrates, is impaired,
toxic lipid species are accumulated in hepatocytes. It, in turn,
induces hepatocellular injury and death, which results in genomic
instability and fibrogenesis that put the liver at risk of cirrhosis and
hepatocellular carcinoma. However, the specific toxic lipid species
that promote cell injury are not fully recognized (6). Lipotoxic lipids
accumulation causes hepatocellular injury through endoplasmic
reticulum (ER) stress (61), a dysregulated unfolded protein
response (UPR) (62), activation of the inflammasome and apoptotic
pathways (63), an increased hepatic Hedgehog (Hh) signaling, and
inflammation (64). There are many external factors contributing to
hepatocellular injury, including insulin resistance (65), adipokine

dysregulation (66), hepatic ATP depletion (67), uric acid-induced
hepatocyte mitochondrial dysfunction (68), and the effects of
intestinal microbiota products (69). Fibrogenesis results from
extracellular signaling from injured hepatocytes, liver sinusoidal
endothelial cells, activated Kupffer cells, T cells, B cells, and natural
killer cells, promoting hepatic stellate cells (HSCs) activation.
Activated HSCs transdifferentiate into fibrogenic myofibroblasts
that can produce extracellular matrix proteins at a higher rate
than their degradation (70). Finally, Progressive fibrosis leads to
cirrhosis, which subsequently promotes portal hypertension and
liver failure, which is the main reason for liver-related mortality in
NAFLD (6).

4 Exosome in NAFLD

4.1 Role of exosomes in NAFLD
pathophysiology

4.1.1 Exosomes in the pathogenesis of NAFLD
Several recent studies point to a significant role of Extracellular

Vesicles (EVs) in the pathophysiology and progression of NAFLD
and NASH. EVs play a central role in normal intercellular
communication. Different types of liver cells, including human
adult liver stem cells, cholangiocytes, hepatocytes, hepatic dendritic
cells, and hepatic stellate cells, function as both exosome-secreting
and exosome-targeted (42). Various liver conditions, including
NAFLD, seem to increase the basal EV’s secretion (71). Povero
et al. (72) have shown a considerable rise in the concentration
of EVs in the liver and blood of diet-induced NAFLD animals.
Normal hepatocytes produce exosomes that carry several cargos,
such as proteins and miRNAs (73). However, exosomes secreted
from damaged hepatocytes are essential in inducing hepatocellular
inflammation and fibrosis during liver damage. These effects are
through intercellular communication between different cell types
(74). The roles of exosomes and exosomal miRNAs in NAFLD
pathogenesis and the interactions between different organs are
illustrated in Figures 1, 2.

4.1.2 Lipid accumulation
NAFLD is characterized by excessive hepatic lipid

accumulation (75). The accumulation of lipids in the liver
cells results in the release of stress signals, triggering the activation
of inflammatory pathways that, when perpetuated, lead to
chronic injury and fibrosis over time. Hepatocytes release
EVs in response to lipotoxic fatty acids, which leads to HSCs
fibrogenic activation and promotes macrophage chemotaxis
(76, 77). Inflammation and fibrosis are essential for NAFLD
progression (78).

Li et al. (79) demonstrated that the exosomal miR-199a-5p

induces lipid build-up in the liver through a down-regulation
of its target gene, hepatic Mammalian sterile 20-like kinase
1 (MST1). This leads to an alteration in Sterol regulatory
element-binding protein 1 (SREBP1c), AMP-activated protein
kinase (AMPK) signaling cascades and consequently suppresses
Carnitine palmitoyltransferase I α (CPT1α) lipolysis gene and
induces Fatty acid synthase (FASN) lipogenesis gene expression.
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FIGURE 1

The roles of exosome and exosomal miRNAs in NAFLD pathophysiology. microRNAs, including miR-34a and exosomal miR-199a-5p, that control de

novo lipogenesis and dysregulated TG lipolysis in adipocytes significantly induce excessive hepatocyte TG accumulation. Subsequently, TG

accumulation in hepatocytes gives rise to impaired hepatic metabolism and toxic lipid species accumulation. The accumulation of toxic lipid species

leads to ER stress, apoptosis, and inflammation. These changes contribute to hepatocellular injury and death, followed by HSC activation. MiR-34a,

exosomal miR-411-5p and miR-411-5p, miR-17, adipocyte-derived EV, lipotoxic hepatocyte-derived EVs containing DAMPs, ceramides, ICAM1,

S100a11, CXCL10 and miR-195-5p and external factors including insulin resistance, intestinal microbiota production, and adipokine dysregulation

participate in various parts of this process. HSC activation results in fibrosis and, eventually, cirrhosis. miR, microRNA; TG, triglyceride; ER,

endoplasmic reticulum; DAMPs, Damage-associated molecular patterns; ICAM-1, Intercellular Adhesion Molecule 1; HSCs, Hepatic stellate cells;

EVs, extracellular vesicles.

In another study, Xu et al. (80) reported that hepatocyte
exosomal miR-34a plays an essential role in the development
of NAFLD by increasing lipid absorption and synthesis and
reducing fatty acid oxidation. It also promotes NAFL’s transition
to NASH by regulating Kupffer cell activation, which promotes
inflammatory responses, increases hepatic ROS levels, and induces
hepatic apoptosis.

4.1.3 Hepatocellular inflammation
Lipotoxic hepatocyte-derived EVs cause hepatocellular

inflammation. NAFLD is closely related to chronic inflammation
associated with macrophages and neutrophils (78). Additionally,
innate immune activation is fundamental in triggering
hepatic inflammation in NASH (81). Hirsova et al. (82) have
demonstrated that incubation of primary hepatocytes with
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FIGURE 2

The roles of exosomes in the interactions of the liver and pituitary gland, intestine, and adipose tissue in NAFLD. Di�erent organs are involved in the

development of NAFLD, and their interactions with the liver play significant roles in NAFLD progression. By TSH regulation, the pituitary gland alters

hepatocyte exosome production, which exaggerates steatosis. TSH stimulation of HepG2 cells leads to exosome release and upregulation of

proteins involved in steatosis. Adipose tissue induces progression in various steps of NAFLD, including steatosis, apoptosis, inflammation, and

hepatocellular injury by exosomal AKR1B7 released from ER stressed adipocytes, active stat3 containing exosome, CD36 containing exosomes and

insulin resistance caused by abdominal subcutaneous adipose tissue exosomes. Therefore, adipocytes’ metabolism impairment promotes steatosis.

Moreover, steatosis can also exaggerate the metabolism impairment of adipocytes through exosomal let-7b-5p. On the other hand, liver-protecting

exosomes originating from adipose tissue can ameliorate apoptosis and inflammation. The intestine can also a�ect NAFLD development in two ways:

(1) intestinal microbiota products can amplify hepatocellular injury, and (2) exosomal HMGB1 increases steatosis.

lysophosphatidylcholine (LPC) increased their EV secretion
compared with control cells in vitro. EVs derived from hepatocytes,
carrying TNF-related apoptosis-inducing ligand, activated IL-1β

and IL-6 messenger RNAs expression in macrophages derived
from mice bone marrow, leading to inflammation and liver injury.

Regarding macrophage infiltration, Ibrahim et al. (83) have
demonstrated that in hepatocyte lipotoxicity with LPC, Mixed
lineage kinase 3 (MLK3) signaling induces the secretion of EVs
containing elevated levels of CXCL10 from hepatocytes. These
EVs induce bone marrow-derived macrophage chemotaxis.
Moreover, Hepatocyte-derived ceramide-dependent EVs are
enriched in several distinct damage-associated molecular
patterns and cellular adhesion molecules, including ICAM1 and
S100A11, that may influence immune cell responses, leading
to hepatocellular inflammation (84). In addition, Kakazu et al.
(77) have demonstrated that hepatocytes treated with palmitic
acid (PA), a saturated fatty acid found in NAFLD hepatocytes,
release significant amounts of C16:0 ceramide-enriched EVs in
an inositol-requiring enzyme-1α (IRE1α)-dependent manner.
IRE1A-stimulated hepatocyte-derived EVs, having ceramide-
derived sphingosine 1-phosphate, enhance macrophage
migration, which results in an inflammatory response in the
liver (77, 85).

Moreover, in NAFLD, imbalanced macrophage polarization
toward the pro-inflammatory M1 phenotype significantly
contributes to disease progression (86). Conversely, M2
macrophages, particularly the M2a and M2c subtypes, exert

protective effects in NAFLD (87). M1 macrophages are involved in
the immune response and immune monitoring through antigen
presentation and the release of pro-inflammatory cytokines like
IL-1β and TNF-α (87). On the other hand, M2 macrophages have
limited antigen presentation capabilities and contribute to immune
regulation by dampening the immune response with the secretion
of inhibitory cytokines such as IL-10, TGF-β, and Mrc (88). M2
macrophages can contribute to tissue healing and renewal. The
decision of whether macrophages exhibit a pro-inflammatory
reaction that causes injury or an anti-inflammatory response that
offers protection depends on the balance between M1 and M2
activation tendencies (89).

Liu et al. (90) found that exosomalmiR-192-5p and hepatocyte-
derived exosome levels are considerably higher in NASH
patients’ serum, similar to high-fat, high-cholesterol diet
(HFHCD)-fed rat NASH models. Progression of NAFLD in
HFHCD-fed rats is directly associated with serum miR-192-5p

and proinflammatory M1 macrophage amounts along with
proinflammatory cytokines expression (90). Another study (91)
showed that exosomes originating from lipotoxic hepatocytes
and containing miR-192-5p significantly activate macrophages.
They polarize macrophages to proinflammatory M1 phenotype by
regulating rapamycin-insensitive companion of mammalian target
of rapamycin (Rictor)/Akt/Forkhead Box Transcription Factor
O1 (FoxO1) signaling pathway. In addition, saturated fatty acids
and Cholesterol, via inducing lysosomal dysfunction, promote
exosomal miR-122-5p secretion from hepatocytes. It results in
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pro-inflammatory M1 macrophage polarization and inflammatory
activation (92).

The interaction between hepatic stellate cells (HSCs) and
macrophages plays a crucial role in the pathogenesis of liver
fibrosis (93, 94). Nevertheless, the specific molecular process that
facilitates communication between hepatic stellate cells (HSCs)
and liver macrophages, particularly the M2 subtype, remains
incompletely understood. Exosomes are suggested to mediate
the connection between mentioned cells, especially through the
miRNAs (94). The polarization of M2 macrophages is strongly
linked to the suppression of HSC activation and the reduction
of liver fibrosis (95–97). Wan et al. (94) showed that HSC
activity was significantly inhibited by exosomes derived from M2
macrophage. They found that exosomal miRNA-411-5p is reduced
in the liver tissue and serum of HFHC diet-induced rat model
of NASH. They also showed that exosomal miR-411-5p from M2
macrophages hinder the HSCs activity and lead to inactivation
of stellate cells through downregulation of the expression of
Calmodulin-Regulated Spectrin-Associated Protein 1 (CAMSAP1).
The inhibition of HSCs occurred following the knockdown of
CAMSAP1 as a direct target of miRNA-411-5p. Furthermore, the
amount ofmiR-411-5p in exosomes derived fromM2 macrophages
was higher than that in M1 macrophages. Recent literature shows
thatMiR-411-5pmay play a role in the regulation of hepatocellular
carcinoma progression (98).

Liu et al., (91) found that arginase 1 (Arg1), a marker of
M2 macrophages, was reduced after an 8-week high-fat high-
cholesterol diet (HFHCD) in a rat model, but other M2 markers,
chitinase 3-like protein 3 (Ym1) and found in inflammatory zone

1 (Fizz1), remained unchanged throughout the 16-week diet.
Interestingly, they discovered that hepatocyte-derived exosomal
miR-192-5p did not induce M2 macrophage polarization, and
neither did exosomes from PA-treated HepG2 cells affect M2
macrophage activation. They also observed a decrease in Ym1
expression in THP-1 macrophages after exposure to serum
exosomes from NASH patients, an effect that was reversed with
a miR-192-5p inhibitor. In another study, Zhao et al. (92)
investigated the potential role of cholesterol-loaded hepatocytes in
inducing macrophage polarization through exosome-related cross-
talk. They found that exosomes from Huh7 cells loaded with
ox-LDL and MβCD-cholesterol did not affect the percentage of
M2 macrophages. In conclusion, these studies suggest that while
certain exosomes and exosomal miRNAs released by cholesterol-
loaded hepatocytes can influence M2 macrophage polarization,
their effects are complex and may depend on the specific
conditions and markers examined. Further research is needed
to fully understand these mechanisms and their implications in
NAFLD. This could potentially open new avenues for therapeutic
interventions targeting macrophage polarization. Changing the
macrophage polarization in hepatic tissue toward M2macrophages
may exert protective effects against NAFLD progression and liver
fibrosis. This should be further studied as a potential therapeutic
pathway in NAFLD.

Besides, hypoxia can induce NAFLD in obstructive sleep apnea
(OSA) syndrome by exosomes. Hypoxia triggers the production
of certain exosomes (99). Yang et al. (100) mentioned that
OSA-induced exosomes promote hepatocyte steatosis and activate
macrophages in liver tissue. These exosomes were observed to

enhance fat accumulation. They demonstrated that after the
uptake of OSA-induced exosomes bymacrophages, the polarization
of macrophages toward the M1 type occurred. It led to the
inhibition of sirtuin-3 (SIRT3)/AMP-activated protein kinase
(AMPK) and autophagy. It also enhanced the activation of
the nucleotide-binding domain, leucine-rich-containing family,
and pyrin domain-containing-3 (NLRP3) inflammasomes. The
use of 3-methyladenine (3-MA) to block autophagy prevented
NLRP3 inflammasome activation and hindered M1 macrophage
polarization. Moreover, they reported elevated levels of miR-
421 in OSA-induced exosomes in OSA plus NAFLD mice and
patients. In the liver tissues of OSA and OSA plus NAFLD
mice,miR-421 showed the same co-localization with macrophages.
Hepatocytes exposed to intermittent hypoxia transferred miR-

421 to macrophages through exosomes to inhibit SIRT3 and
contribute to macrophage M1 polarization. Accordingly, MiR-421
targeting reduced SIRT3 protein levels in macrophages. They also
found that in miR-421–/– mice subjected to OSA and NAFLD
modeling, liver steatosis andM1 polarization were notably reduced.
Knockout of miR-421 alleviated the inhibitory effects of OSA-
induced exosomes on SIRT3 and autophagy, leading to reduced
liver steatosis and macrophage M1 polarization. On the other
hand, they haven’t found any change in the transcription of M2
macrophage genes Arg1 and Fizz1 Following the uptake of OSA
exosomes by macrophages.

Other than the above mechanisms, Shen et al. (101)
showed that decreased hepatocyte autophagy, found in non-
alcoholic steatohepatitis, develops IL-1β/TNF-induced hepatic
injury and inflammation through the exosomal release of the
damage-associated molecular pattern (DAMPs). In addition,
liver inflammation could be caused by EVs secreted from
other cells. For example, It has been reported that platelet-
derived EVs may have a pro-inflammatory role in the
liver (102). However, some studies have demonstrated the
opposite (103).

4.1.4 Fibrogenesis
Hepatic stellate cells (HSCs) promote fibrogenesis through

EVs intracellular communication. Literature (104) has shown that
hepatocytes stimulated by palmitate (PA) secret significantly more
exosomes with distinctive miRNA expression patterns, amplifying
fibrotic gene expression in HSCs. In this regard, Wei Wang et al.
(105) illustrated that hepatocytes treated with PA release more
miR-107-enriched exosomes, leading to HSC proliferation and
activation by two distinct pathways. These hepatocyte-derived
exosomes transfer miR-107 to HSCs, where miR-107, by directly
inhibiting Dickkopf-1 (DKK1) expression, activates Wnt signaling.
Additionally, these exosomes deliver miR-107 to CD4+ T cells,
where miR-107 activates the Raf/MEK/ERK signaling pathway by
upregulating IL-9 expression via Forkhead box protein P1 (Foxp1)
inhibition. These pathways lead to HSC activation, an essential
component of NAFLD pathogenesis.

On the other hand, exosomes may exert protective effects
on NAFLD. Studying on a diet-induced rat model of NASH,
Qi et al. (106) proved that M2 macrophage-derived exosomes
enriched with miR-411-5p directly reduce Calmodulin-Regulated
Spectrin-Associated Protein 1 (CAMSAP1) expression. This
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consequently inhibits hepatic stellate cell activation and fibrosis. In
addition, Hou et al. (107) found that miR-223-enriched exosomes
are released from myeloid cells in response to IL-6 signaling. They
offer protective effects on NASH progression by inhibiting the
expression of profibrotic genes that miR-223 targets, including C-
X-C motif chemokine (Cxcl10), NOD-, LRR—and pyrin domain-
containing protein 3 (Nlrp3), transcriptional activator with PDZ-
binding (Taz), and insulin-like Growth Factor 1 Receptor (Igf1r) in
the liver.

4.1.5 Adipocyte-hepatocyte interaction
Adipocyte-hepatocyte interaction through EVs plays an

essential role in NAFLD progression. Afrisham et al. (108)
demonstrated that plasma exosomes isolated from obese women
may play a role in NAFLD development by inducing insulin
resistance, increasing hepatocellular TG levels, and decreasing
hepatocellular FGF21 secretion. These exosomes promote a
significant increase in the expression of integrin ανβ-5 and
tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) along
with a concomitant decrease in plasminogen activator inhibitor-
1 (PAI-1) and matrix metalloproteinase-7 (MMP-7) expression
in HepG2 cells. In hepatic stellate cells, these exosomes induce
increased integrin ανβ-5 and 8, Smad-3, TIMP-1 and 4, and
matrix metalloproteinase-9 (MMP-9) expression. Consequently,
these processes dysregulate the tumor growth factor- β (TGF-β)
signaling pathway, producing a profibrotic state in liver cells (109).

According to the tissue-cooperative homeostatic model of
NAFLD, during the early phases of NAFLD progression, the falling
levels of the hepatocellular production of miR-122 are compensated
by an increase in the adiposemiRNA-containing exosome secretion
(110). These molecules are eventually taken up by the hepatocytes
and augment these cells’ endogenous production of miRNA.
Thus, metabolic damage to adipose tissue (due to liver disease
progression) eventually decreases the external supply of liver-
supporting miRNAs, leading to hepatic fibrosis and carcinogenesis.

Ogur et al. (111) determined that exosomes derived from
Endoplasmic Reticulum (ER) stress-induced adipocytes transfer
exosomal Aldo-keto-reductase 1b7 (Akr1b7) to hepatocytes. This
elevates glycerol levels in liver cells, which gives rise to hepatic
steatosis, inflammation, and eventually fibrosis. Additionally, Yan
et al. (112) showed that PA-induced AMPKα1 inhibition in
adipocytes promotes CD36-containing exosome secretion. These
exosomes contribute to HepG2 cell damage and mediate the
development of High-fat diet (HFD)-induced NAFL. Furthermore,
exosomal let-7b-5p originated from hepatocytes is essential in
the interaction between hepatocytes and adipocytes by TGF-
β signaling. It impairs the energy balance of adipocytes by
regulating Adrb3 gene expression, resulting in hepatic steatosis and
obesity (113). Besides, Fuchs et al. (114) found that subcutaneous
abdominal adipose tissue-derived exosomes and raised levels of
PAI-1 take part in the pathophysiology of insulin resistance. Insulin
resistance is a critical factor in the NAFLD pathobiology (115).

Exosomes of adipose tissue may also have beneficial effects
on NAFLD. Zhao et al. (116) demonstrated that exosomes
from adipose-derived stem cells (ADSCs) promote arginase-1
expression in macrophages by carrying active STAT3 and inducing

M2 phenotype macrophage polarization. This results in the
inhibition of macrophage inflammatory responses. It suggests the
potential efficacy of exosome and stem cell therapy in preventing
NAFLD progression.

4.1.6 Other pathological pathways
EVs also contribute to the development of NAFLD through

other pathophysiological mechanisms. In a study on Asc −/−

mice on a high-fat diet (HFD), Chen et al. (117) revealed a gut-
liver axis mechanism in which exosomes play a significant role.
In dysbiosis, exosomes act as the transporter of high mobility
group box 1 (HMGB1) protein from the intestine to the liver,
triggering hepatic steatosis. Besides, a preliminary study (118) on
TSH-induced lipotoxicity in NAFLD revealed that TSH stimulation
of HepG2 cells significantly increases their exosomal production
and alters their exosomal proteomic profile. It leads to upregulation
of proteins involved in different biological processes such as
metabolism, inflammation, and apoptosis. Hence, it may be
involved in NAFLD pathogenesis.

4.1.7 Exosomal micrornas
miRNAs are the most abundant cargo molecules transferred

by exosomes (119). Specific miRNAs have been associated with
NAFLD and may be effectual in its pathogenesis. They may also
be used as non-invasive options in NAFLD diagnosis. Zhang and
Pan (120) monitored serum exosomal microRNAs in children
with NAFLD and identified 2,588 miRNAs. They revealed that in
children with NAFLD, the expression of 80 miRNAs, importantly
miR-122-5p, miR-335-5p, and miR-27a, differs from that of the
control group. In another study, Zhou et al. (121) suggested that
exosomal miRNAs might take part in the pathophysiology of
NAFLD and revealed an upregulation of miR-146b-3p, miR-155-

5p, miR-122-5p, and miR-34a-5p in NAFLD patients. MiR-122, a
highly liver-specific miRNA, takes part in lipid metabolism and is
detected in the form of exosomes in the serum of NAFLD patients
(122, 123). MiR-21 is another miRNA that is increased in the
liver of NAFLD patients, as well as animal models of the disease.
This miRNA regulates hepatocellular glucose and lipid metabolism.
It works through a complex transcription network. At different
stages, miR-21 may be involved in NAFLD progression, including
early steps of the initiation of hepatocellular steatosis and later steps
of inflammation and fibrosis (124). A list of exosomal miRNAs that
may be beneficial for NAFLD diagnosis is presented in Table 1.

4.2 Exosomes in NAFLD diagnosis

Studies have shown that exosomes, due to their contents,
including microRNAs, may serve as potential diagnostic
biomarkers for disease progression and severity in NAFLD
(142). The content of exosomes can change in various diseases,
and this is not only limited to exosomal miRNAs. As mentioned
earlier, several exosomal miRNAs are considerably altered in
NAFLD, and their potential role in NAFLD pathophysiology
remains an important topic for a better understanding of NAFLD
development and the mechanisms that help us ameliorate the
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TABLE 1 Potential exosomal microRNAs in NAFLD diagnosis.

microRNA Associated
tissue

Associated
condition

Alteration of
microRNA levels

Target
gene/protein

Pathogenesis References

miR-21 Serum NAFLD Increased PPARα Dysregulating lipid metabolism in the
liver

(125)

FABP7 Dysregulating the transporting and
metabolizing fatty acid

(126)

HMGCR Producing cholesterol and isoprenoids (127)

HBP1 Dysregulating the cell cycle,
transcriptional repressor

(128)

NASH Increased SMAD7 Suppressing the Inhibition of the TGF-β
signaling

(129)

Liver fibrosis Increased TIMP-3 Inhibiting the matrix metalloproteinases (130)

miR-122 Serum NAFLD Increased SIRT1 Suppressing the regulation of hepatic
lipid metabolism

(131, 132)

Promoting hepatic oxidative stress

Promoting hepatic inflammation

miR-27a Liver NAFLD Increased FASN and Scd1 Attenuating hepatic de novo lipogenesis (133)

Alleviated obesity-initiated NAFLD

MAFLD PINK1 Inhibiting mitophagy (134)

Promoting MAFLD-related liver fibrosis

miR-155-5p Liver NAFLD Increased STC1 Inducing hepatic mitochondrial
dysfunction, vascular insulin resistance

(135–137)

Promoting endothelial cell activation
and atherosclerosis

miR-34a Serum NASH Increased PPARα and SIRT1 Hepatic lipid accumulation (138)

NAFLD

miR-192 Serum NAFLD Decreased SREBF1 Dysregulating lipid homeostasis in
hepatocytes

(139)

miR-181a Serum NAFLD Increased SIRT1 Reducing insulin sensitivity (140)

Increasing gluconeogenesis and lipid
synthesis

miR-29a Serum NAFLD Decreased GSK3β Promoting of mitochondrial
proteostatic stress

(141)

miR-199a-5p Adipose tissue NAFLD Increased MST1 Aggravating lipid accumulation in
hepatocytes

(79)

PPARα, Peroxisome proliferator-activated receptor alpha; FABP7, Fatty Acid Binding Protein 7; HMGCR, 3-Hydroxy-3-Methylglutaryl-CoA Reductase; HBP1, HMG-Box Transcription Factor

1; SMAD7, SMAD Family Member 7; TIMP-3, Tissue inhibitors of metalloproteinases 3; SIRT1, Sirtuin 1; FASN, Fatty acid synthase; SCD1, Stearoyl-CoA Desaturase-1; PINK1, PTEN-

induced kinase 1; STC1, Stanniocalcin 1; SREBF1, Sterol regulatory element-binding protein-1; GSK3β, Glycogen synthase kinase-3 beta; MST1, Macrophage Stimulating 1; MAFLD: Metabolic

dysfunction-associated fatty liver disease.

condition. Meanwhile, the modification of the level of these
miRNAs may provide a fruitful non-invasive diagnostic approach
for NAFLD, considering the challenges in diagnosing NAFLD.
A list of exosomal miRNAs potential for NAFLD diagnosis is
presented in Table 1. Moreover, various studies have shown that
changes in the level of exosome contents other than miRNAs,
including protein FZD-7, can also act as diagnostic and prognostic
biomarkers for NAFLD (143, 144). In addition to the content
of exosomes, the level of certain EVs in mouse models and
human subjects of NASH has been reported to be higher than
that of normal individuals, suggesting specific exosomes’ levels as
potential factors for differentiating the stages of NAFLD (145).
However, although exosomes offer favorable non-invasive methods

for the diagnosis and prognosis evaluation of NAFLD, there is
a lack of comprehensive information regarding the sensitivity
and specificity of exosome-based diagnostic methods. There is a
need for further investigation to understand better the diagnostic
capabilities of exosomes and their practical application in clinical
settings for NAFLD assessment.

4.3 Exosome-related strategies for NAFLD
treatment

Resmetirom has been recently approved by the Food and Drug
Administration (FDA) and remains the only approved option
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for NAFLD treatment along with lifestyle modifications, such
as diet control and exercise. However, several drugs have shown
potential therapeutic effects on NAFLD, such as elafibranor (by
inhibiting lipid deposition), emricasan (via lowering cell death),
IMMe124 (through regulating intestinal microenvironment and
metabolism) (146). Moreover, Probiotics and prebiotics, symbiotic,
fecal microbiome transplantation, and fasting-mimicking diet
could also be beneficial in patients with NAFLD (147). Due to
their unique characteristics, exosomes have gained attention
as a new treatment option in different diseases. Exosomes
have been studied for various clinical applications, including
as a diagnostic/prognostic biomarker, cell-free therapeutic
agent, drug delivery carrier, and cancer vaccines (148). Several
exosome-based treatment approaches have shown efficacy in liver
diseases, including NAFLD, which is described below. Figure 3
demonstrates potential exosome-based treatment approaches
in NAFLD.

4.3.1 Cell-derived exosomes
In recent years, interest in therapeutic usage of cell derivatives

such as exosomes over cell therapies has been increasing (149, 150).
Exosomes are released by the majority of body cells and have
been detected in nearly all fluids of the body, such as blood,
cerebrospinal fluid, urine, amniotic fluid, breast milk, saliva, bile,
malignant ascites, and lymph (151–158). Among all cell types,
Mesenchymal stem cells (MSCs) are the most prolific producer
of exosomes (159). MSCs can be derived from different body
tissues, including peripheral blood, adipose tissue, bone marrow,
umbilical cord, spleen, liver, pancreas, kidney, lung, thymus, and
brain (160, 161). They are known as a subgroup of stromal stem
cells. MSCs are adults’ most researched type of stem cells in
regenerative medicine owing to their extensive presence in body
tissues and easy expansion procedure in vitro. They have shown
the potential to prolong and save lives (162). Mesenchymal stem
cell therapy has several disadvantages that must be considered,
including the possibility of tracking in pulmonary capillaries,
leading to pulmonary embolism, reduction in cell viability of MSCs
in cryogenic storage during transport, and the risk of tumorigenesis
after administration (163–166).

Exosomesmediate intracellular communication by transferring
a variety of biomolecules like microRNAs (miRNAs), messenger
RNAs (mRNAs), other non-coding RNAs, and lipids (167).
Exosomes derived from stem cells have demonstrated the same
therapeutic potential as their parental cells (162). It has been
indicated that mesenchymal stem cell-derived exosome can
alleviate liver fibrosis, decrease Alanine aminotransferase (ALT)
and Aspartate transaminase (AST) levels, and mitigate liver
inflammation (168). Thus, these exosomes, such as HUC-MSCs-
derived exosomes, can be a promising therapeutic for NAFLD.

4.3.1.1 HUC-MSC exosomes

Many reports have illustrated that human umbilical cord
mesenchymal stem cells (HUC-MSCs) exert therapeutic effects
on liver diseases, including chemical-induced liver injury,
decompensated liver cirrhosis, liver failure, and autoimmune liver
diseases, including primary biliary cholangitis (169–174).

4.3.1.1.1 Lipid and glucose metabolism

HUC-MSCs improve NAFLD and metabolic syndrome by
means of regulating lipid metabolism by promoting the expression
of genes that are related to fatty acid oxidation and suppressing
adipogenesis-related genes’ expression in db/db mice (175). MSCs
exert their therapeutic effects through secretory factors, including
exosomes. Cheng et al. (176) showed that the treatment of palmitic
acid (PA)-treated human normal liver cell line (L-O2 cells),
human fetal hepatocyte line, with HUC-MSCs-exosomes improves
cell viability and inhibits apoptosis. They showed that the level
of miR-627-5p was higher in HUC-MSCs-exosomes compared
with HUC-MSCs. Moreover, they found that the expression
of G6Pc and PEPCK, gluconeogenesis-related proteins, along
with FAS and SREBP-1c, lipid metabolism-related proteins, were
repressed in these cells, while the expression of PPARα, another
lipid metabolism-related protein, was notably downregulated.
Additionally, the study exhibited that the plasma levels of ALT,
AST, total cholesterol (TC), triglyceride (TG), and blood glucose
in the NAFLD rat model were repressed by exosome treatment.
They also reported that MiR-627-5p improves lipid and glucose
metabolism, key pathological components of NAFLD, in L-
O2 cells by targeting fat mass and obesity-related gene (FTO).
The FTO gene facilitates NAFLD development via increasing
insulin resistance, oxidative stress, and lipid accumulation in
liver cells (177, 178). Furthermore, exosome treatment has also
been found to alleviate insulin resistance and liver damage and
reduce fat accumulation in NAFLD rat models (176). Another
study (179) also confirmed that HUC-MSC-exosome therapy
can attenuate liver steatosis and regulate abnormal expression
of Fabp5, ACOX, PPAR-α, FAS, SREBP-1c, and CPT1α as lipid
metabolism-related genes.

4.3.1.1.2 Oxidative stress

HUC-MSC-Exosomes have also been shown to have beneficial
effects against oxidative stress and inflammation. Kang et al. (179)
demonstrated that in rat models of NASH, HUC-MSCs exosomes
enhanced the Nrf2 (Nuclear factor erythroid 2-related factor 2), a
protective factor against oxidative stress and 1 [NAD (P) H quinone
dehydrogenase 1], a part of cellular adaptive response to stress,
which seems to play a significant part in treating NASH (180).
Besides, HUC-MSC-derived exosomes reduce oxidative stress
through lowering Malondialdehyde (MDA), CYP2E1, and reactive
oxygen species (ROS) levels and elevating Superoxide dismutase
(SOD) and GSH function as well (179). Furthermore, HUC-
MSC-exosome therapy reduces inflammatory response through
decreasing F4/80+ and CD11c+ macrophages and the levels
of tumor necrosis factor-alpha (TNF-α) and Interleukins-6 (IL-
6) (179).

4.3.1.2 BM-MSC exosomes

MSCs are classically separated from bone marrow (181). Bone
marrow mesenchymal stem cells (BM-MSCs), also known as
BM mesenchymal stromal cells, are multipotent mesenchymal
precursor cells that have many favorable characteristics for
regenerative therapy, including anti-inflammatory and immune-
modulatory properties (182, 183). Studies have revealed that
BM-MSCs have therapeutic potential in different diseases,
including cardiovascular, lung, neural, hematopoietic, and
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FIGURE 3

Diverse potential exosome-based therapeutic strategies in NAFLD. Exosomes originating from di�erent sources, including stem cells, bone marrow,

macrophages, and Blueberries, can exert beneficial e�ects in the treatment of NAFLD. Each source contributes unique therapeutic properties, such

as anti-inflammatory and regenerative capabilities, immune modulation, and fibrosis inhibition, making them a promising tool in NAFLD

management. They can be administered safely in high doses due to their cell-free nature, exhibit low toxicity, remain stable during circulation, and

have minimal immunogenicity. Moreover, researchers are actively exploring exosome-based therapies for NAFLD, including drug delivery (serving

exosomes as drug carriers, delivering therapeutic cargo directly to liver cells), targeted approaches (blocking exosomal contents such as microRNAs),

and modulation of inflammatory processes.

liver diseases, along with graft-vs.-host disease and cutaneous,
tendon ligament, and musculoskeletal tissue repairing (184–
186). BM-MSCs release paracrine factors which influence the
surrounding microenvironment (187). In contrast with their
favorable therapeutic characteristics, a few downsides can restrain
their clinical utilization, primarily due to their potential for
tumorigenicity and immunogenicity (188). Thus, using BM-MSCs
paracrine factors maintains BM-MSCs properties without most
disadvantages. Therefore, exosomes can potentially replace
BM-MSCs as a safer therapeutic approach for tissue repair
(162, 189).

BM-MSCs and BM-MSC-derived exosomes both can provide
anti-steatotic effects through downregulating sterol regulatory
element binding protein 1 (SREB-1), sterol regulatory element
binding protein 2 (SREB-2) and cetyl coenzyme A carboxylase
(ACC), suppressing lipid uptake and upregulating peroxisome
proliferator-activated receptor alpha (PPAR-α) and carnitine
palmitoyltransferase 1 (CPT1) fatty acid oxidation genes. BM-
MSC-derived exosomes at 15 µg/kg, 30 µg/kg, and 120 µg/kg

have anti-steatotic effects in the HFD-induced NASH model. BM-
MSCs or BM-MSCs-exosome co-treatment caused anti-apoptotic
impacts via a meaningful reduction in Bax/Bcl2 ratio and a rise
in the expression of mitochondrial mitophagy genes, including
Parkin RBR E3 Ubiquitin Protein Ligase (Parkin), phosphatase and
tensin homolog (PTEN)-induced putative kinase 1 (PINK1), unc-
51 like autophagy activating kinase 1 (ULK1), B-cell lymphoma
2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3L),
autophagy related gene (ATG5), ATG7 and ATG12. Furthermore, a
notable depletion in the levels of AST and ALT has been observed
in BM-MSCs or BM-MSCs-exosome co-treatment (190).

El-Derany et al. (190) found that BM-MSC-derived exosome
can be an ideal treatment option for NAFLD through a mechanism
in which the upregulation of miRNA-96-5p leads to the inhibition
of caspase-2. MiRNA-96-5p is found both in peripheral blood
and bone marrow (191). Studies have demonstrated that HFD
is associated with a downregulation of miRNA-96-5p in NAFLD
models (190, 192, 193). Moreover, it has been proven that
the suppression of caspase-2 lowers lipo-apoptosis and inhibits
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fibrogenic Hedgehog ligands production, leading to the transition
of NAFL to Nash (190, 194, 195). Furthermore, evidence has
revealed that the inhibition of caspase-2 prevents hyperlipidemia
and reduces hepatic steatosis, liver apoptosis, and mitochondrial
mitophagy (190, 194).

4.3.1.3 Macrophage-derived exosomes

Severe stages of NAFLD are related to hepatic stellate cell
(HCS) activation and their interactions with macrophages. Hepatic
macrophages have critical roles in the initiation and progression
of fibrosis (93, 196, 197). It has been found that the level of
miRNA-411-5p is lower in NASH patients’ plasma exosomes and
liver samples of NAFLD patients (94). Moreover, M2 macrophage-
derived exosomes contain a higher amount of miRNA-411-
5p than M1 macrophages. Wan et al. (94) revealed that M2-
derived exosomes suppress HCS activation by inhibiting the
direct target of miRNA-411-5p, Calmodulin-Regulated Spectrin-
Associated Protein 1 (CAMSAP1), during the transition of NASH
to NAFL.

In macrophages and neutrophils, miR-223 is the amplest
miRNA that is functionally active and can be transferred from
myeloid cells to other cells by exosomes (198–200). The serum
level of miR-223 was reported to be remarkably higher in NAFLD.
Moreover, a positive correlation has been seen between the levels
of serum miR-223 and IL-6 (107). IL-6 signaling exerts anti-
fibrotic effects in NAFLD-associated liver fibrosis by inducing
myeloid cells to enhance miR-223-enriched exosome release. IL-
6 increases the biogenesis of exosomes by upregulating gene
expression without changing the pre-miRNA-223 expression (107).
Myeloid cell-derived miRNA-223 enriched exosomes are delivered
to the liver and inhibit the expression of miR-223 target pro-
fibrotic genes like Igf1r, Cxcl10, Taz, and Nlrp3. Subsequently, they
help control Nash’s progression. Therefore, macrophage-derived
exosomes could be used as a therapeutic option that alters the
progression of NASH to NAFL (107).

4.3.2 Exosome blocking
Exosomes are the communication bridge between cells,

thus playing critical roles in the pathological development and
progression of numerous diseases (201). Accordingly, changing the
level of exosome secretion, inhibiting their activity, or changing
their contents could be a potential approach for treating diseases.

4.3.2.1 Exosomal mirna blocking

Targeting exosomal miRNAs may also be an effective treatment
approach in NAFLD. miRNAs are reported to have therapeutic
roles in NAFLD by regulating lipid metabolism, inflammation,
and fibrosis (90). As mentioned in the pathophysiology part,
exosomal miR-192-5p is higher in exosomes derived from NASH
hepatocytes and plays a role in NAFLD progression by triggering
M1 macrophage polarization (90). It has been found that this
mechanism can be reversed using a miR-192-5p inhibitor (91).
Hence, targeting serum exosomal miR-192-5p can be a beneficial
option for inhibiting the progression of NAFLD (91).

Moreover, MiR-122-5p is another prospective option in
exosome blocking. Zhao et al. (92) demonstrated that miR-122-

5p level was higher in exosomes originating from Huh7 cells,

a hepatic cell line loaded with cholesterol (including ox-LDL
and MβCD-cholesterol). They used anti-miR-122-5p to block this
exosomal miRNA. Anti-miR-122-5p-treated Huh7 cells-derived
exosomes exerted lower effects in inducing TNF-α, IL-6, and IL-
1β expression. Additionally, exosome-mediated inflammation of
macrophages was blocked.

4.3.2.2 Blocking liver-adipose tissue crosstalk

Adipose tissue exosomes may also be favorable therapeutic
targets for NASH. Several studies have supported the role of
pro-inflammatory mediators released from visceral adipose tissue
(VAT) in the progression of NAFLD (202, 203). A cross-talk
between adipose tissue and the liver is significant in NAFLD
development and progression. This connection seems to be
facilitated through exosomes (204). Stressed AT induces abnormal
lipid accumulation in the liver, which may be the major contributor
to NASH initiation and progression.

Studies have indicated that NASH development can be
a consequence of Endoplasmic Reticulum (ER)-stress, which
possibly changes miRNAs and metabolites of secretory exosomes
(77, 205). Exosomes derived from ER-stress induced-AT can
induce and aggravate NASH by delivering exosomal Aldo-keto
reductase family 1 B7 (AKr1b7) (111). They can be taken up
by hepatocytes and cause hepatic steatosis, inflammation, and
fibrosis. Akr1b7 deficiency protects murine liver from NASH
in HFD and methionine-choline-deficient diet (MCD)-fed mice.
In addition, suppressing hepatic AKr1b7 reduces TG level and
glycerol concentration and alleviates hepatic inflammation, ER
stress, and lipid synthesis. Accordingly, Epalrestat, an Akr1b7
inhibitor, can suppress the effects of AT exosomes on ER stress and
hepatic inflammation (68). Moreover, Treatment with GW4869, an
exosome production inhibitor (by inhibiting sphingomyelinase),
has been shown to alleviate ER stress and reduce lipid synthesis and
hepatic inflammation (111).

4.3.2.3 TGF-B signaling blockage

TGF-B signaling plays a major part in various biological
processes, such as cellular proliferation, differentiation, migration,
and cell death. It is also an essential pathway in the regulation
of liver homeostasis. TGF-B signaling helps NAFLD progression
from initial lipid accumulation to fibrosis (206). Steatosis, weight
gain, and impaired insulin sensitivity have been found to be
associated with TGF-B signaling in a mouse model of NASH (207).
Moreover, TGF-B signaling can modulate microRNA biogenesis
at transcriptional and post-transcriptional levels (208). TGF-
B induces hepatic secretion of exosomes carrying let-7b-5p, a
miRNA. TGF-β-let-7b-5p pathway contributes to HFD-induced
steatosis and obesity through lowering oxidative phosphorylation
in mitochondria and inhibiting white adipose tissue (WAT) to
brown fat conversion (113). Accordingly, Tgfbr2 loss in hepatocytes
ameliorates HFD-induced NAFLD by improving mitochondrial
biogenesis. It alleviates lipid accumulation and induces “browning”
of WAT via inhibiting miRNA let-7b-5p-containing exosomes
release from hepatocytes. In addition, let-7b-5p inhibitor can
downregulate the expression of Cd36, Fatp1, and Fabp1 (which
are fatty acid transporter genes), upregulate mitochondrial genes’
expression, like Cox5b and Atp5a, and reduce lipid accumulation
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in CL-316,243 (CL)/cold-exposed mice and HFD-induced obese
mice (113).

4.3.2.4 Drugs blocking exosomes

Some drugs are also effective in exosome blockage and
provide benefits through exosome modulation. GW4869, a
non-competitive neutral sphingomyelinase inhibitor, suppresses
exosome secretion. It has been shown to mitigate HFD-induced
NAFLD in mice models (112). Moreover, McCommis et al.
(209) evaluated the efficacy of next-generation thiazolidinediones
(MSDC-0602) in a mouse model of NASH. They have weak
binding to peroxisome proliferator-activated receptor γ (PPARγ)
and still directly suppress and interact with mitochondrial pyruvate
carrier (MPC). The effect of MSDC-0602 was through MPC2.
They revealed that MSDC-0602 treatment, directly and indirectly,
prevents and reverses stellate cell activation, liver fibrosis, and
lipid accumulation in HTF-C mice. It is through the indirect
modulation of exosomes derived from hepatocytes in an MPC-
dependent manner. Furthermore, Yan et al. (112) found that
metformin treatment inhibits HFD-induced NAFLD in mice,
thorough activating AMP-activated protein kinase (AMPKα1) in
WAT, which leads to the inhibition of exosomes shedding into
serum and WAT.

Ezetimibe is a lipid-lowering drug that selectively inhibits
the absorption of cholesterol through the blockage of NBC1LI-
dependent cholesterol transport in the small intestine. NBC1LI
is also present in the liver (210–212). Many studies have
demonstrated that ezetimibe treatment can significantly improve
hepatic steatosis, ballooning score, and NAFLD histological
features, even after its fibrotic changes (213, 214). It has
been reported that ezetimibe treatment activates autophagy in
human hepatocyte cells (215). In addition, Kim et al. (216)
observed other beneficial effects of ezetimibe in NAFLD. They
reported changes in Hepatocyte-macrophage interaction following
ezetimibe treatment. They observed decreased Interleukin 1 Beta
(IL-1B) mRNA and protein levels in macrophages cultured with
EVs released from ezetimibe/PA-cotreated hepatocytes.

4.3.3 Cargo delivery
Recently, a variety of different nano-based drug carriers have

been used in order to improve the therapeutic efficacy of chemical
and biomolecular drugs and ingredients (217). Exosomes have
favorable characteristics for being used as a drug delivery agent,
including small size, which facilitates its penetration into deep
tissues (218), having a slightly negative zeta potential (219),
biocompatibility, low immunogenicity, being able to cross the
biological barriers such as the BBB (220) and escape immune
clearance (221), low systemic toxicity, and long-term existence in
the target tissue (221, 222). Moreover, compared to many synthetic
drug delivery agents, using exosomes facilitates cellular uptake due
to their specific surface proteins (218, 223).

The exosomal-based delivery system has been loaded with
a variety of biomolecules for drug delivery like paclitaxel,
doxorubicin, curcumin as a peptide or protein-based therapeutics
containing STAT3 inhibitors18, catalase, and also genetic material
including siRNA (222), an effective carrier of miRNA that also
stabilizes the miRNA is exosome (224, 225).

4.3.4 miRNA-based therapeutics
MiRNAs are non-coding RNAs that take part in the regulation

of gene expression. Recently, some studies have revealed that
miRNA-based therapies are feasible and effective in various
diseases, especially cancers (226–228). For instance,miR-16-loaded
minicell is in clinical investigation for the treatment of malignant
pleural mesothelioma (229). MiRNAs may be potential treatment
options for NAFLD as well. In the early stages of NAFLD,
decreased intrahepatic miRNA levels are compensated by the
elevated production of miRNA in adipose tissue. As NAFLD
progresses, the external supply of liver-supporting miRNA falls
gradually, which leads to the deterioration of liver function
and an increase in hepatic carcinogenesis (110). Therefore,
supplying damaged liver with external miRNA may be efficient
in hindering the progression of NAFLD. Moreover, Baranova
et al. (110) revealed that purified miR-122 exosomes may be
potential cell-free therapeutics for preventing HCC in NAFLD.
Further research on the efficiency of miRNA therapy in NAFLD
is needed.

Blocking pathogenic exosomal miRNAs is also a potential
treatment approach for NAFLD. The level of miR-199a-5P is
found to be considerably higher in NAFLD. Exosomal miR-199a-

5P (Exo-miR-199a-5P) interferes with the metabolism of lipids
in the liver by suppressing the expression of hepatic MST1 (79).
Additionally, administration of Exo-miR-199a-5P induces hepatic
lipid deposition in normo-caloric diet (NCD) and HFD mice
(which is possibly via regulating AMPK and SREBP-1c signaling
pathways) (79). It also elevates liver weights and plasma TG levels
(79). Expectedly, exosomal anti-miR-199 can significantly reduce
lipid accumulation in vivo and in vitro. It also downregulates
lipogenic genes and lowers serum and hepatic TG and cholesterol
in HFD mice (79). Thus, treatment with exosomal anti-miR-199a

can offer fruitful effects in the prevention and treatment of liver
steatosis and dyslipidemia.

4.3.5 Exosomes-like nanoparticles
Plant-derived exosome-like nanoparticles (PDNPs) have shown

potential in drug delivery and as therapeutic applications in
different disease (230, 231). PDNPs are nano-sized vesicles released
from edible plants, including lemon, apple, carrot, grapefruit,
coconut, broccoli, grape, and ginger (232–241). Increasing evidence
indicates that similar to mammalian cell-secreted exosomes,
PDNPs have an important in intercellular communication (242,
243). In addition, they have certain superiorities compared to
mammalian cell-secreted exosomes or artificial nanoparticles; they
do not cause any detectable Immunogenicity or toxicity, they have
high potential in delivering biomolecules, and using them is highly
economical (95, 107, 110). They have been used in treating alcoholic
fatty liver as well as IBD and colon cancer (234, 237, 244–246).

Blueberry nanoparticles have shown promise in the treatment
of NAFLD. Blueberry is one of the most consumed berries
that contains a wide diversity of bioactive compounds, such
as flavonoids, anthocyanins, and polyphenols. Blueberry has
antioxidative, anti-inflammatory, and anti-tumor activity and can
have protective effects against cancers as well as Alzheimer’s
cardiovascular diseases, and depression (247–251). Zhao et al.
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(252) investigated the anti-oxidative impacts of Blueberry-
derived exosomes-like nanoparticles (BELNs) in hepatocytes. They
demonstrated that BELNs could attenuate oxidative stress by
modulating nuclear factor erythroid 2–related factor 2 (Nrf2)
distribution, which results in the upregulation of the antioxidative
proteins and enzymes expression such as SOD, NADPH/quinone
oxidoreductase I (NQ01), Heme Oxygenase-1 (HO-1), glutathione
peroxidase (GPx), and catalase (CAT). It also regulates Bcl-2-
associated X protein (BAX), Bcl-2, and HO-1 apoptosis-related
proteins’ expression in the liver of HFD-fed mice and rotenone-
induced HepG2 cells. BELN supplementation also improves
liver dysfunction and insulin resistance in NAFLD, which is
accompanied by a reduction in AST and ALT levels and fat
deposition as well as a downregulation in acetyl-CoA carboxylase
1 (ACC1) and fatty acid synthase (FAS) expression (252).

4.3.6 Exosome-melatonin cotreatment
Melatonin can potentiate the therapeutic effects of exosomes;

thus, it may be a favorable agent to be administered alongside
exosomes. Melatonin is a methoxyindole that is secreted by
the pineal gland and gastrointestinal tract during night and
daytime, respectively (253). Melatonin has a critical role in
the amelioration of different metabolic disorders in various
tissues, including adipose and hepatic tissues (254–256). Melatonin
exerts its beneficial effects in NAFLD exosomal therapy by
activating Bmal1 expression in adipocytes (257). Eventually,
Exosome-Melatonin co-treatment alleviates ER-stress-induced
hepatic steatosis through a significant downregulation in the
expression of adipocyte-derived exosomal resistin (257). Resistin
is an adipocytokine that may aggravate hepatic steatosis via
stimulating hepatic ER stress. Furthermore, exosome-melatonin
supplementation can lower hepatic inflammation, fibrosis, and cell
apoptosis (257).

4.4 Challenges and opportunities

The growing prevalence of NAFLD and its global health burden
have provoked considerable research on possible diagnostic and
therapeutic options for NAFLD. NAFLD is a multifactorial disease
which includes a broad spectrum of liver damage. Although various
pathophysiological mechanisms and genetic factors have been
proven to be related to NAFLD, its treatment remains challenging.
In recent years, exosomes have attracted widespread attention
for their role in metabolic dysfunctions and their efficacy as
pathological biomarkers. Exosomes have also shown tremendous
potential in treating various disorders, such as wound healing
and neurological and cardiovascular dysfunctions. With increasing
evidence supporting the significant role of exosomes in NAFLD
pathogenesis, their theragnostic potential has become a point of
interest in NAFLD. Considering the low cost and high feasibility
of EV detection and its non-invasiveness, using exosomes as a
diagnostic biomarker can be a revolution in NAFLD diagnosis.
Exosome-based therapies can also bring favorable results in
preventing and treating NAFLD. However, there are still certain

limitations that need to be overcome, and many questions need to
be answered before exosomes can be utilized as a routine treatment
for liver diseases.

Contrary to the satisfactory results of experimental exosome
therapy studies, exosomal therapy methods and safety are not
entirely clarified (258). Exosome-based therapy methods face both
pharmaceutical (production, isolation, and drug loading) and
pharmacokinetic (biodistribution and cellular uptake) challenges
in becoming clinical. One of the main limitations of exosome
therapy is the preparation and purification of a large volume of
desired exosomes. Moreover, designing standardmethods to isolate
and identify the types and sources of exosomes also needs to be
investigated more since the purity and physicochemical properties
of exosomes are strongly affected by their isolation method, and
no globally accepted standard is currently available in this era.
Besides, considering exosomes’ degradation during isolation and
freeze-thaw processes, standardization of isolation and storage
conditions is also crucial (148, 259–261). Another emerging
challenge in exosomal therapy is that natural exosomes, also known
as cell-derived exosomes, contain a multitude of biomolecules
with unknown effects. Cells in different environmental conditions
release exosomes with diverse cargo, complicating the predictability
of cell-derived exosome therapies (262). It also makes finding
the effective agent challenging. Therefore, a comprehensive review
of the content of exosomes and their effect on pathologic and
healthy tissues is also necessary. Additionally, although exosomes
are capable of cell targeting, concerns about their intrahepatic
and intrasplenic accumulation remain to be solved, as well as
their relatively short half-life. These problems may be manageable
if different tissue targeting strategies are used in conjunction
(168). Finally, suppressing exosome secretion or function as a
therapeutic strategy is far from utilization, as it requires a further
in-depth understanding of the exosome’s role in normal physiology
(259). Accordingly, there are still serious challenges in using
exosome-based therapies as a routine clinical option that should
be overcome.

5 Conclusion

Recent findings on exosomes have provided promising
prospects of using them as feasible, costly, and reliable diagnostic
options in NAFLD. In addition, exosomal-based therapies, having
low immunogenicity and high biocompatibility, for drug delivery
as an effective treatment option or by inhibiting their actions
as a treatment strategy have been associated with favorable
results in NAFLD. However, despite several pre-clinical studies
on exosomes in liver disorders, the passage to the clinical
setting remains unsure. There are still certain challenges to using
exosomal-based therapies in NAFLD. Besides, the feasibility of
exosome-related treatment strategies in NAFLD will await further
evaluation due to the critical role of exosomes in numerous
physiological conditions. Due to the great potential of this
novel theragnostic agent in NAFLD, further investigations on
their safety, clinical efficacy, and application standardization are
highly recommended.
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