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Introduction: Freezing of gait (FoG) is a significant issue for those with Parkinson’s 
disease (PD) since it is a primary contributor to falls and is linked to a poor 
superiority of life. The underlying apparatus is still not understood; however, it 
is postulated that it is associated with cognitive disorders, namely impairments 
in executive and visuospatial functions. During episodes of FoG, patients may 
experience the risk of falling, which significantly effects their quality of life.

Methods: This research aims to systematically evaluate the effectiveness of 
machine learning approaches in accurately predicting a FoG event before 
it occurs. The system was tested using a dataset collected from the Kaggle 
repository and comprises 3D accelerometer data collected from the lower 
backs of people who suffer from episodes of FoG, a severe indication frequently 
realized in persons with Parkinson’s disease. Data were acquired by measuring 
acceleration from 65 patients and 20 healthy senior adults while they engaged 
in simulated daily life tasks. Of the total participants, 45 exhibited indications 
of FoG. This research utilizes seven machine learning methods, namely the 
decision tree, random forest, Knearest neighbors algorithm, LightGBM, and 
CatBoost models. The Gated Recurrent Unit (GRU)-Transformers and Longterm 
Recurrent Convolutional Networks (LRCN) models were applied to predict FoG. 
The construction and model parameters were planned to enhance performance 
by mitigating computational difficulty and evaluation duration.

Results: The decision tree exhibited exceptional performance, achieving sensitivity 
rates of 91% in terms of accuracy, precision, recall, and F1- score metrics for the 
FoG, transition, and normal activity classes, respectively. It has been noted that the 
system has the capacity to anticipate FoG objectively and precisely. This system will 
be instrumental in advancing consideration in furthering the comprehension and 
handling of FoG.
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FIGURE 1

FoG sporadic walking.

1 Introduction

Parkinson’s disease (PD) is a degenerative neurological sickness 
that disturbs a large number of individuals (1). Freezing of gait (FoG) 
and the subsequent increased risk of falls are the primary disabling 
issues for a noteworthy figure of individuals with PD (2). There are 
presently few options for pharmacological therapies. Several tools and 
wearable devices that make available treatments, like rhythmical 
cueing and step-synchronized vibratory cueing, demonstrate good 
concert and results (3). Efficient treatment of FoG is now being 
investigated via examination on FoG recognition and prediction.

FoG is a sporadic walking problem characterized by sudden 
interruptions in stride or a significant decrease in forward movement 
of the feet (4). It greatly impacts quality of life and increases the 
likelihood of reductions and breakages in individuals with PD (2, 5). 
These symptoms may disrupt patients’ everyday activities, jeopardize 
their mental well-being, and lead to a weakening in their superiority 
of life. Approximately half of individuals with PD have encountered 
signs of FoG, which is the primary factor leading to falls (6–8). FoG is 
characterized as a temporary and intermittent inability or noteworthy 
reduction in the advancing motion of the feet, even when there is a 
desire to walk. In their study, Schaafsma et al. (9) categorized FoG into 
five distinct subtypes: start hesitation, turn hesitation, hesitation in 
confined spaces, hesitation toward a specific goal, and hesitation in 
wide spaces. Typically, FoG is linked to a particular sensation of “the 
feet being adhered to the ground” (10). FoG is influenced by 
surroundings, drugs, and anxiety, which might impact its frequency 
and duration (11). FoG is often considered to be a characteristic of 
akinesia, which is a severe type of bradykinesia (12). FoG is 
characterized by transient periods of immobility or the execution of 
very small steps while attempting to begin walking or change direction 
(2). The state of FoG is significantly influenced by ambient cues, 
cognitive input, medicines, and anxiety (11, 13). It is more common 

to experience it at home rather than in a clinical environment, 
particularly in scenarios when there is full darkness or when there is 
a higher cognitive load, such as dual-tasking conditions (14–17). 
Figure 1 displays FoG sporadic walking.

FoG is a very debilitating condition often seen in individuals with 
PD. The symptoms often manifest in the later stages of the illness, with 
roughly 50% of all PD patients experiencing some indications and 
around 80% being significantly impacted (10, 18–20). Episodes of FoG 
often present as a sudden and temporary inability to initiate 
movement, often occurring while starting to walk, during making 
turns, or under stressful circumstances. During bouts of FoG, 
individuals with PD experience a phenomenon where they perceive 
their feet to be firmly stuck to the ground without any apparent cause 
(9). During episodes of FoG while walking, patients exhibit variations 
in their walking pattern and experience a significant decrease in the 
length of their steps. Additionally, they often display shaking in their 
legs (19, 20). The typical frequency range for normal gait steps, as 
measured by ankle sensors, is 0.5 to 3 Hz. However, FoG occurrences 
have a higher rate variety of 6 to 8 Hz (21–23).

Recent research has begun using machine leaning and deep 
learning for the resolution of automated categorization. Deep 
learning is a branch of artificial intelligence (AI) that utilizes 
algorithms having capability of mechanically extracting 
distinguishing features from information and data, such as signals 
acquired straight from sensors without any prior processing. Deep 
learning (DL) and machine learning (ML) have facilitated the 
creation of classifiers that cover the entire process and have 
demonstrated exceptional performance in various fields, including 
image processing, computer vision, medical information analysis, 
bioinformatics, natural language processing, logical reasoning, 
robotics, and control (24–27). Therefore, DL techniques have been 
used in human activity recognition (HAR) systems utilizing data 
collected from various light sensors (28, 29).
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DL and ML methods have become more popular for detecting FoG 
in recent years, as seen by the employment of these techniques in several 
studies (30–34).The following are the most significant and noteworthy. 
Kim et al. (30) and Pepa et al. (32) introduced a novel sensing tool, 
namely a smartphone positioned in the pant pocket, as a more 
convenient method for monitoring patients with PD and detecting 
FoG. The researchers used a technique that relied on convolutional 
neural networks (CNN) to automatically extract distinctive 
characteristics from sensors integrated into an Android smartphone. 
The performance of the CNN classifier was compared to that of the 
random forest (RF) classifier, and the CNN classifier exhibited a 
sensitivity that was 20% greater than that of the RF classifier.

Approximately 7 to 10 million individuals worldwide are affected 
by PD, with a significant portion experiencing FoG. During an episode 
of FoG, a patient experiences a phenomenon where their feet get 
immobilized, making it impossible for them to go forward despite 
their efforts. FoG significantly impairs health-related quality of life, 
leading to depression, heightened fall risk, greater reliance on 
wheelchairs, and limited autonomy.

This study used a standardized dataset obtained from 65 participants, 
using a 3D accelerometer. The dataset has been categorized into four 
classes: Normal, Turn, Walking, and StartHesitation. Preprocessing 
methods were suggested to cleanse the dataset and address the issue of 
imbalanced classes. The output from the preprocessing approach was 
analyzed using several ML, deep learning and transformers modes to 
determine if the patients are experiencing FoG or are in a normal state. 
The primary contribution of this work is as follows:

 1 The initial system employed for the classification of FoG used 
a new dataset.

 2 In our research, we  have categorized the dataset into four 
distinct classes namely Normal, Turn, Walking, and 
StartHesitation because the dataset did not have labels.

 3 Employed various of ML, deep learning, and transformer 
approaches to predict the occurrence of FoG in patients with 
PD, the system achieved 91% with respect to accuracy.

2 Background of the study

FoG is an indication often seen in people with PD. However, 
the fundamental mechanisms of FoG are not well understood. 
Patients with PD often report this symptom as a sensation of their 
feet being firmly adhered to the ground (34–37). Handojoseno 
et al. (38) utilized the wavelet factors of electroencephalogram 
(EEG) data as the input for the multilayer perceptron neural 
network and KNN technique. This method achieved a sensitivity 
of 87% and an accuracy of 73% in predicting the transition from 
walking to FoG. Delval et al. (39) used a multi-camera setup to 
capture the gait kinematics gestures of patients. Deep pointers 
were affixed to the patients’ bodies and recorded from various 
angles. Okuno et al. (40) utilized a plantar pressure measurement 
system of 1.92 m × 0.88 m for recording the walking patterns of 
patients by monitoring the weight exerted on their soles. While 
the sensors may all be used for FoG detection, the predominant 
method for FoG detection in community environments relies on 
inertial sensors.

Moore et al. (21) developed a portable monitoring apparatus and 
algorithm that used the occurrence features of vertical leg movement. 
This movement was measured using an accelerometer put on the left 
shank of 11 individuals with PD. The contributors’ ages ranged from 
45 to 72 years. The contributors were trained to go through a series of 
interior passages, including a tight entryway, and three obstacles. This 
research took into account the specific effects of the levodopa/
carbidopa drug combination throughout both the “on” and “off ” 
periods. The researchers used a threshold-based method to identify 
FoG, achieving a FoG detection rate of 78% and an accuracy rate of 
89%. Delval et al. (39) conducted research in which they induced FoG 
in patients and used a series of measurable indicators to identify the 
presence of FoG. They used a 3D motion-analysis device to capture 
video footage of 10 sick and 10 healthy people while they were on a 
treadmill. Indicators were affixed to the heels, toes, ankles, shoulders, 
and on the T10 vertebra. Obstacles were encountered due to special 
situations, causing the patients to be  in an inactive state. The 
identification of FoG in that particular investigation relied on a 
combination of threshold and frequency investigation. Bachlin et al. 
(41) devised a FoG recognition architecture using three accelerometers 
and implementing Moore’s threshold-based algorithm (21). Upon 
detecting an episode of FoG, the device used a metronome to offer 
stimulation to the patient, aiding them in regaining their focus and 
stability. The system support resulted in improved gait for six out of 
eight individuals who had FoG. Azevedo et al. (41) Developed a FoG 
detector that included gait pattern analysis by using a solitary inertial 
sensor positioned on the lower extremity. Based on its findings, it 
determines that relying just on frequency-based analysis is insufficient 
for accurately identifying the occurrence of FoG. It is essential to not 
only detect but also forecast when a FoG event will take place. The 
authors used rhythm and tread data into their methodology to 
enhance the categorization process. In order to assess the walking 
patterns of individuals with PD, Jovicic et  al. (42) developed a 
technique that utilizes inertial sensors placed on both lower legs to 
categorize different gait patterns. The system also distinguished 
between regular and pathological gait by utilizing an expert rule-based 
approach, based on data collected from 12 PD patients who walked 
over a convoluted course. A rule-based categorization approach was 
used for the identification and categorization of FoG. Pham et al. (43) 
introduced a FoG detection method that is not reliant on specific 
individuals. The uniqueness of this idea is in its ability to operate 
autonomously from the topic matter. An additional instance of a FoG 
recognition system that uses wearable accelerometers and video 
capture to categorize the occurrence is shown in the research 
conducted by Zach et al. (44). Their finding suggests that FoG may 
be detected with just one accelerometer placed in the lumbar area.

Pepa et  al. (32) used soft computing approaches for FOG 
identification. A fuzzy method was created to integrate information 
pertaining to freeze index, energy, cadency fluctuation, and the 
derivative energy ratio. A building was constructed that relied on 
a smartphone as its foundation. Their findings demonstrated that, 
on average, the system exhibited a specificity of 92.33% and recall 
of 83.33% in classifying FoG events. Cole et al. (36) presented a 
method using dynamic neural networks (DNN) to accurately 
identify FoG. They gathered information from three accelerometers 
and an electromyographic shallow worn by patients and achieved 
favorable consequences in terms of detection. A noteworthy 
involvement of this study is the creation of a database documenting 
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unscripted and unimpeded everyday activities of PD patients, 
including instances of FoG. Ahlrichs et al. (22) introduced a FoG 
detector that utilizes a single accelerometer worn at the waist and 
a recognizer based on SVM. They documented the performance of 
20 people with PD engaging in pre-planned everyday tasks. 
Patients were required to be  documented both when taking 
medicine and while not taking medication. Their findings 
demonstrated a precision rate of 98.7%.

Rodrıguez-Martın et al. (45) developed a ML method designed 
to identify episodes of FoG. Their preference for FoG detection was 
SVM. Their technique relies on a solitary 3D accelerometer 
positioned at the waist to identify FoG in real-world scenarios. A 
total of 21 individuals diagnosed with PD contributed in the 
research work. The patients were asked to execute two sets of 
pre-determined exercises during both their “off ” and “on” times. 
These activities were associated with everyday existence. According 
to their research, the medicine had an impact on the patients’ 
motor reaction. Deep learning methods have been popular for 
detecting FoG in recent years, as seen by their frequent application 
in research (30, 34, 46–48). Kim et al. (30) used a novel sensing 
device, namely a smartphone positioned in the trouser pocket, to 
discover a more pragmatic approach for monitoring patients with 
PD and identifying FoG. The researchers used a technique that 
relied on CNN to automatically extract distinctive characteristics 
from sensors integrated into an Android smartphone. The 
performance of the CNN method was compared to that of the RF 
technique, and the CNN exhibited a sensitivity that was 20% better 
that of the RF classifier. Xia et al. (49) suggested a FoG detection 
method based on CNN to accomplish automated feature learning 
and classification for FoG. Bachlin et  al. (41) conducted 
experiments that relied on the patient’s input and studies that did 
not need the patient’s involvement. The most favorable outcomes 
were documented in the patient-dependent experiments. Same 
researchers used DL to predict FoG and PD (50–53).

3 Materials and methods

The proposed system aims to identify FoG, a distressing symptom 
that affects many individuals with PD. The proposed solution is built 

upon a machine learning models that have been trained using data 
obtained from a wearable 3D sensor device positioned on the lower 
end. Figure 2 displays the framework of the FoG system based on a 
machine learning approach.

3.1 Dataset

The dataset was obtained from the Kaggle repository and 
consists of 3D accelerometer data from the lower back of 
individuals experiencing bouts of FoG, a debilitating condition 
often seen in individuals with PD. FoG has a detrimental effect 
on the ability to walk, hindering movement and independence. 
The goal is to identify the initiation and termination of each 
freezing episode, as well as the presence of three specific kinds of 
FoG events: start hesitation, turning, and walking. The data series 
consists of three unique datasets, each obtained under separate 
circumstances: (1) The tDCS FoG (tdcsfog) dataset consists of 
data series obtained in a laboratory setting, where individuals 
underwent a FoG-provoking procedure; (2) The DeFOG dataset 
consists of data series that were obtained in the subject’s home as 
they conducted a FoG-provoking regimen; and (3) The daily 
living dataset consists of 1 week of uninterrupted 24/7 recordings 
from 65 people. Out of the total number of participants, 45 
display symptoms of FoG and also have series in the DeFOG 
dataset. In contrast, the other 20 patients do not show any 
symptoms of FoG and do not have series in any other part of the 
data. Table 1 displays meta data, whereas the training dataset is 
presented in Table 2.

3.2 Preprocessing approach

Data features engineering require the creation of new features 
or the transformation of existing features to enhance the effectiveness 
of a machine-learning model. Data preprocessing entails the 
extraction of pertinent information from unprocessed data and 
converting it into a format that is readily comprehensible by a 
model. The objective is to enhance the precision of the model by 
providing more significant and relevant data. The missing values in 

FIGURE 2

Framework of the system to predict FoG.
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the dataset were removed from all features. We  have combined 
DeFOG features, namely Time, AccV, AccML, and AccA, with the 
DeFOG-metadata for Subject, Visit, and Medication Condition. 
Figure 3 shows the preprocessing steps for the classification of FoG 
of PD patients.

3.2.1 Normalization
Normalization is an essential preprocessing step for any machine-

learning task. The process can be executed by either scaling or altering 
the initial data in order to equalize the influences of various 
characteristics in the data examples. In the present research work, 
we  have standardized the input data to generate a representation 
among one and zero.

 
x x x

x xnormalize =
−
−
min

max min  
(1)

Where the x is training data, and xmin  is maximum value [1] and 
xmin is minimum value [0].

3.2.2 Handling imbalance classes
Unbalanced data raises to a condition where the representation of 

observations and samples among dissimilar classes is unequal, with 
one class dominating the dataset and the other classes having 
insufficient representation.

The synthetic minority oversampling strategy (SMOTE) is a 
resampling strategy used to address extremely imbalanced datasets by 
creating synthetic samples in the minority class, hence increasing its 
representation. SMOTE is effective in increasing the figure of minority 
class examples and achieving class balance. To mitigate the problem of 
overfitting, the synthetic production of fresh samples deviated from the 
increase procedure.

The primary concept behindhand SMOTE technique is to 
create additional data samples in the minority class using 
interpolation between neighboring examples within this class 
(54). SMOTE enhances the amount of instances belonging to the 
minority class in an unbalanced dataset, thus improving the 
classifier’s ability to generalize well. Figure 4 shows the SMOTE 
method in practice.

TABLE 1 Metadata of dcsfog and tdcsfog.

Features name Description Types of dataset

Visit Int64

Medication Int64

Time A numerical value representing a discrete unit of time. The tdcsfog dataset records series at a frequency of 

128 Hz, meaning there are 128 timesteps per second. On the other hand, the defog and daily series are recorded 

at a frequency of 100 Hz, resulting in 100 timesteps per second.

AccV, AccML, AccAP The lower-back sensor measures acceleration along three axes: vertical (V), mediolateral (ML), and 

anteroposterior (AP). The data is expressed in units.

Float64

Event Class Object

TABLE 2 features of dataset.

Features name Description

Visit Lab visits include an initial evaluation, two subsequent evaluations for distinct therapy phases, and a final evaluation for follow-up 

purposes.

Test Test used

Medication Subjects may have been either receiving or not receiving anti-parkinsonian medication throughout the recording.

FIGURE 3

Preprocessing steps.
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D D D D xnew i j i= + −











 δ
 

(2)

The dataset Dnew represents the ADHD dataset. Di consists of 
samples from the minority group, whereas D j  is a k-nearest 
neighbor of Di. Let δ represent a uniformly distributed random 
number between 0 and 1. We used the SMOTE technique to enhance 
the categorizing process.

Figure  5 and Table  3 show the dataset before and after class 
distribution of the dataset using the SMOTE approach in the training 
dataset. The startHesitation class has less values (352); therefore, 
we have applied the SMOTE approach for handing this imbalance 
class to enhance the machine algorithms.

3.3 Algorithms

3.3.1 K-nearest neighbors
The KNN technique is a straightforward nonparametric 

approach that\ is often utilized for the purposes of regression and 
classification tasks. The KNN algorithm is a kind of instance-
based learner, commonly referred to as idle learning. It does not 
build a categorization model-based approach till it is given 
samples to classify. The fundamental premise of KNN in 
categorization is to compare individual test samples with k nearby 
training samples in the variable space. The category of the test 
sample is determined based on the classification of its nearest k 
neighbors. Neighbors are often determined by calculating the 

FIGURE 4

Working of SMOTE method.

FIGURE 5

Results of SMOTE approach (A) before SMOTE (B) After SMOTE.
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Euclidean distance between the data point being analyzed and its 
k nearest neighbors. The k parameter, denoting the quantity of 
nearest neighbors’ number, is often kept minimal to avoid the 
inclusion of excessive data points that may distort the underlying 
characteristics of the data point under consideration. It is 
important to choose acceptable values for k in order to avoid 
overfitting and model instability, since large values of k might 
contribute to both issues. KNN utilizes the Euclidean distance 
metric. The underlying assumption is that each element in the 
dataset may be shown as a point in a space with N dimensions. 
KNN utilizes a parameter k to denote the number of examples to 
be considered, based on which the majority class is selected to 
categorize the new instance.

 
E x x xi = −( ) + −( )1 2 3 4

2x
 (3)

where x1, x2, x3, and x14 calculate of the Euclidean distance in a 
two-dimensional space.

3.3.2 Decision tree
A decision tree (DT) is a well-recognized nonparametric supervised 

learning technique. DT is one of the ML algorithms that can be applied 
for both regression and classification tasks. DT classifies the instances 
by traversing down the tree from the root to certain leaf nodes. Instances 
are categorized by evaluating the attribute specified by the node, 
beginning at the root node of the tree, and thereafter down the tree 
branch associated with the attribute value. The most often used criteria 
for splitting are “gini” for measuring Gini impurity and “entropy” for 
quantifying information gain, which may be mathematically represented.

 
Entropy S p p

i

C
i i= ( ) =

=
∑
1

2log

 
(4)

 

Entropy S B s
S
entropy S

j

j
i

i
i|

| |
| |

( ) = ( )
=
∑

1  
(5)

 Gain | |S B entropy S entropy S B( ) = ( ) − ( ) (6)

The training dataset is indicated as S, while the freezing of gait 
dataset is represented by the class c, which encompasses both attack 
and normal data. The likelihood of seeing data that belongs to class Si 
is represented as Pi. This probability is specifically related to the 
subsets of class Si in the characteristics B.

3.3.3 Random Forest
A random forest (RF) classifier is a well-recognized collaborative 

classification technique used in machine learning and data science across 
several application domains. This approach employs “parallel ensembling,” 
whereby several DT classifiers are concurrently trained on distinct 
sub-samples of the dataset. The ultimate result is decided via mainstream 
vote or averaging of the outcomes. Therefore, it reduces the issue of over-
fitting and enhances both the accuracy of predictions and control. Hence, 
the RF learning model, which utilizes many decision trees, often exhibits 
higher accuracy compared to a model based on a single decision tree. In 
order to construct a sequence of decision trees with regulated diversity, 
the method associates bootstrap combination (bagging) with arbitrary 
attributes selection. It is versatile for both classification and regression 
issues and is suitable for both categorical and continuous variables. Table 4 
shows parameters of RF model.

3.3.4 LightGBM approach
LightGBM approach is a gradient boosting context that employs 

tree-based learning techniques. It is specifically engineered to 
be widely spread and highly effective, offering the following benefits: 
Enhanced training velocity and increased efficacy; Reduced memory 
consumption LightGBM provides support for parallel and GPU 
learning; Proficient at managing enormous volumes of data 
LightGBM is a rapid, circulated, and efficient gradient-boosting 
system that relies on decision tree methods. It is extensively used in 
a range of machine-learning tasks, including regression, ranking, and 
categorization (55). It is a furthering method that utilizes numerous 
weak machine-learning methods to create a powerful learning model. 
Boosting methods amplify the weights of incorrectly classified data 
while reducing the weightiness of successfully categorized data. 
Table 5 shows LightGBM parameter.

3.4 Gated recurrent unit–transformers

3.4.1 Gated recurrent unit
The GRU is a fundamental architecture of recurrent neural 

networks (RNNs) that has resemblance to Long Short-Term 
Memory (LSTM) models. GRU is specifically developed to represent 

TABLE 3 Results of SMOTE approach.

Before the SMOTE

Classes Values

Normal 105,176

Turn 104,785

Walking 68,999

StartHesitation 352

After the SMOTE

Normal 105,176

Turn 105,176

Walking 105,176

StartHesitation 104,785

TABLE 4 RF parameters.

Parameters name Values

Estimators 500

Criterion gini

Min_samples_leaf 1

Max_depth 10

Max_features auto

Random_state 42
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sequential data by enabling the selective retention or loss of 
information over time. Nevertheless, GRU possesses a more 
streamlined structure compared to LSTM, with a reduced number 
of parameters. This characteristic facilitates training and enhances 
computing efficiency.

The GRU is designed to handle sequential data by iteratively 
updating its hidden state in response to both the current input and the 
prior hidden state. During each iteration, the GRU calculates a 
“candidate activation vector” that integrates data from the input and 
the preceding hidden state. Subsequently, the candidate vector is 
employed to modify the concealed state for the subsequent time step. 
Two gates, namely the reset gate and the update gate, are used to 
calculate the candidate activation vector. The reset gate is responsible 
for determining the extent to which the previous hidden state is 
disregarded, whereas the update gate is responsible for determining 
the extent to which the candidate activation vector is integrated into 
the future hidden state.

 µ σ µ µ µt t tV x W o b= + +( )−1  (7)

 r V x W o bt r t r t= + +( )−σ µ1  (8)

 
i V x W r o bt o t o t t= + ( ) +−tanh ( ) 1 0  (9)

 ( )1( 1σ µ µ−= − t t t t to o i
 (10)

Input is it, output is ot, update gate output is ∝t , reset gate output 
is rt , and Hadamard product is ⊙. Weight matrices V, W, and b are 
parameters. The GRU encoder and Transformer path embeds input 
sequences using a recurrent GRU layer. Thirty-two GRU units 
encoded 200-dimensional vectors each timestep. Using multi-head 
self-attention with two heads, GRU embeddings may attend to each 
other based on learnt connections. Residual connections and layer 
normalization stabilize training. Flattening attention outputs to 1D 
vectors. Structure of GRU mode is presented in Figure 6.

3.4.2 Transformers
The self-attention mechanism-based sequence-to-sequence model 

Transformer is extensively used in natural language processing methods 
including machine translation, text summarization, language synthesis. 
Significant outcomes are achieved quickly. Transformers has a different 
architecture than RNN. The Transformer branch in the proposed 
GRU-Transformer model assumes a crucial function in capturing complex 
interdependencies and multidimensional characteristics present in the 
input sequence. The aforementioned objective is accomplished by utilizing 
the self-attention and multi-head attention processes of the Transformer, 
as seen in Figure 3. Its attention-based encoder-decoder structure enables 
the Transformer to effectively handle sequence-to-sequence tasks.

 Q XWQ=  (11)

 K XWK=  (12)

 V XWV=  (13)

 
A Softmax QK

d

T

k
=










 

(14)

 Y AV=  (15)

FIGURE 6

GRU structure.

TABLE 5 LightGBM parameters.

Parameters name Values

Estimators 500

Learning_rate 0.01

Max_depth 10

Random_state 42
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Where, X be  the input and (K, Q, 𝑉) is query matrix, key 
matrix, value matrix, learnable weight matrix is A, attention 
matrix is Y , output matrix is dk , and attention header dimension, 
the scaling factor, reduces overly large or minuscule attention 
weights. To determine key value weight, softmax is used as a 
normalizer. The attention mechanism calculates the association 
between each input sequence item and the others to capture 
global dependencies.

The unit recurrent layer is 200 unit that stores sequence data 
and may capture dependencies. The parameter “return_sequences” 
sends the sequence of outputs for each time step to the next layer 
instead of just the final output. This Transformer component lets 
the model focus on different input sequence segments during 
prediction. Two 200-key dimension attention heads are used in 
the suggested method. This implementation helps the layer 
capture data relationships and connections. Attention boosts and 
accelerates learning. The residual link, or skip connection, solves 
the fading gradient problem by offering an alternate gradient 
movement path. Each time step of the sequence receives an 
individual 120-unit dense layer to extract unique characteristics. 
This strategy stochastically assigns input units to 0 during training 
after the TimeDistributed layer at 0.2 to reduce overfitting.

The output of the previous layers is turned into a unified vector to 
link with the final Dense layer for classification. The neural network 
generates probabilities for each of the four classes using a Dense layer 
with softmax activation. Figure  7 shows the structure of 
GRU-transformers. Parameters of GRU-transformers is presented in 
Table 6.

3.5 Long-term recurrent convolutional 
networks

LRCN neural networks combine the strengths of the CNN and 
RNN to handle sequential input with spatial and temporal 
dependency. The model’s early layers use Convolutional Neural 
Networks (CNNs) to extract spatial properties from input data. These 
collected characteristics feed Recurrent Neural Networks (RNNs) to 
capture temporal relationships and long-term correlations. LRCN may 

acquire spatial and temporal complex data representations by 
integrating CNN and LSTM components. This neural network design 
handles sequential data well. LRCN is an RNN developed to evaluate 
its performance on sequence input data.

 
C =∑∑

1 1

i j

ij ijI F
 

(16)
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Where, F represents a convolution kernel or filter, while i and j 
represent rows and columns of dataset. A unique two-dimensional 
output is obtained by convolving the input dataset.

With the kernel. BiLrepresents the bias matrix, whereas Fi jL,  
represents the filter connecting the jth feature map in the layer.

 f W X W h W Ct ef t ef t cf t= + +− −σ ( 1 1 U f +)  (18)

 i W X W h W C Ut xi t hi t ci t i= + + +− −σ ( 1 1 ) (19)

 C f c i W X W h Ut t t t xc t hc t= + + +− −σ ( tanh(1 1 ) (20)

FIGURE 7

GRU-transformers.

TABLE 6 paramters of GRU-transformers.

Parameters Values

GRU 32 units

Multi-Head Attention 2 heads

Add 2 heads

Layer Norm --

Flatten ---

Dropout 0.5

Dense 1,024
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FIGURE 8

Structure of LRCN model.

 o W X W h W C Ut xo t ho t co t o= + + +( )− −σ 1 1 , (21)

 h O Ct t t= × tanh( ) (22)

Sequential forward and reverse methods apply the equations 
above. They represent the LSTM model equations. A gated cell in the 
LSTM network evaluates input data and retains it based on relevance 
or weight. The input gate, forget gate, and output gate make up the 
LSTM model. The forget gate ft  decides whether states to keep or 
discard. The input gate it modifies the value based on signals. The 
output gate ot transmits cell status to neighboring neurons. The design 
has a logistic layer and a layer that generates a new vector to mix with 
the state. In a recurrent neural network (RNN), the hidden layer 
processes Xt using the weight matrix W to produce yt. The LSTM 
model uses a memory cell called ht, which is governed by three gates. 
The structure of LRCN is presented in Figure 8.

3.6 Evaluation metrics

Prior to further exploring our study, it is essential to elucidate the 
significance and computation techniques of several assessment 
measures. In this study, we have selected four primary assessment 
metrics: accuracy, precision, recall, f1-score, and rate of change (ROC).

 
Accuracy TP TN

TP FP FN TN
=

+
+ + +

×100%
 

(23)

 
Recall TP

TP FN
=

+
×100%

 
(24)

 
Precision TP

TP FP
=

+
×100%

 
(25)

 
Fscore

Sensitivity

Sensitivity
=

∗ ∗
+

×
2

100
preision
preision

%

 
(26)

Algorithms of ML algorithms.
Let D be the dataset containing sensor data from FoG Parkinson’s 

disease patients, where D = {(Xi, Yi)} N
i = 1 where Xi represents the 

features and Yi represents the corresponding FoG labels.
D is collected from wearable devices.
Data preprocessing.
clean the data ′ = ( )D clean D .
Normalize the data ′′ ′= ( )D normalize D
Resample the data ′′′ ′′= ( )D resample D
Feature extraction
Extract features: X = {Xi} Ni = 1

Model training
4.1 Select machine learning algorithms: ML_Algorithms = {DT,RF, 
KNN, LightGMBet, CatBoost}
4.2 Split the data into training and 
testing sets: D D Split Dtrain test, %= ( )′′′,70

4.3 Train the models: Model train ML Dj algorithm j train= ( ), ;

j = 1,2,3, … num_algorithms
Model evaluation
evaluate models j: Metrics j = evaluate  
(Model D j num algorithmsj test, ), , , , _= …1 2 3

FoG Detection:
Predict FoG instances: Ῠ = predict (model Xbest , )

FoG_Events = detect (Ῠ)

4 Experimental

This section presents the classification results and discoveries derived 
from a sequence of experiments carried out for predicting PD FoG by 
applying machine-learning algorithms. The main aim of these 
experiments was to evaluate the efficacy of several classification models 
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in accurately distinguishing various types of classes associated with gait 
behavior, specifically Normal, Turn, StartHesitation, and Walking. The 
evaluation primarily examined evaluation parameters such as accuracy, 
precision, recall, and f1-score for each class, offering valuable insights 
into the capabilities as well as limitations of the applied models. This part 
included simulation setup, split dataset, and machine-leaning results.

4.1 Simulation setup

This module encompasses the specific steps and procedures 
involved in carrying out our suggested approaches. The instruments 
used in this document are enumerated in Table 7.

4.2 Split dataset

The dataset was divided into a 70% training dataset and a 30% 
testing dataset.

4.3 Results

4.3.1 Random forest testing results
Table 8 provides the testing results of the RF model for PD 

FoG. It had strong performance in accurately differentiating the 
“Turn class,” with a precision of 0.98, recall of 0.99, f1-score of 
0.96, and a total accuracy of 90%. Though, there were 
complications in precisely detecting occurrences of the Turn class, 
as the recall rate was significantly lower despite a high 
precision score.

Figure 9 displays the confusion matrix of the RF model used for 
the classification of FoG of PD disease patients. The misclassification 
rate of the RF model in diagnosing FoG is less. The RF model 
exhibited a true negative rate of 25,586 for the classification of 
FoG. The number of true positive instances classified are 25,586 as 
Normal, 99 as Turn, 27,078 as startHesitation, and 18,999 
as Walking.

TABLE 7 Environmental requirements of the presented model.

Hardware Software

RAM size 16 GB

Intel(R) Core(TM) i7

CPU GHz

Python

Panda

TensorFlow library

Keras library

Matplotlib

NumPy library

TABLE 8 Testing results of the RF model.

Model Class Precision % Recall % F1-score % Accuracy %

RF Normal 87 85 90 90

startHesitation 98 99 96

Turn 90 91 89

Walking 94 96 93

Weighted 90 90 90

FIGURE 9

Confusion matrix of RF.
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4.3.2 Decision tree testing results
The experimental results while using the DT model demonstrated 

exceptional and excellent performance, notably in accurately 
categorizing the instances labeled as Turn. The model demonstrated 
exceptional precision (97%), recall (99%), F1-score (94%), and an 
overall accuracy of 91% for classes that existed in the clinical 
experimental dataset used. Although the model demonstrated strong 
accuracy and recall overall, it encountered difficulties in accurately 
detecting instances of the Turn class. This is evident from the poorer 
precision and recall scores specifically associated with this class. 
Table 9 summarizes the classification results based on the DT model.

The confusion matrix in Figure 10 displays the performance of the 
decision tree approach. The decision tree algorithm achieved a high 
accuracy of 91% throughout an evaluation stage. The program accurately 
classified 20,431 instances as normal. The misclassification of the class 
startHesitation is 2,868 instances more than that of the other classes, 
while the misclassification of the class Turn is only 1 instance.

4.4 K-nearest neighbor’s classification results

The KNN model had excellent performance in accurately 
identifying instances belonging to the Walking class, achieving 
high precision (73%), recall (82%), f1-score (66%), and  
a total accuracy of 63%. Nevertheless, there were notable 
limitations in effectively classifying the Turn class samples,  
with both precision and recall scores being  
significantly noted in testing classification reports. Table  10 
demonstrates the classification results based on the KNN model 
(Table 10).

The confusion matrix for the KNN model is displayed in 
Figure 11. The number of instances correctly predicted as “Normal” 
is 18,642, whereas there are no instances incorrectly predicted as 
“Turn.” However, the false positive rate is significantly high. The rate 
of false positives for the “startHesitation” class is particularly high, 
with a value of 10,554.

TABLE 9 Testing results of the DT model.

Model Class Precision % Recall % F1-score % Accuracy %

RF Normal 89 89 89 91

startHesitation 97 99 94

Turn 90 90 90

Walking 96 97 95

Weighted 91 91 91

FIGURE 10

Confusion matrix of decision tree.
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4.5 Classification results using the 
LightGBM model

This subsection presents the findings in detail of the classification 
results of the LightGBM model, which exhibited significant precision 
(84%), recall (91%), f1-score (78%), and overall accuracy (80%) in 
accurately categorizing the “Walking” cases. We faced complications 
in accurately identifying instances of the “Normal” category, leading 
to lower precision and recall scores. Table  11 displays the testing 
results of the LightGBM model.

Figure  12 displays the confusion matrix of the LightGBM 
model. It is worth noting that the misclassification (FP) rate for 
the “startHesitation” class is significantly high, with a total of 
2,868 instances. The occurrence of false positives in the “Turn” 
class is extremely low, less than 1. The number of instances 
correctly classed as “Normal” and identified as negative is  
20,431.

4.6 CatBoost model classification results

This section presents the results of the CatBoost model. The 
CatBoost algorithm exhibited remarkable precision (80%), recall 
(92%), f1-score (86%), and overall accuracy (82%) for the “Walking” 
class. Nevertheless, there were limitations in accurately categorizing 
cases that fell within the “startHesitation” class, leading to relatively 
low precision and recall ratings. Table 12 presents the testing and 
classification outcomes of the CatBoost model. The confusion matrix 
of CatBoost is presented Figure 13.

4.7 Results of GRU-transformers and 
LRCNN models

In this section GRU mode was combined with transformers model 
for classification FoG, we have used 200 hidden units for GRU model. 

TABLE 10 Testing results of the KNN model.

Model Class Precision % Recall % F1-score % Accuracy %

RF Normal 58 53 64 63

startHesitation 63 1.00 47

Turn 61 61 61

Walking 73 82 66

Weighted 63 63 63

FIGURE 11

Confusion matrix of KNN.
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FIGURE 12

Confusion matrix of LightGBM.

Table  13 shows the parameters of GRU-transformers and LRCNN 
models. It is noted that the accuracy of GRU-transformers and LRCN 
were achieved. It is investigated that the GRU-transformers and LRCN 
were better models for classification FoG.

The accuracy performance of the GRU-transformers is depicted 
in Figure  14. The GRU-transformers validation accuracy initially 
stood at 82% and then improved to 86% after 70 Epochs. The accuracy 
loss started from 0.43 and reached 0.32.

The performance and loss accuracy in the validation stages was 
calculated using the binary_crossentropy approach. The validation 
accuracy of the LRCN model is depicted in Figure 15. During the 
validation phase, the LRCN model exhibited started at 38% and 
reached to 86%. The accuracy loss is a decrease in accuracy loss from 
0.42 to 0.35.

5 Results discussion

FoG is a motor disturbance categorized by an abrupt and 
fleeting inability to start or maintain walking, which poses 
difficulties for patients with PD. The timely identification and 

predicting of FoG episodes are essential for efficient therapies and 
enhanced quality of life. The objective of this research was to 
evaluate the possibility of applying different machine-learning 
algorithms and GRU-transformers and LRCN models to predict 
FoG for a preventive strategy to mitigate the occurrence. In order 
to achieve this objective, random forest, k-nearest neighbor, 
LightGBM, and GRU-transformers and LRCN models algorithms 
were applied for detecting FoG.

The difficulties in classifying minority classes, specifically 
“startHesitation,” highlight the influence of imbalanced datasets on 
the effectiveness of models. Addressing these problems is essential 
in the context of FoG prediction to enable early detection of gait 
irregularities, facilitate prompt interventions, and enhance 
outcomes for individuals with PD. Therefore, we have applied an 
oversampling method for handling the imbalanced classes at the 
training phase. Figure 16 the relationship among features of the 
training dataset.

According to the experimental results obtained from using 
various machine-learning models, the decision tree model had a 
strong overall accuracy of 91% and an impressive f1-score of 0.96, 
particularly excelling in accurately categorizing “Normal” gait. 

TABLE 11 Testing results of the LightGBM model.

Model Class Precision % Recall % F1-score % Accuracy %

LightGBM Normal 75 68 84 80

startHesitation 77 99 63

Turn 83 86 80

Walking 84 91 78

Weighted 81 80 80

https://doi.org/10.3389/fmed.2024.1418684
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Al-Nefaie et al. 10.3389/fmed.2024.1418684

Frontiers in Medicine 15 frontiersin.org

Nevertheless, the difficulties in precisely recognizing occurrences of 
“Turn” highlight the necessity of adjusting and optimizing the 
detection process to achieve a balance between accuracy and 
comprehensiveness. This is crucial for reliably identifying tiny 
irregularities in walking patterns that indicate FoG. The decision tree 
model demonstrated a notable weighted accuracy of 91% for all 
classes. The random forest approach scored a high accuracy (90%). 

The KNN algorithm demonstrated a commendable level of accuracy 
(63%) and precision (63%). However, it is noted that the KNN 
achieved less accuracy compared with different existing ML 
approaches. Comprehending the influence of distance metrics and 
the quantity of neighbors is essential for enhancing its capacity to 
detect tiny variations linked to FoG. The LightGBM model showed 
potential, specifically in accuracy, attaining an accuracy of 80% and 

TABLE 12 Testing results of the CatBoost model.

Model Class Precision % Recall % F1-score % Accuracy %

CatBoost Normal 85 71 77 82

startHesitation 27 1.00 42

Turn 81 86 84

Walking 80 92 86

Weighted 82 82 82

FIGURE 13

Confusion matrix of CatBoost.

TABLE 13 Weight Avg. results of GRU-transformers and LRCNN model.

Models Accuracy % Precision% Recall % f1-score %

GRU-transformers 86 84 86 83

LRCNN 86 85 86 84
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an f1-score of 0.80. The CatBoost model demonstrated a strong 
precision of 0.82 and recall of 0.82, resulting in an accuracy of 82% 
and an f1-score of 82.

The ROC curve is a visual depiction that displays the performance 
of a classification algorithm at different levels of categorization. The 
graph depicts the relationship between two variables. The receiver 
operating characteristic (ROC) is computed using the following formula:

 
TRP TP

TP FN
=

+  
(24)

 
FPR FP

FP TN
=

+  
(25)

Where TRP is the true positive rate and FPR is the false 
positive rate.

Figure 17 displays the ROC curve for both the DT and RF models. 
The DT model achieved a high ROC score of 99% for the 
“startHesitation” class and an ROC score of 98 for the “Walking” class. 
The receiver operating characteristic (ROC) analysis of the RF model 
yielded a high precision of 100% for the “startHesitation” class and an 
ROC value of 98% for the “Turn” class.

The LightGBM, and CatBoost algorithms scored less in accuracy. 
However, the ROC of the models are good, and the LightGBM, and 
CatBoost models scored ROC 100% in the “startHesitation” class. 
Figure 18 displays the ROC of LightGBM, and CatBoost models.

Figures  19, 20 diplays ROC of GRU-transformers and LRCN 
models for predicting FoG. It is noted both models have achieved 

FIGURE 14

(A,B) Performance GRU-transformers.

FIGURE 15

(A,B) Performance LRCN model.
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similar performance, and GRU-transformers and LRCN were scored 
high percentage ROC = 91 with class “Walking”.

Table  14 presents a comparison of the suggested algorithms, 
highlighting that the decision tree technique achieved a high accuracy 
rate of 91%.

6 Conclusion

FoG is a locomotive impairment observed in individuals with 
advanced PD, which has been linked to an elevated likelihood of 
falling and a worse overall quality of life. Freezing incidents can 

FIGURE 16

Correlation between features of the training dataset.

FIGURE 17

ROC of proposed system, (A) RF (B) decision tree.
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be alleviated or averted through external intervention, such as the 
utilization of pictorial or auditory signals, which are triggered by 
FoG detection and prediction systems. The fundamental aim of this 
research work was predicting FoG using a standard dataset. This 
research concerted on the detection and prediction of FoG by 
analyzing 3D accelerometer data collected from the lower back of 
persons with PD, who frequently experience this terrible symptom. 
The dataset was obtained from a cohort of 65 participants. The 
dataset consists of four distinct classes: Normal, Turn, 
startHesitation, and Walking. Preprocessing techniques, such as 
cleaning the dataset and addressing imbalanced classes, were 

implemented to enhance the performance of the ML methods. 
Various machine-learning algorithms, including decision tree, 
random forest, k-nearest neighbors, LightGBM, GRU-transformers 
and LRCN models, were employed for FoG detection and 
prediction. Of these, the decision tree algorithm exhibited a distinct 
advantage when working with datasets collected from sensors, 
achieving a high accuracy rate of 91%. This is the initial model 
employed for detecting FoG using this dataset. Furthermore, the 
main aim of this study also was to identify effective ML and DL 
algorithms that has capability of detecting and predicting FoG using 
a wearable system in real-time data.

FIGURE 18

ROC of proposed system, (A) LightGBM (B) CatBoost.

FIGURE 19

ROC of GRU-transformers.
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