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Background: Potential uncertainties and overtreatment exist in adjuvant 
chemotherapy for triple-negative breast cancer (TNBC) patients.

Objectives: This study aims to explore the performance of deep learning (DL) 
models in personalized chemotherapy selection and quantify the impact of 
baseline characteristics on treatment efficacy.

Methods: Patients who received treatment recommended by models were 
compared to those who did not. Overall survival for treatment according 
to model recommendations was the primary outcome. To mitigate bias, 
inverse probability treatment weighting (IPTW) was employed. A mixed-effect 
multivariate linear regression was employed to visualize the influence of certain 
baseline features of patients on chemotherapy selection.

Results: A total of 10,070 female TNBC patients met the inclusion criteria. 
Treatment according to Self-Normalizing Balanced (SNB) individual treatment 
effect for survival data model recommendations was associated with a survival 
benefit (IPTW-adjusted hazard ratio: 0.53, 95% CI, 0.32–8.60; IPTW-adjusted risk 
difference: 12.90, 95% CI, 6.99–19.01; IPTW-adjusted the difference in restricted 
mean survival time: 5.54, 95% CI, 1.36–8.61), which surpassed other models and 
the National Comprehensive Cancer Network guidelines. No survival benefit 
for chemotherapy was seen for patients not recommended to receive this 
treatment. SNB predicted older patients with larger tumors and more positive 
lymph nodes are the optimal candidates for chemotherapy.

Conclusion: These findings suggest that the SNB model may identify patients 
with TNBC who could benefit from chemotherapy. This novel analytical 
approach may provide debiased individual survival information and treatment 
recommendations. Further research is required to validate these models in 
clinical settings with more features and outcome measurements.
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Introduction

Breast cancer is the most prevalent malignant tumor in women 
worldwide (1) and the leading cause of cancer-related deaths (2). 
Triple-negative breast cancer (TNBC) is the most aggressive subtype 
of breast cancer (3), which is characterized by the absence of estrogen 
receptors (ERs) and progesterone receptors (PRs), as well as the lack 
of overexpression of human epidermal growth factor receptor 2 
(HER2) (4). Patients with TNBC account for 10–20% of breast cancer 
cases diagnosed each year (5), and they have a higher rate of 
recurrence and mortality (6).

Currently, adjuvant chemotherapy is the standard of care for 
operable TNBC, but it is only partially effective (7). For example, the 
National Comprehensive Cancer Network (NCCN) guidelines only 
recommend adjuvant chemotherapy for patients with tumor size 
larger than 1 cm (beyond T1b) or pN+ (8). However, a number of 
studies have found that patients with T1b TNBC still benefit after 
receiving adjuvant chemotherapy (9, 10). In addition to tumor size, 
age, race, surgery, and radiation therapy are also important indicators 
for chemotherapy decisions (11). This indicates that the therapeutic 
heterogeneity of adjuvant chemotherapy cannot be  ignored in the 
TNBC population.

The individuality of the patient should be at the core of every 
treatment decision (12). Estimating the average treatment effect with 
randomized control trials (RCTs) or observational studies that 
incorporate extensive statistical theories only provides a coarse 
summary of the distribution of a treatment effect, which may 
be  inapplicable or even misleading at the individual level (13). 
Traditionally, to assess the heterogeneity of treatment and select the 
optimal treatment for a particular patient, researchers should 
continually subdivide subgroups through clinical experience to 
approximate an individual patient or a particular class of patients and 
repeatedly conduct RCTs within these subgroups. However, the 
traditional approach is not only very expensive and time-consuming 
but also ethically restrictive (14). Inferring unbiased individual 
treatment effects (ITEs) in observational studies is challenging 
because observational data can be affected by numerous biases (13). 
Leveraging machine learning, the ITEs can be  predicted through 
counterfactual reasoning (13). Previous studies (15, 16) have 
demonstrated that the deep learning (DL)-based treatment 
recommendation system can effectively predict ITEs, recognize 
treatment heterogeneity, and select optimum treatment for 
the patients.

The aim of this study is to establish a set of sophisticated DL 
treatment guidelines. Thus, it can provide optimal adjuvant 
chemotherapy recommendations for TNBC patients at the individual 
level and help patients achieve the longest possible survival.

Methods

Study design and setting

This was a population-based retrospective cohort study making 
individualized adjuvant chemotherapy recommendations for patients 
with TNBC using DL. All participants in this study were included in 
the Surveillance, Epidemiology, and End Results (SEER) 18 database, 
which tracks cancer patients in 18 regions of the United States and 

represents approximately 27.8% of the national population (17). This 
study followed the Strengthening the Reporting of Observational 
Studies in Epidemiology reporting guidelines (18).

Female patients diagnosed with ductal, lobular, or ductal-lobular 
carcinoma as a single primary cancer between 2010 and 2016, who 
underwent either breast-conserving surgery (BCS) or mastectomy, 
were included in the study. The exclusion criteria were as follows: (1) 
missing demographic information; (2) unknown HER2, ER, or PR 
status; (3) carcinoma in situ; (4) unknown laterality and bilateral 
breast cancer; (5) unspecified Tumor Node Metastasis (TNM) stage 
or tumor size; (6) unknown metastasis sites; (7) unknown axillary 
lymph node status; (8) uncertain whether adjuvant or neoadjuvant 
systemic treatment and radiotherapy was performed; (9) unknown 
histologic grades and types; and (10) incomplete follow-up or multiple 
malignancies. The inclusion process is illustrated in Figure 1A.

We collected baseline information (sex, age, race, income, and 
marriage status), tumor characteristics (location, size, laterality, 
histological grade, histologic type, and TNM stage), and treatment 
details (type of surgery and chemotherapy) for cases from the SEER 
database. Patients were excluded if any of the included clinical 
characteristic statuses were undocumented or missing. The primary 
outcomes of this study included overall survival (OS), which is the 
time interval from diagnosis to all-cause death. Patients who remained 
alive on 31 December 2020 were censored in the study. The tumor 
stage was determined according to the 7th American Joint Committee 
on Cancer Staging Manual.

Algorithms

The T-learner adopts two models to estimate the ITEs by 
ITE x x= ( ) − ( )µ µ1 0 , where ∝1 and ∝0 denote the models trained on 
corresponding treatment populations (19). This approach is composed 
of two estimators trained in different treatment groups, representing 
different treatment hypotheses in inference. The ITE is computed by 
observing the difference in predictions between these two estimators, 
which can be any prediction model, such as the Cox proportional 
hazards (CPH) model. While the T-learner can exclude certain 
confounding factors, it remains vulnerable to inconsistent predictive 
performance (13) and biased treatment allocation (20) due to 
disparate patient numbers and imbalanced baseline characteristics in 
the two treatment groups. DeepSurv (21) was originally proposed to 
relax the linearity and normality assumptions of CPH by replacing the 
single-layer linear model of CPH with a multilayer perceptron (MLP). 
In a follow-up study (15), it was found that combining DeepSurv with 
the T-learner was effective in inferring ITEs.

Cox Mixtures with Heterogeneous Effects (CMHEs) (22) operate 
on the assumption that the cohort consists of potential subgroups with 
different survival scenarios. Within each risk group, the proportional 
hazards assumption holds a concept known as the conditional 
proportional hazard assumption. To maximize the representation of 
diverse risk groups, the expectation–maximization technique 
was implemented.

The Balanced Individual Treatment Effect for Survival (BITES) 
data (20), a semi-parametric DL survival regression model, addresses 
the issue of selection bias using representation-based causal inference. 
It contains a shared network and two risk networks (three MLPs) and 
uses the Integral Probability Metrics to maximize the p-Wasserstein 
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distance of different treatment arms in the shared network, which 
proved to be effective in controlling imbalance for both covariate 
space (23) and latent representations (24). The BITES utilizes a holistic 
model with two output heads to replace the two separately trained 
estimators of the T-learner. As the BITES is trained end-to-end, it is 
less susceptible to inconsistencies in the number of patients between 
the two treatment groups.

The SNB individual treatment effect for survival data (25) 
integrates the T-learner and representation-based causal inference 
methods. The architecture of SNB is presented in Figure 1B. SNB 
inherits the overall architecture of BITES with MLPs replaced with 
self-normalizing neural networks (SNNs) (26). The neuron activations 
of SNNs automatically converge toward zero mean and unit variance, 
which in turn avoids exploding and vanishing gradients. Therefore, 
the feature extraction ability and robustness of SNB are significantly 
improved, which is expected to accurately predict the factual and 
counterfactual survival outcomes, thereby inferring more accurate 
ITEs. The shared network calculates balanced (debiased) latent 
representation using Smoothed Optimal Transport loss (27). Each risk 
network represents the corresponding treatment group, akin to a 
T-learner.

Calculation of individual treatment effect

When estimating the ITEs, we can observe only one outcome per 
patient; the alternative scenario remains hypothetical and thus 
unobservable. Thus, these outcomes need to be predicted by models. 
The individual survival distribution is obtained with the predicted log 
hazard ratios and treatment-specific baseline hazards, which describe 
the change in survival probability over time.

We define the clinically interpretable potential outcome as the 
area under the survival curve for an individual over a specified period 
(10 years), termed restricted survival time (RST). The formula can 

be described as: ITE X t S t x dt S t x dtRST
x

t t
;( ) = ( ) − ( )
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where t  indicates the preset time horizon, x  indicates the covariates, 
and S t x



0 |( )  and S t x

1 |( )  are the predicted survival distributions 
for an individual under two treatment scenarios, respectively. 
Individualized treatment recommendations can then be  obtained 
based on the value of ITEs.

Model development, validation, and 
treatment recommendation

We trained five models in total: SNB, BITES, Cox Mixtures with 
Heterogeneous Effects (CMHE) (22), DeepSurv (21), and CPH. The 
DeepSurv and CPH were trained and used with a T-learner structure.

Initially, we selected patients diagnosed in 2010 to serve as an 
external testing set concealed from the models. In the remaining data, 
patients were randomly allocated to a training set of 70% of the 
samples used for building the models; and a testing set of 30% of the 
samples, unseen by models, were used for evaluating the model 
performance. During training, we used five-fold cross-validation to 
tune the hyperparameters of the model; each time, the model was 
trained on four-fifths of the training set and validated on the 
remaining one-fifth of the training set. The training process will 
be automatically terminated if the validation loss does not decrease 
in 1,000 iterations. Tuned hyperparameters included the nodes and 
layers of MLPs or SNNs, learning rate, mini-batch size, the strength 
of Smoothed Optimal Transport loss (applicable for BITES and SNB), 

A
B

FIGURE 1

Inclusion process and model architecture. (A) Selection and exclusion criteria for patient inclusion. (B) The model architecture of Self-Normalizing 
Balanced (SNB) individual treatment effect for survival data.
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and the number of risk groups (applicable for CMHE). We did not 
take any missing value filling approach because there were no missing 
values. When feeding the models, all categorical variables that 
contain more than three factors were processed with 
one-hot encoding.

To explore the recommendation effect of models, we divided the 
patients into the recommended (Consis.) and anti-recommended 
(Inconsis.) groups based on whether the actual treatment they 
received was consistent with the model recommendations. The 
multivariate hazard ratio (HR), 10-year risk difference (RD), and the 
difference in the 10-year restricted mean survival time (DRMST) 
were calculated between Consis. and Inconsis. groups to evaluate the 
protective effects of models. The HR compares the relative risk of an 
event occurring between two groups over time; RD represents the 
absolute difference in event rates between two groups; and DRMST 
measures the change in average survival time between two groups. 
Overall, these metrics measure the survival advantage that following 
model recommendations can provide over not following them. A 
positive difference indicates longer survival in the treatment group. 
A positive RD suggests a higher event rate in the treatment group, 
while a negative RD indicates a lower rate. Inverse probability 
treatment weighting (IPTW) was used to control for baseline 
imbalance between the Consis. and Inconsis. groups. All models used 
the same ITE calculation methods. To prevent the potential that the 
Consis. group may have better prognostic factors, the IPTW was used 
to correct the baseline imbalance between the Consis. and Inconsis. 
groups. Demographic and tumor characteristics were adjusted, 
including age, race, marriage status, income, location, laterality, 
histology, grade, TNM stage, tumor size, and lymph node positivity. 
Treatment variables were not adjusted as they were measured after 
exposure (treatment recommendation) and may introduce 
unmeasured confounding (28).

To account for the effect of covariates on relative efficacy, 
we calculated the linear relationship between patient characteristics 
and ITEs (29). Considering that the SEER database contains patients 
originating from different regions, a mixed-effect linear regression was 
used to calculate this effect. It enables the model to account for and 
capture regional heterogeneity, thereby improving the accuracy and 
generalizability of the estimates (30).

Statistical analyses

All statistical analyses were performed using R version 4.1.3 and 
Python version 3.8. Models were built with Python packages Pytorch 
2.0.0 and scikit-survival 0.19.0, with main codes provided by the 
original papers cited above. We have made some improvements and 
integrations to the source codes, which are open source in Github: 
https://github.com/xinyi1999/MyPublication. In this repository, 
model codes, ITE calculations, and other methods are documented. 
Metrics were calculated using the R packages survival and rms. The 
IPTW was conducted using the R package ipw. The mixed-effect 
linear regression was developed using the R package lme4. 
Continuous variables are reported as median and interquartile range 
(IQR), and categorical variables are expressed as numbers and 
percentages (%). The log-rank test was used to compare the Kaplan–
Meier (KM) curves.

Results

Patients

A total of 10,070 female TNBC patients with complete follow-up 
records who met the inclusion criteria were included in this study. The 
overall mortality rate was 19.0% (95% CI, 19.2–19.9%) over a median 
(IQR) follow-up time of 60 (42–48) months. The median (IQR) age was 
58 (49–67) years, and the median (IQR) tumor size was 21 (13–32) 
mm. In total, 1,310 patients (15.2%) were in the non-chemotherapy 
group, and 7,310 (84.8%) received chemotherapy. The baseline clinical 
characteristics of all patients are presented in Table 1.

Model performance

The testing set contained 2,573 patients, while the external testing 
sets included 1,468 patients diagnosed in 2010. All performance 
indicators were calculated in the testing and external testing sets with 
a preset time horizon of 10 years. The detailed model performance is 
demonstrated in Table 2.

The integrated Brier score (IBS) was calculated to measure the 
error between the model predicted and actual survival distributions 
within both factual and counterfactual situations (31), which can 
reflect the purity and success of counterfactual phenotyping (22). In 
both testing (IBS in the non-chemotherapy group (IBSa): 0.09, 95% CI, 
0.08–0.10; IBS in the chemotherapy group (IBSb): 0.10, 95% CI, 0.09–
0.11) and external testing sets (IBSa: 0.12, 95% CI, 0.11–0.13; IBSb: 
0.12, 95% CI, 0.11–0.13), we  observed that SNB had the best 
discrimination, followed by BITES (IBSa in the testing set: 0.10, 95% 
CI, 0.09–0.12; IBSb in the testing set: 0.11, 95% CI, 0.10–0.13; IBSa in 
the external testing set: 0.12, 95% CI, 0.10–0.14; IBSb in the external 
testing set: 0.13, 95% CI, 0.12–0.14).

The models predicted patients’ factual and counterfactual survival 
purely based on baseline covariates. Then, the ITEs and subsequent 
treatment recommendations were obtained. The metrics of interest lie 
in how much survival advantages can be gained by following model 
recommendations, which can be reflected by evaluating the protective 
effect of the Consis. group compared to the Inconsis. group. We set the 
metrics that decide the performance of the model to those corrected 
with IPTW, as they were largely unaffected by other prognostic factors. 
We also compared the NCCN guidelines with the models. The NCCN 
guidelines recommend TNBC patients with pT1–3pN0–1mi and 
tumor>1 cm or with pN+ to receive chemotherapy (8). Patients whose 
actual treatment was consistent with the NCCN guidelines were 
compared to those who were inconsistent.

In the testing set, the following SNB recommendation resulted 
from the most significant survival enhancement (IPTW-adjusted HR: 
0.68, 95% CI, 0.50–0.94; IPTW-adjusted RD: 9.06, 95% CI, 4.15–13.91; 
IPTW-adjusted DRMST: 7.08, 95% CI, 2.89–10.98). CPH (IPTW-
adjusted HR: 0.71, 95% CI, 0.55–0.98; IPTW-adjusted RD: 4.55, 95% 
CI, 1.66–7.44; IPTW-adjusted DRMST: 2.22, 95% CI, 0.48–4.79) and 
CMHE (IPTW-adjusted HR: 0.72, 95% CI, 0.82–0.98; IPTW-adjusted 
RD: 6.38, 95% CI, 0.78–12.00; IPTW-adjusted DRMST: 1.99, 95% CI, 
−2.66–5.89) both ranked second. Following NCCN guidelines only 
reduced 10-year mortality (RD: 6.62, 95% CI, 1.82–11.40; IPTW-
adjusted RD: 8.15, 95% CI, 3.38–12.90).
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TABLE 1 Patients.

No chemotherapy (n =  1,568) Chemotherapy (n =  8,520)

Age, median (IQR), y 70 (61–78) 56 (47–64)

Tumor size, median (IQR), mm 11 (6–20) 23 (15–34)

Lymph node-positive, median (IQR), number 2 (1–4) 4 (2–10)

Race–white 1,196 (76.3) 6,016 (70.6)

Marriage–Married 748 (47.7) 4,991 (58.6)

Income–Higher than $70,000 562 (35.8) 2,853 (33.5)

Laterality–Right 766 (48.9) 4,089 (48.0)

Grade

  G1 82 (5.2) 63 (0.7)

  G2 446 (28.4) 1,175 (13.8)

  G3 1,034 (65.9) 7,249 (85.1)

  G4 6 (0.4) 33 (0.4)

Histology

  Ductal 1,521 (97.0) 8,325 (97.7)

  Lobular 26 (1.7) 73 (0.9)

  Ductal-lobular 20 (1.3) 121 (1.4)

Location

  Upper outer quadrant 686 (43.8) 3,701 (43.4)

  Upper inner quadrant 218 (13.9) 1,299 (15.2)

  Lower outer quadrant 125 (8.0) 634 (7.4)

  Lower inner quadrant 99 (6.3) 559 (6.6)

  Central/overlapping 427 (27.2) 2,246 (26.4)

  Nipple/axillary tail 13 (0.8) 81 (1.0)

T stage

  T1 1,202 (76.7) 3,679 (43.2)

  T2 301 (19.2) 3,798 (44.6)

  T3 46 (2.9) 719 (8.4)

  T4 19 (1.1) 322 (3.7)

N stage

  N0 1,392 (88.8) 5,238 (61.5)

  N1 110 (7.0) 2,219 (26.0)

  N2 35 (2.2) 666 (7.8)

  N3 31 (2.0) 395 (4.6)

TNM stage

  IA 1,147 (73.2) 2,865 (33.6)

  IB 14 (0.9) 119 (1.4)

  IIA 254 (16.2) 2,581 (30.3)

  IIB 66 (4.2) 1,419 (16.7)

  IIIA 43 (2.7) 887 (10.4)

  IIIB 13 (0.8) 254 (3.0)

  IIIC 31 (2.0) 395 (4.6)

Surgical type

  Breast-conserving surgery 632 (40.3) 3,757 (44.1)

  Mastectomy 936 (59.7) 4,763 (55.9)
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TABLE 2 Model performance.

Model IBSa IBSb HR IPTW-adjusted 
HR

RD (%) IPTW-adjusted 
RD (%)

DRMST (month) IPTW-adjusted 
DRMST (month)

Performance in the testing set

SNB 0.09 (0.08–0.10) 0.10 (0.09–0.11) 0.62 (0.48–0.79) 0.68 (0.50–0.94) 7.61 (2.82–12.43) 9.06 (4.15–13.91) 6.48 (2.57–9.99) 7.08 (2.89–10.98)

BITES 0.10 (0.09–0.12) 0.11 (0.10–0.13) 0.75 (0.60–9.99) 0.77 (0.60–9.99) 4.56 (0.20–8.92) 4.51 (0.25–8.77) 3.73 (0.18–7.29) 1.35 (−2.12–4.13)

CMHE 0.18 (0.15–0.21) 0.17 (0.15–0.18) 0.66 (0.52–0.84) 0.72 (0.82–0.98) 1.81 (−2.38–6.01) 6.38 (0.78–12.00) 1.38 (−2.04–4.79) 1.99 (−2.66–5.89)

DeepSurv 0.14 (0.11–0.17) 0.15 (0.12–0.17) 1.65 (1.29–2.12) 1.83 (1.06–3.14) −6.98 (−11.2 t o −2.77) −4.2 (−9.0 to −0.41) −5.83 (−9.27 to −2.39) −1.33 (−4.46–2.22)

CPH 0.11 (0.09–0.13) 0.11 (0.10–0.12) 0.80 (0.64–0.99) 0.71 (0.55–0.98) 3.79 (0.80–6.78) 4.55 (1.66–7.44) 3.08 (0.63–5.53) 2.22 (0.48–4.79)

NCCN 1.31 (0.99–1.72) 0.83 (0.50–1.38) 6.62 (1.82–11.40) 8.15 (3.38–12.90) −5.56 (−8.12 to −2.93) 2.78 (−0.90–6.45)

Performance in the external testing set

SNB 0.12 (0.11–0.13) 0.12 (0.11–0.13) 0.54 (0.41–0.72) 0.53 (0.32–8.60) 7.18 (1.85–12.30) 12.90 (6.99–19.01) 2.87 (1.29–3.92) 5.54 (1.36–8.61)

BITES 0.12 (0.10–0.14) 0.13 (0.12–0.14) 0.69 (0.53–0.89) 0.73 (0.55–0.89) 4.37 (−1.8–10.60) 4.08 (−1.7–9.8) 4.31 (−0.24–8.85) 2.64 (−1.40–6.21)

CMHE 0.18 (0.16–0.20) 0.16 (0.15–0.17) 0.61 (0.48–0.80) 0.62 (0.42–0.96) 6.04 (1.59–11.20) 13.00 (6.83–19.20) 1.73 (−2.49–5.95) 8.15 (5.28–13.24)

DeepSurv 0.16 (0.13–0.19) 0.16 (0.14–0.19) 1.44 (1.08–1.91) 1.51 (0.95–2.39) −7.12 (−13.10 to −1.13) −6.71 (−12.50 to −0.90) −2.20 (−6.29–1.87) −1.17 (−6.88–4.28)

CPH 0.13 (0.10–0.15) 0.12 (0.11–0.13) 0.74 (0.58–0.95) 0.68 (0.50–0.93) 5.23 (0.74–9.73) 5.40 (1.11–9.72) 4.08 (0.94–7.23) 5.39 (2.50–8.22)

NCCN 1.52 (1.12–2.08) 0.75 (0.46–1.22) 8.16 (3.34–13.00) 8.11 (3.34–13.00) −3.71 (−7.04 to −0.37) 5.29 (1.39–9.88)

SNB, Self-Normalizing Balanced individual treatment effect for survival data; BITES, Balanced Individual Treatment Effect for Survival data; CMHE, Cox Mixtures with Heterogeneous Effects; CPH, Cox proportional hazards model; NCCN, National Comprehensive 
Cancer Network treatment guidelines. IBS, integrated Brier score; HR, hazard ratio; RD, 10-year risk difference; DRMST, the difference in the 10-year restricted mean survival time. aIntegrated Brier score in the non-chemotherapy group; bIntegrated Brier score in the 
chemotherapy group. The bold font indicates that the model performs best in this metric.
Patients with pT1–3pN0–1mi and tumor > 1 cm or with pN+ are recommended to receive adjuvant chemotherapy according to the NCCN guidelines.
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In the external testing set, SNB had the best HR (0.54, 95% CI, 
0.41–0.72) and IPTW-adjusted HR (0.53, 95% CI, 0.32–8.60), while 
CMHE demonstrated the best IPTW-adjusted DRMST (8.15, 95% CI, 
5.28–13.24). CPH had the best DRMST (4.08, 95% CI, 0.94–7.23); 
however, this advantage disappeared after IPTW correction. NCCN 
had the best IPTW-adjusted RD (RD: 8.16, 95% CI, 3.34–13.00; 
IPTW-adjusted RD: 8.11, 95% CI, 3.34–13.00). However, NCCN did 
not demonstrate a protective effect in multivariate metrics, such as HR 
(1.52, 95% CI, 1.12–2.08) and IPTW-adjusted HR (0.75, 95% CI, 
0.46–1.22). Thus, SNB was the best treatment recommendation tool 
in both testing and external testing sets, which outperformed other 
models and the NCCN guidelines.

The KM curves of the SNB-recommended Consis. group versus 
Inconsis. group in the testing and external testing sets are presented 
in Figures 2A,B, while that of breast cancer-specific survival (BCSS) 
is demonstrated in Figures 2C,D. Better OS of the Consis. group in 
the testing (P of log-rank test = 0.0029; P of IPTW-adjusted log-rank 
test = 0.0433) and external testing (P of log-rank test = 0.0490; P of 
IPTW-adjusted log-rank test = 0.0284) sets was visualized. The 

BCSS of the Consis. group was better than that of the Inconsis. 
group with degraded performance (Testing set: P of log-rank 
test = 0.0630; P of IPTW-adjusted log-rank test = 0.0330; External 
testing set: P of log-rank test = 0.0031; P of IPTW-adjusted log-rank 
test = 0.0081).

Whether the protective effect of SNB was affected by an imbalance 
in treatment proportions is also of interest. Thus, the interventional 
natural direct effect (INDE) was calculated to cut off the effect of 
treatment variables on OS improvement, which was proposed by Diaz 
et al. (32). We treated the treatments (chemotherapy and surgical type) 
as a mediator and adjusted for baseline features. The INDE and 
interventional natural indirect effect (INIE) are presented in 
Figures 3A,B for testing and external testing sets, respectively. These 
values were presented as the slope of a linear regression. SNB 
recommendation had a direct effect on OS improvement (INDE in the 
testing set: −0.06, 95% CI, −0.07 to −0.05; INIE in the testing set: 0.01, 
95% CI, 0.00–0.01; INDE in the external testing set: −0.06, 95% CI, 
−0.08 to −0.05; INIE in the external testing set: 0.01, 95% CI, 0.00–
0.01), which was not affected by treatments.

A

B

C

D

FIGURE 2

The Kaplan–Meier curves of the Consis. and Inconsis. groups. (A) Kaplan–Meier curves comparing the overall survival between the Consis. group and 
the Inconsis. group in the testing set. The p-values are derived from the log-rank test (p  =  0.0029) and IPTW-adjusted log-rank test (IPTW-adjusted 
p  =  0.0433). (B) Kaplan–Meier curves comparing the overall survival between the Consis. group and the Inconsis. group in the external testing set. The 
p-values are from the log-rank test (p  =  0.0490) and the IPTW-adjusted log-rank test (IPTW-adjusted p  =  0.0284). (C) Kaplan–Meier curves comparing 
the breast cancer-specific survival between the Consis. group and the Inconsis. group in the testing set. The p-values are derived from the log-rank 
test (p  =  0.063) and the IPTW-adjusted log-rank test (IPTW-adjusted p  =  0.0330). (D) Kaplan–Meier curves comparing the breast cancer-specific 
survival between the Consis. group and the Inconsis. group in the external testing set. The p-values are from the log-rank test (p  =  0.0031) and the 
IPTW-adjusted log-rank test (IPTW-adjusted p  =  0.0081).
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The standardized mean difference (SMD) before and after 
IPTW correction is shown in Supplementary Figure S1A (testing 
set) and Supplementary Figure S1B (external testing set). Covariates 
were balanced after IPTW with between-group SMDs smaller than 
0.1 (33).

Treatment heterogeneity

Treatment heterogeneity can be captured by the presence of very 
different average treatment effects (ATEs) in different subgroups, 
indicating that patients with different characteristics respond 
heterogeneously to the same treatment. Patients were divided into 
chemotherapy recommended (CTR) and chemotherapy not 
recommended (CNR) groups based on whether chemotherapy was 
recommended by SNB. Similarly, patients were also divided into 
NCCN recommend chemotherapy (NCR) and NCCN not 
recommend chemotherapy (NNR) groups determined by whether the 
patients met the NCCN guidelines. This analysis was done using a 
combined population of testing and external testing sets. Figure 4A 
demonstrates the HR and IPTW-adjusted HR of chemotherapy in 
these subgroups.

In the overall population, chemotherapy had a protective effect 
(IPTW-adjusted HR: 0.70, 95% CI, 0.51–0.95). This effect was 
enhanced when SNB predicted a positive ITE of chemotherapy 
(IPTW-adjusted HR in the CTR group: 0.63, 95% CI, 0.36–0.97). 
Conversely, chemotherapy turned out to be a risk effect in the CTN 
group (IPTW-adjusted HR: 1.83, 95% CI, 1.13–2.52).

The treatment heterogeneity was also recognized by NCCN (HR 
in the NCR group: 0.74, 95% CI, 0.54–0.95; HR in the NNR group: 
1.88, 95% CI, 1.15–2.63). However, the results turned negative after 
IPTW correction (IPTW-adjusted HR in the NCR group: 0.97, 95% CI, 
0.52–1.60; IPTW-adjusted HR in the NNR group: 0.91, 95% CI, 
0.36–1.53).

Deep learning-based treatment insights

The ITE values reflect the difference in RST between 
chemotherapy and non-chemotherapy, indicating the additional 
survival time of an individual patient receiving chemotherapy. 
Considering that patients were from different regions, we derived a 
mixed-effect linear regression that predicts ITEs from the covariates 
with reporting region set as random effects, which was done in the 

A

B

FIGURE 3

Causal paths illustrating the effects of Self-Normalizing Balanced (SNB) individual treatment effect for survival data on survival outcomes. (A) Causal 
path diagram showing the effects of SNB on overall survival (OS) in the testing set. The diagram quantifies the Interventional Natural Direct Effect 
(INDE: −0.06; 95% CI, −0.07 to −0.05) and Interventional Natural Indirect Effect (INIE: 0.01; 95% CI, 0.00 to 0.01), illustrating the direct and mediated 
impacts on OS, adjusted for baseline features as confounders. (B) The causal path diagram in the external testing set similarly details the SNB’s impact 
on OS. Displays the INDE (−0.06; 95% CI, −0.08 to −0.05) and INIE (0.01, 95% CI, 0.00 to 0.01), highlighting the robustness of SNB’s effect across 
different testing scenarios. X indicates patients’ baseline features, which were adjusted as intermediate confounders.
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combined population of testing and external testing sets. In such 
cases, the beta values obtained can be interpreted as follows: when 
other features hold, the presence of this covariate or an increase of one 
unit causes the difference in the survival time within 10 years of 
chemotherapy over no chemotherapy to increase beta. These results 
are presented in Figure 4B.

It was found that, for every 1 mm increase in the size of a patient’s 
tumor, chemotherapy increases their survival time by a relative 0.05 
(95% CI, 0.04–0.06) months over 10 years. Similarly, patients with 
advanced age (0.11, 95% CI, 0.10–0.12) and more positive lymph 
nodes (0.26, 95% CI, 0.12–0.40) resulted in better efficacy of 

chemotherapy. Patients with tumors in the upper inner quadrant were 
not recommended for chemotherapy (−0.52, 95% CI, −0.82 to −0.22). 
Subsequently, we  conducted a subgroup analysis 
(Supplementary Table S1), with the efficacy of chemotherapy increases 
with age and tumor size.

Model interpretation

We used SurvSHAP(t) to interpret the functional output of SNB, 
the first method introduced to date that can provide a time-dependent 

FIGURE 4

Model interpretation of treatment effects and variables impact. (A) Average treatment effect (ATE) and treatment heterogeneity present the hazard 
ratios (HRs) and IPTW-adjusted HRs demonstrating the ATE of chemotherapy across different patient groups, including chemotherapy recommended 
(CTR) and not recommended (CNR) groups classified by SNB, as well as groups classified according to the NCCN guidelines (NCR and NNR). 
(B) Interpretation of model recommendation behavior shows beta values from a mixed-effect linear regression predicting individual treatment effects 
from covariates with the region as a random effect in the combined testing and external testing sets. These beta values indicate the impact of one unit 
increase in covariates on the survival time difference over 10  years between chemotherapy and no chemotherapy. (C) Interpretation of overall output 
using SurvSHAP(t). Visualizes the aggregation of the eight most important variables influencing treatment decision, based on the Sharpley values 
derived from the SurvSHAP(t) analysis over 500 observations. This diagram details how variables rank in terms of importance across multiple 
observations.
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interpretation with a solid theoretical basis (34). Figure 4C visualizes 
aggregating the eight most important variables, sorted by aggregated 
Sharpley values and rankings over 500 observations. The horizontal 
bars represent the number of observations where the importance of 
the variable is ranked first, second, and so on, indicated by the given 
color. The “treatment” variable indicated the effect of using different 
risk networks and baseline hazards.

Age was deemed the most important prognostic factor in 418 
samples, followed by histologic grade, laterality, and surgical type.

One patient was randomly selected from the testing set and 
analyzed with SNB, shown in Supplementary Figure S2. With the 
help of SNB, the survival probability during different treatment plans 
was clearly demonstrated. Based on the predicted survival 
distribution, various indicators of survival advantages can then 
be calculated, including differences in mortality, time at risk, and 
RST, to facilitate the users’ self-directed choice of a more appropriate 
treatment plan.

Discussion

Determining which TNBC patients require adjuvant 
chemotherapy involves multifactorial considerations (11) and remains 
controversial (7). Avoiding overtreatment and individualizing 
treatment plans for patients are key to achieving precision medicine.

Therefore, in this study, we  carefully evaluated SNB, which 
outperformed state-of-the-art models, widely used alternatives, real-
world physician choices, and NCCN guidelines. After diligently 
correcting for biases, following SNB recommendations can halve 
patients’ 10-year mortality rate, significantly outperforming alternative 
approaches. In addition to OS, following SNB guidance significantly 
improved BCSS in TNBC patients. We  observed that the NCCN 
guidelines resulted in a positive RD and successfully identified 
treatment heterogeneity; however, these findings were statistically 
significant only in univariate metrics not corrected by 
IPTW. Treatment selection often needs to consider complex feature 
interactions rather than being based on fixed guidelines (25), and our 
study demonstrated that DL models are well suited to accomplish this, 
as clearly evidenced by the stronger protective effect of SNB than the 
NCCN guidelines.

Artificial intelligence-guided intervention studies provide the 
opportunity to gain insights from DL-based treatments by interpreting 
model recommendations associated with ITE values. We accounted 
for and excluded the influence of confounding factors on treatment 
recommendations by keeping other covariates constant. Thus, 
compared to the conclusions from traditional methods, these results 
are virtually independent of confounding factors and are quantifiable, 
which provides an essential basis for visualizing the impact of baseline 
characteristics on the relative efficacy of chemotherapy.

Consistent with previous studies, we found that for every 1 mm 
increase in the size of a patient’s tumor (10, 35), chemotherapy resulted 
in a relative extension of their 10-year survival time by 0.05 months. 
Other features, including number of positive lymph nodes (8) and age 
(11), also significantly affect chemotherapy efficacy. Interestingly, 
we found that chemotherapy was not recommended for patients with 
tumor sites located in the inner lower quadrant. The relationship 
between chemotherapy efficacy and tumor location has rarely been 
discussed, while past studies have only mentioned that TNBC patients 

with tumor sites located in the inner lower quadrant have a poorer 
prognosis after receiving neoadjuvant chemotherapy (36, 37). 
Therefore, this result can only be used as a reference at present. The 
reliability of it needs to be further investigated with more data and 
more teams, which may provide clinicians with new treatment ideas.

In response to the widely publicized effect of age and tumor size, 
the results of our subgroup analyses are also consistent with the 
findings of current mainstream, authoritative studies. Patients with 
TNBC over 65 years of age were more likely to benefit from adjuvant 
chemotherapy (38), which was not found to be statistically different 
in relatively younger patients. This indicates a greater need to 
incorporate multiple factors in the younger population when making 
final treatment decisions. In addition, consistent with the NCCN 
guidelines, adjuvant chemotherapy improves survival in TNBC with 
tumor size greater than 1 cm (8). However, for patients with smaller 
tumor sizes, it is important to combine other factors to make the final 
decision (39).

Developing a survival benefit visualization tool is essential for 
enabling patients and physicians to make informed treatment decisions. 
This tool facilitates the visual comparison of expected outcomes from 
various treatment options via a graphical treatment recommendation 
system, which incorporates multiple individual and comparative 
survival metrics. However, crafting personalized treatment plans and 
executing visual prognostic analyses remains challenging in practice 
(12, 40). Most current models utilize patient characteristics to generate 
prognostic factors, yet these are often influenced by biases from 
different treatments (41). The SNB model has the potential to overcome 
these challenges by more accurately demonstrating individual outcomes 
following various treatment regimens. With SNB, patients and 
physicians can visualize the anticipated effects of different treatment 
choices, playing a pivotal role in the final decision-making process. In 
addition, the cost of treatment is also a key consideration for patients, 
and by considering the cost of incorporating various therapies in the 
future, the SNB can help patients filter out the most cost-effective and 
optimal solution. It is also worth mentioning that for patients who have 
lost the ability to make decisions on their own, the SNB can greatly help 
their families to objectively analyze the pros and cons of different 
treatment options. All these predict the future application of the DL 
model in clinical treatment. In the future, improvements in data quality 
and including more disease types will refine these models further, 
laying a strong foundation for the entire field of precision medicine.

Limitations

Due to database restrictions, we could not access some important 
features, such as Ki67, TILs, BRCA status, the presence of positive 
margins, and patient treatment switching or termination. Given that 
such biological factors are highly important prognostic markers 
concerning the survival of TNBC patients, we  strongly advocate 
conducting further research to delve into this topic, contingent upon 
the availability of pertinent data regarding this information. Although 
the absence of crucial data above can affect treatment outcomes, the 
model’s usefulness is expected to increase as the variety and quality 
of variables improve. The generalizability of our results is limited by 
using a single database when training and testing the model. This 
approach may introduce biases associated with demographic and 
geographic diversity that do not accurately reflect the entire patient 

https://doi.org/10.3389/fmed.2024.1418800
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yang et al. 10.3389/fmed.2024.1418800

Frontiers in Medicine 11 frontiersin.org

population. Despite our best efforts to control for bias in the data, 
reliance on retrospective data inherently limits the ability to control 
variables and interventions that were not initially recorded, which 
may introduce unmeasured bias and inconsistent observation times 
(42). Subsequent studies are recommended to test the protective 
effect of the model through randomized control trials, prospective 
cohort studies, or target trial emulation (43). Furthermore, 
considering the subjective nature of patient decisions, it is vital to 
include additional prognostic factors, such as complications and 
survival benefits, with anticipated improvements in database 
variables facilitating this comprehensive approach.

Conclusion

To the best of our knowledge, this is the first study to develop 
individualized adjuvant chemotherapy recommendations for TNBC 
patients using DL. Moreover, our study confirms SNB’s potential to 
enhance clinical treatment decision-making and offer quantitative 
treatment insights. The model predicted enhanced chemotherapy 
efficacy in patients with older age, larger tumors, and a higher number 
of positive lymph nodes.
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