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Objective: This study aimed to investigate the use of radiomics features and 
clinical information by four machine learning algorithms for predicting the 
prognosis of patients with hepatocellular carcinoma (HCC) who have been 
treated with transarterial chemoembolization (TACE).

Methods: A total of 105 patients with HCC treated with TACE from 2002 to 
2012 were enrolled retrospectively and randomly divided into two cohorts for 
training (n  =  74) and validation (n  =  31) according to a ratio of 7:3. The Spearman 
rank, random forest, and univariate Cox regression were used to select the 
optimal radiomics features. Univariate Cox regression was used to select clinical 
features. Four machine learning algorithms were used to develop the models: 
random survival forest, eXtreme gradient boosting (XGBoost), gradient boosting, 
and the Cox proportional hazard regression model. The area under the curve 
(AUC) and C-index were devoted to assessing the performance of the models in 
predicting HCC prognosis.

Results: A total of 1,834 radiomics features were extracted from the computed 
tomography images of each patient. The clinical risk factors for HCC prognosis 
were age at diagnosis, TNM stage, and metastasis, which were analyzed using 
univariate Cox regression. In various models, the efficacy of the combined 
models generally surpassed that of the radiomics and clinical models. Among 
four machine learning algorithms, XGBoost exhibited the best performance in 
combined models, achieving an AUC of 0.979 in the training set and 0.750 in the 
testing set, demonstrating its strong prognostic prediction capability.

Conclusion: The superior performance of the XGBoost-based combined model 
underscores its potential as a powerful tool for enhancing the precision of 
prognostic assessments for patients with HCC.
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1 Introduction

Primary liver cancer is the sixth most common cancer globally 
and the third leading cause of cancer-related deaths worldwide. 
Hepatocellular carcinoma (HCC) constitutes approximately 75–85% 
of all primary liver cancer cases (1). There are many treatment 
options for HCC, including local ablation therapy, liver 
transplantation, liver resection, transarterial chemoembolization 
(TACE), radiation therapy, and systemic treatment. Presently, surgical 
resection stands as the principal treatment approach for 
HCC. However, due to HCC often presenting without distinct early 
symptoms, many patients are already at the intermediate stage 
[Barcelona Clinic Liver Cancer (BCLC) B stage] according to the 
BCLC staging system at the time of diagnosis, missing the optimal 
timing for treatment (2). This limits the choice of treatment options 
and affects the patient’s prognosis.

The TACE is a minimally invasive technique that uses imaging 
guidance to diminish the blood supply to a tumor. Through a catheter 
inserted into an artery, contrast materials are administered to block 
the tumor’s blood vessels, thereby halting the growth of new blood 
vessels and causing cell death in the tumor. According to European 
and American HCC management guidelines, TACE is a commonly 
used interventional treatment method for patients with intermediate 
to advanced HCC, effectively delaying disease progression and 
providing a chance of survival for some patients (3–7).

Owing to considerable variability within the patients, the 
effectiveness and safety of TACE treatment for individuals with 
intermediate to advanced HCC can differ (8). Therefore, before 
treatment begins, an objective method must be available to accurately 
predict the prognosis of patients with HCC treated with TACE. For 
patients with HCC who are not expected to benefit from TACE, 
alternative treatment methods should be considered, such as using 
sorafenib or lenvatinib, while preserving liver function as much as 
possible to extend overall survival (OS) (9–11).

In recent years, with the advancement of imaging technology and 
the development of big data analysis techniques, radiomics has 
emerged as a new research field. Radiomics transforms medical 
images into high-dimensional, quantitative, and minable data through 
deep feature extraction and data analysis, quantifying tumor 
phenotypic characteristics and heterogeneity, and is considered a 
potential biomarker for personalized cancer treatment (12). Moreover, 
machine learning methods excel at handling the intricate interactions 
among complex variables, which is difficult for traditional models 
(13). Nowadays, some studies have reported substantial progress in 
the diagnosis, treatment response, and prognosis prediction of HCC 
by combining radiomics features, clinical information, and computer 
technology, especially in TACE treatment for patients with HCC (14–
16). However, predicting prognosis for patients with HCC with the 
use of radiomics or clinical information by different machine learning 
algorithms has not been fully explored, and their performance may 
vary in different scenarios.

Therefore, this study aimed to develop and validate different 
prediction models using four machine learning algorithms. It includes 
radiomics, clinical, and combined models incorporating clinical 
information and radiomics features. The purpose of these models is 
to predict the OS of patients with HCC after TACE treatment, 
providing new insights and effective strategies for selecting 
treatment options.

2 Materials and methods

2.1 Patients

To obtain the requisite data, we used the public data repository, 
The Cancer Imaging Archive (TCIA, https://www.
cancerimagingarchive.net/) database. We collected the data of 105 
patients with HCC who were treated with TACE from 2002 to 2012. 
The inclusion criteria specified that TACE must be the sole first-line 
or initial bridging therapy, accompanied by the availability of 
multiphasic contrast material enhanced computed tomography (CT) 
images at baseline, free from any image artifacts such as surgical clips. 
More information can be found in previous studies (17–19).

Patients were randomly divided into two categories at a ratio of 
7:3: a training cohort (n = 74) and a testing cohort (n = 31). The 
training cohort was used to build the predictive models, while the 
testing cohort was used to validate the performance of the 
predictive model.

2.2 Image acquisition and segmentation

The dataset used was taken from TCIA and consisted of CT 
images from 105 patients. More information can be found in the TCIA 
database and previous studies (17–19). For the dataset from TCIA, 
expert radiologists meticulously annotated CT images from 105 
patients using specialized software, focusing on the precise delineation 
of tumors and anatomical structures. Adhering to a standardized 
protocol, they outlined regions of interest on each slice, with their 
work undergoing rigorous review in consensus meetings to ensure 
accuracy and consistency.

2.3 Radiomics features

2.3.1 Radiomics features extraction
Feature extraction was based on Python 3.7 and implemented 

using the PyRadiomics software1 (20). The algorithms for obtaining 
radiomics features were referenced from the Image Biomarker 
Standardization Initiative (21). The extracted radiomics features can 
be divided into three groups: (1) first-order statistical features; (2) 
shape features, including two-dimensional and three-dimensional 
characteristics; and (3) texture features, including gray level 
co-occurrence matrix, gray level run length matrix, gray level size 
zone matrix, gray level dependence matrix, and neighborhood gray-
tone difference matrix.

2.3.2 Radiomics features selection
Initially, within the training dataset, the Spearman rank 

correlation coefficient was used to determine the inter-feature 
correlations, retaining one feature from any pair with a correlation 
coefficient exceeding 0.9 to eliminate highly redundant features. To 
maximally preserve the descriptive power of features, a greedy 
recursive elimination strategy was applied for feature filtering, wherein 

1 http://PyRadiomics.readthedocs.io/en/latest
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the most redundant feature in the current set was removed at 
each iteration.

Subsequently, further selection was performed using random 
forests, an ensemble learning method based on decision trees that 
assesses the contribution of each feature to the model’s predictive 
performance. By evaluating the role of feature splits in the trees, 
random forests determined the extent to which feature splits improve 
model accuracy. Feature importance helped identify the most 
influential features for predicting the target variable (survival time).

Finally, univariate Cox proportional regression analysis was used 
to evaluate the impact of each variable on survival time. In this 
analysis, each variable was examined in relation to survival time 
separately, to ascertain its effect on survival risk. This method 
identified variables for subsequent model construction by calculating 
the hazard ratio and corresponding statistical significance (p-value) 
for each feature, incorporating variables from univariate regression 
analyses with a p-value of <0.05.

2.4 Clinical features selection

In the initial data preparation phase, features with more than 20% 
missing values were excluded to maintain the integrity and reliability 
of the dataset. This step was crucial to ensuring the robustness and 
comprehensiveness of the clinical information used for modeling. 
Following this, to simplify the model and enhance its interpretability, 
continuous variables were converted into binary variables 
(dichotomization). This process involved setting a threshold for each 
feature, above which values were coded as 1 and below as 0, thus 
categorizing patients into two distinct groups based on each feature’s 
presence or absence.

For feature selection, univariate Cox proportional hazards 
regression analysis was used on the training set. This statistical 
method was used to assess the impact of each feature on the OS of 
patients with HCC, identifying variables that significantly affected the 
outcome. Features with a p-value less than 0.1 in this analysis were 
considered statistically significant and were selected for 
further modeling.

2.5 Construction and validation of models 
for survival prediction

The application of machine learning algorithms was carefully 
tailored, with specific parameters set to optimize their performance 
for radiomics and clinical data. The Cox proportional hazard 
regression model (Coxph) was parameterized to evaluate the risk 
factors with adjustments to its baseline hazard function and regression 
coefficients to suit the survival data. For the random survival forest 
(RSF) algorithm, many decision trees were constructed to improve 
prediction accuracy, with parameters such as the number of trees, 
maximum depth, and minimum samples per leaf tuned to prevent 
overfitting while capturing the complex interactions within the data. 
Gradient Boosting was utilized to minimize errors sequentially using 
decision trees, where the learning rate and the number of trees were 
critical parameters to balance bias and variance effectively. Finally, 
eXtreme gradient boosting (XGBoost) was used, as it is known for its 
efficiency and scalability. Parameters such as the learning rate, 

maximum depth of trees, and the number of estimators were 
optimized to enhance the model’s ability to accurately predict the 
outcomes of patients with HCC. To validate these models, a 5-fold 
cross-validation method was used, assessing their prediction accuracy 
through the average area under the curve (AUC) on the testing cohort, 
thus ensuring a robust evaluation of each algorithm’s predictive power.

2.6 Statistical analysis

Statistical analysis was conducted using R software version 4.2.3.2 
The normality of continuous data was tested using the Shapiro–Wilk 
test, with normally distributed data presented as mean ± standard 
deviation (x̅ ± s), and differences between two groups were analyzed 
using independent sample t-tests. Non-normally distributed data were 
presented as M (Q1, Q3), with differences between groups analyzed 
using the Mann–Whitney U-test. Categorical data were compared 
using the chi-square test, with a p-value of <0.05 considered 
statistically significant. OS was regarded as the primary outcome. 
Receiver operating characteristic (ROC) curves were generated using 
the “pROC” package. The model that achieved the highest AUC was 
chosen as the best prediction model. ROC curves and C-index were 
used to assess the predictive capability of different models for the 
prognosis of patients with HCC treated with TACE.

3 Results

3.1 Clinical baseline characteristics of 
patients

Table  1 displays the clinical characteristics of patients in the 
training cohort (n = 74) and the testing cohort (n = 31). A total of 12, 
24, 66, and 3 patients were in BCLC stages A, B, C, and D, respectively. 
In the training cohort, most patients (71.62%) were diagnosed at age 
over 60 years, and 66.22% were men. Additionally, most patients were 
not diagnosed with vascular invasion (82.43%) or diabetes (66.22%). 
Moreover, 74.32% of the patients had cirrhosis, and 94.59% had 
metastasis. No significant differences were observed in clinical 
characteristics between the training and testing cohorts (p > 0.05).

3.2 Radiomics features screening results

A total of 1,834 radiomics features were initially extracted. Using 
the Spearman rank correlation coefficient to assess the inter-feature 
correlations, 233 features were retained. Subsequent selection through 
random forests resulted in the preservation of 13 features owing to the 
importance scores. Finally, univariate Cox regression analysis included 
three variables (p < 0.05), comprising two first-order features and one 
texture feature. Among these, the feature square_glcm_ClusterShade 
made the most significant contribution. Detailed information about 
the process is depicted in Figures  1, 2. All selected features were 
utilized in constructing the radiomics and combined models.

2 http://www.r-project.org
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TABLE 1 Baseline of 105 enrolled patients from TCIA.

Characteristics Training cohort (N = 74) Testing cohort (N = 31) P

OS, No. (%) 0.98

Alive 9 (12.16%) 3 (9.68%)

Dead 65 (87.84%) 28 (90.32%)

OS.time (weeks), mean (SD) 128.03 (106.22) 123.13 (97.57) 0.93

Hepatitis, No. (%) 1.00

No 38 (51.35%) 16 (51.61%)

Yes 36 (48.65%) 15 (48.39%)

Age at diagnosis (years), No. (%) 1.00

<=60 21 (28.38%) 9 (29.03%)

>60 53 (71.62%) 22 (70.97%)

Sex, No. (%) 0.80

Male 49 (66.22%) 19 (61.29%)

Female 25 (33.78%) 12 (38.71%)

Smoking, No. (%) 0.21

No 29 (39.19%) 17 (54.84%)

Yes 45 (60.81%) 14 (45.16%)

Alcohol, No. (%) 0.38

No 32 (43.24%) 17 (54.84%)

Yes 42 (56.76%) 14 (45.16%)

Diabetes, No. (%) 1.00

No 49 (66.22%) 21 (67.74%)

Yes 25 (33.78%) 10 (32.26%)

Cirrhosis, No. (%) 1.00

No 19 (25.68%) 8 (25.81%)

Yes 55 (74.32%) 23 (74.19%)

Child-Pugh, No. (%) 0.29

A 63 (85.14%) 23 (74.19%)

B or C 11 (14.86%) 8 (25.81%)

Tumor nodularity, No. (%) 0.95

Uninodular 36 (48.65%) 16 (51.61%)

Multinodular 38 (51.35%) 15 (48.39%)

Vascular invasion, No. (%) 0.16

No 61 (82.43%) 21 (67.74%)

Yes 13 (17.57%) 10 (32.26%)

Metastasis, No. (%) 0.71

No 70 (94.59%) 28 (90.32%)

Yes 4 (5.41%) 3 (9.68%)

AFP(ng/mL) , No. (%) 0.76

<400 54 (72.97%) 21 (67.74%)

>=400 20 (27.03%) 10 (32.26%)

Okuda, No. (%) 0.26

Stage I 53 (71.62%) 18 (58.06%)

Stage II or III 21 (28.38%) 13 (41.94%)

TNM, No. (%) 1.00

Stage I or II 40 (54.05%) 17 (54.84%)

Stage III or IV 34 (45.95%) 14 (45.16%)

BCLC, No. (%) 0.16

Stage A or B 29 (39.19%) 7 (22.58%)

Stage C or D 45 (60.81%) 24 (77.42%)
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3.3 Clinical characteristics included 
analysis

The clinical characteristics of patients in the training cohort are 
presented in Table  2. Based on the univariate Cox proportional 
hazards regression analysis within the training cohort (p ≤ 0.1), only 
age at diagnosis, TNM staging, and metastasis were associated with 
OS in patients with HCC. Age at diagnosis helped in understanding 
the survival prognosis, with older age potentially indicating a poorer 
outcome. The TNM stage, an indicator of cancer progression, provided 
crucial information on tumor size, lymph node involvement, and the 
extent of metastasis. The presence of metastasis, indicating the spread 
of cancer to other parts of the body, was another critical factor 
influencing survival rates. These findings underscored the importance 
of these variables in predicting the survival outcomes of patients with 

HCC. They were used to refine the predictive model for better 
accuracy and clinical relevance.

3.4 Model performance

Model performance is shown in Tables 3, 4. ROC curves for 
each model in the training and testing cohorts are shown in 
Figure 3. Among all machine learning models, the evaluation of 
combined models generally outperformed the radiomics or 
clinical models in predicting HCC prognosis in the training and 
testing cohorts. Specifically, the XGBoost model in the combined 
models showed the best performance, achieving an AUC of 
0.979 in the training cohort and an AUC of 0.750 in the testing 
cohort, demonstrating strong prognostic prediction capability. 
The AUC of the combined model was significantly higher than 

FIGURE 1

Heatmap of 233 radiomics features correlations according to Spearman rank correlation coefficient.
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TABLE 2 Clinical variables for predicting survival in the univariate Cox analysis.

Variable Hazard ratio HR_CI_Lower HR_CI_Upper P

Progressed 1.43 0.87 2.36 0.16

Hepatitis 0.72 0.44 1.19 0.20

Age at diagnosis 1.79 0.99 3.23 0.05

Sex 1.46 0.87 2.45 0.16

Smoking 1.08 0.64 1.82 0.76

Alcohol 0.85 0.52 1.41 0.54

Family history of cancer 1.05 0.63 1.74 0.86

Family history of liver cancer 0.82 0.30 2.28 0.71

Diabetes 1.16 0.69 1.94 0.57

Personal history of cancer 1.07 0.54 2.11 0.84

Cirrhosis 0.69 0.40 1.20 0.19

Performance status 1.23 0.75 2.02 0.40

Child-Pugh 1.42 0.72 2.80 0.31

Tumor nodularity 1.24 0.76 2.04 0.39

Vascular invasion 1.49 0.81 2.75 0.20

Metastasis 6.53 2.22 19.25 0.00

Lymph nodes 1.23 0.61 2.49 0.57

Portal Vein Thrombosis 1.76 0.86 3.57 0.12

Tumor involvement 0.91 0.48 1.71 0.77

AFP 1.15 0.65 2.04 0.64

CLIP 1.49 0.72 3.05 0.28

Okuda 1.02 0.60 1.75 0.93

TNM 1.53 0.93 2.52 0.09

BCLC 1.21 0.73 2.00 0.47

FIGURE 2

Forest plot of radiomics features selection with univariate Cox regression analysis.
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that of the XGBoost clinical model (AUC = 0.706) and the 
XGBoost radiomics model (AUC = 0.990). In contrast, the clinical 
model exhibited a lower AUC, with particularly weaker 
performance observed in the Coxph and RSF algorithms. In the 
training cohort, the Coxph and RSF algorithms demonstrated an 
AUC of 0.726 and 0.728, respectively, while in the testing cohort, 
the AUC decreased to 0.524 and 0.571, respectively. The clinical 
models displayed consistent accuracy across all algorithms, with 
an accuracy of 0.838  in the training and 0.742  in the testing 
cohorts. Conversely, the radiomics models and the combined 
models exhibited significant fluctuations in accuracy across 
different algorithms.

4 Discussion

Primary liver cancer is the sixth most common cancer globally. 
Most patients are diagnosed at an intermediate stage according to 
the BCLC staging system (stage B), for which TACE is considered 
the preferred treatment option. This plays an important role in 
managing patients with HCC (1, 7). However, the treatment 
response to TACE among patients with HCC often exhibits 
considerable individual variability, and liver function usually 
declines in patients with intermediate-stage HCC compared with 
healthy individuals. Moreover, TACE is highly likely to impose an 
additional burden on the liver; therefore, accurate preoperative 

TABLE 3 Performance of different machine learning algorithms in the training cohort.

AUC C-Index Accuracy Sensitivity Precision F1

Clinical models

  Coxph 0.726 0.604 0.838 0.892 0.892 0.892

  Gradient boosting 0.718 0.570 0.838 0.892 0.892 0.892

  RSF 0.728 0.579 0.838 0.892 0.892 0.892

  XGBoost 0.706 0.556 0.838 0.892 0.892 0.892

Radiomics models

  Coxph 0.781 0.663 0.730 0.708 0.708 0.708

  Gradient boosting 0.800 0.652 0.743 0.723 0.723 0.723

  RSF 0.822 0.674 0.757 0.738 0.738 0.738

  XGBoost 0.990 0.979 0.881 0.892 0.892 0.092

Combined models

  Coxph 0.834 0.692 0.824 0.831 0.831 0.831

  Gradient boosting 0.805 0.656 0.743 0.723 0.723 0.723

  RSF 0.862 0.696 0.757 0.738 0.738 0.738

  XGBoost 0.979 0.985 0.922 0.938 0.938 0.938

TABLE 4 Performance of different machine learning algorithms in the testing cohort.

AUC C-Index Accuracy Sensitivity Precision F1

Clinical models

  Coxph 0.524 0.575 0.742 0.821 0.821 0.821

  Gradient boosting 0.613 0.579 0.742 0.821 0.821 0.821

  RSF 0.571 0.590 0.742 0.821 0.821 0.821

  XGBoost 0.649 0.585 0.742 0.821 0.821 0.821

Radiomics models

  Coxph 0.690 0.615 0.516 0.500 0.500 0.500

  Gradient boosting 0.607 0.558 0.613 0.643 0.643 0.643

  RSF 0.583 0.554 0.645 0.679 0.679 0.679

  XGBoost 0.702 0.534 0.623 0.650 0.650 0.650

Combined models

  Coxph 0.655 0.615 0.806 0.857 0.857 0.857

  Gradient boosting 0.631 0.560 0.613 0.607 0.607 0.607

  RSF 0.607 0.578 0.645 0.679 0.679 0.679

  XGBoost 0.750 0.512 0.758 0.879 0.879 0.879
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FIGURE 3

ROC curves of four machine learning algorithms in the training cohort: radiomics models (A), clinical models (B), and combined models (C), in the 
testing cohort: radiomics models (D), clinical models (E), and combined models (F).

prediction is crucial for treating and managing patients with HCC 
(22). In this study, we constructed four machine learning models 
based on patients’ CT images and clinical information. The 
combined models outperformed single-feature models in 
predicting the prognosis of patients with HCC treated with TACE, 
with the XGBoost combined model demonstrating the 
best performance.

Recently, the rapid advancement of radiomics has enhanced the 
accuracy of clinical diagnosis and prognosis assessment. Radiomics 
extracts tissue and lesion characteristics, converting potential 
pathological and physiological information in images into mineable 
high-dimensional quantitative image features for analysis, training, 
and validation, providing a powerful tool for modern medicine to 
address clinical problems (23, 24). This applies to HCC as well, where 
radiomics is extensively used. Liu et al. (25) investigated the OS of 
patients with HCC after hepatectomy. Feng et al. (26) built a radiomics 
model to predict the macrotrabecular-massive subtype in patients 
with HCC. Xia et al. (27) extracted radiomics features from images to 
predict microvascular invasion status in patients with HCC. Tong 
et al. (28) and Khodabakhshi et  al. (29) have also confirmed that 
radiomics features can predict the prognosis of many cancers. This 
suggests the potential of radiomics in predicting the prognosis of 
patients with HCC after TACE. Therefore, in our study, we opted to 
incorporate radiomics features into constructing machine learning 
models. We selected three radiomics features, including two first-
order features and one texture feature: square_glcm_ClusterShade, 

wavelet_HHL_firstorder_Skewness, and wavelet_LHL_firstorder_ 
10Percentile.

However, interpreting the relationship between radiomics 
features and complex tumor biological processes remains 
challenging, prompting the inclusion of clinical information in 
our analysis. Regarding clinical information, our study identified 
age at diagnosis, metastasis, and TNM stage as significant 
variables affecting the prognosis of patients with HCC, with 
metastasis occurrence being the most critical variable based on 
importance scores. Combined models using clinical information 
and radiomics features outperformed radiomics or clinical 
models, echoing findings from previous studies. Ning et al. (30) 
conducted a study that combined radiomics signatures and 
clinical information to predict early recurrence in HCC. The 
combined model demonstrated the highest predictive power in 
the training and validation datasets, with AUCs of 0.846 and 
0.737, respectively. Fang et al. (31) and Geng et al. (32) also drew 
a similar conclusion consistent with our results, where the 
combined model was a better predictor than the clinical or 
radiomics models.

Machine learning is widely applied in the medical field 
because of its high predictive accuracy (33). To date, various 
machine learning algorithms have been utilized to predict 
survival, prognosis, and treatment efficacy in patients with 
intermediate or advanced HCC treated with TACE. However, 
previous studies usually limit themselves to a single machine 
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learning algorithm for analysis and modeling (34, 35). 
Considering the different features and scopes of application of 
various machine learning algorithms, this study used four 
advanced algorithms: XGBoost, RSF, gradient boosting, and 
Coxph to build models predicting the OS of patients with HCC 
under TACE treatment. Our results suggested that XGBoost 
performed the best among all machine learning algorithms, 
especially in the combined model constructed after merging 
radiomics and clinical features, with an AUC of 0.979  in the 
training and 0.750 in the testing sets, significantly outperforming 
other algorithms, thereby proving its strong predictive efficiency. 
According to other studies, XGBoost has been proven to have a 
better predictive performance than other machine learning 
algorithms, consistent with our results (36–38). XGBoost is a 
scalable and highly accurate machine learning library that breaks 
through the computational limits of gradient boosting tree 
algorithms. The XGBoost algorithm iteratively optimizes the 
structure of trees to minimize the loss function, introduces L1 
regularization to reduce the number of leaf nodes of decision 
trees, and introduces L2 regularization to reduce the weight of 
leaf nodes of decision trees, among other iterative optimizations, 
enhancing the model’s generalization ability. XGBoost is distinct 
from other machine learning algorithms because it captures 
complex and non-linear relationships between features and 
outcomes. It efficiently processes complex, high-dimensional 
data, handles missing values effectively, and prevents overfitting. 
This makes XGBoost particularly well-suited for high-
dimensional data scenarios such as radiomics. Our study 
demonstrated the great potential of the XGBoost in accurately 
predicting the prognosis of patients with HCC treated with 
TACE, especially when based on radiomics features and clinical 
characteristics. Apart from machine learning, we  have also 
identified other advanced algorithms, such as deep learning, 
which have achieved notable successes in various fields (39, 40). 
However, because of the limited sample size in this study, 
machine learning might be a more suitable choice. In the future, 
we will obtain more samples for further in-depth research.

The limitations of this study included: (1) The ideal TACE 
candidates are patients in BCLC stage B; however, most patients 
(n = 70) were in BCLC stages C and D. (2) Data were selected in a 
single center, and external validation from other research centers is 
needed to improve the universality of the predictive model. (3) The 
sample size was small. (4) The relatively small number of patients 
included could have led to model overfitting, and increasing the 
number of cases would enhance the model’s generalizability. (5) 
This study was retrospective, lacking a prospective study, and 
subject to selection bias. (6) An easy-to-use application designed 
for machine learning algorithms is lacking.

5 Conclusion

The purpose of this study was to investigate how four 
machine learning algorithms utilize radiomics features and 
clinical information to predict the prognosis of patients with 

HCC treated with TACE. By applying feature selection methods 
and testing various machine learning algorithms, it was found 
that the combined model notably outperformed those based 
solely on radiomics or clinical features. Among the four 
algorithms, XGBoost emerged as the most effective, 
demonstrating the model’s enhanced predictive power in 
forecasting patient outcomes. This underscores the potential of 
integrating radiomics and clinical data through advanced 
machine learning techniques such as XGBoost to improve 
prognostic predictions in patients with HCC.
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