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Background: The assessment of image quality (IQA) plays a pivotal role in

the realm of image-based computer-aided diagnosis techniques, with fundus

imaging standing as the primary method for the screening and diagnosis of

ophthalmic diseases. Conventional studies on fundus IQA tend to rely on

simplistic datasets for evaluation, predominantly focusing on either local or

global information, rather than a synthesis of both. Moreover, the interpretability

of these studies often lacks compelling evidence. In order to address these

issues, this study introduces the Local and Global Attention Aggregated Deep

Neural Network (LGAANet), an innovative approach that integrates both local

and global information for enhanced analysis.

Methods: The LGAANet was developed and validated using a Multi-Source

Heterogeneous Fundus (MSHF) database, encompassing a diverse collection

of images. This dataset includes 802 color fundus photography (CFP) images

(302 from portable cameras), and 500 ultrawide-field (UWF) images from

904 patients with diabetic retinopathy (DR) and glaucoma, as well as healthy

individuals. The assessment of image quality was meticulously carried out by a

trio of ophthalmologists, leveraging the human visual system as a benchmark.

Furthermore, the model employs attention mechanisms and saliency maps to

bolster its interpretability.

Results: In testing with the CFP dataset, LGAANet demonstrated remarkable

accuracy in three critical dimensions of image quality (illumination, clarity and

contrast based on the characteristics of human visual system, and indicates

the potential aspects to improve the image quality), recording scores of 0.947,

0.924, and 0.947, respectively. Similarly, when applied to the UWF dataset, the

model achieved accuracies of 0.889, 0.913, and 0.923, respectively. These results

underscore the efficacy of LGAANet in distinguishing between varying degrees

of image quality with high precision.

Conclusion: To our knowledge, LGAANet represents the inaugural algorithm

trained on an MSHF dataset specifically for fundus IQA, marking a significant
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milestone in the advancement of computer-aided diagnosis in ophthalmology.

This research significantly contributes to the field, offering a novel methodology

for the assessment and interpretation of fundus images in the detection and

diagnosis of ocular diseases.

KEYWORDS

fundus photography, attention mechanism, image quality assessment, spatial
information, multiscale feature extraction

Introduction

Fundus photography stands as a cornerstone in the diagnosis
of diabetic retinopathy (DR), glaucoma, age-related macular
degeneration (AMD), among various ocular disorders (1). With
the advent of artificial intelligence (AI), the automation of disease
screening through fundus imaging has emerged as a focal area
of research and clinical application (2). Several algorithms have
been explored, with a notable number being translated into clinical
settings (3–5). The quality of fundus images is critical to the
diagnostic accuracy of these models, necessitating a robust Image
Quality Assessment (IQA) for automated systems.

Manual IQA, though reliable, places a significant burden on
medical professionals which requires direct assessment of images to
ensure pathological structures are discernibly visible. Conversely,
automated IQA methods offer a less labor-intensive alternative,
utilizing algorithms to evaluate image quality. These methods
range from structure-analysis-based to generic image-statistics
approaches (6). In the era of deep learning, innovations in IQA
have significantly benefited from the advanced feature-extraction
capabilities of convolutional neural networks (CNNs) (7–9),
employing strategies such as hallucinated reference generation
and distortion identification to enhance quality prediction and
feature weighting through visual saliency (10). DeepFundus, a deep
learning-based fundus image classifier, addresses the data quality
gap in medical AI by offering automated, multidimensional image
sorting, significantly enhancing model performance across various
retinopathies and supporting a data-driven paradigm for the entire
medical AI lifecycle (11).

Despite these advancements, challenges persist, particularly
in the generalizability of algorithms across diverse imaging
conditions and the integration of both local and global information
critical for comprehensive quality assessment. Furthermore, the
interpretability of deep learning models in this context remains
uncertain. In order to fill these gaps, this study introduces the
Local and Global Attention Aggregated Deep Neural Network
(LGAANet), designed to leverage both local and global information
in assessing the quality of fundus images. Most existing IQA
datasets are single-center collections that overlook variations
in imaging devices, eye conditions, and imaging environments.
Our approach involves training on a multi-source heterogeneous
fundus (MSHF) database (12), encompassing a broad spectrum
of normal and pathological images captured through various
imaging modalities, to enhance the model’s generalizability and
interpretability. This database was selected due to its diverse and
representative nature, which allows for robust validation of the
LGAANet model across various imaging conditions and sources.

Materials and methods

An overview of the study approach and methodology is
presented in Figure 1. Our MSHF dataset consisted of various sub-
databases collected from different devices and exhibited diverse
appearance patterns. The dataset comprises 802 color fundus
photography (CFP) images (302 from portable fundus cameras)
and 500 ultrawide-field (UWF) images. These images originate
from 904 patients, encompassing DR and glaucoma patients, in
addition to normal individuals. Such samples collected via various
domains are capable of providing more diversity during training
of CNNs, which is beneficial for improving the generalization
ability of models. Three critical dimensions of image quality:
the illumination, clarity and contrast are selected based on the
characteristics of human visual system, and indicates the potential
aspects to improve the image quality. In order to validate the
performance of our approach, we used an external dataset and noise
dataset. A detailed description of each stage follows.

The spatial-information-retained
multi-scale feature extractor

Multi-scale features and spatial attention mechanisms have
shown potential for quality prediction (13–19). However, existing
multi-scale-feature-incorporated quality-prediction studies tend
to leverage Multi-Level Spatially Pooled (MLSP) strategy to
aggregate features from various scales, i.e., using Global Average
Pooling (GAP) to extract the multi-dimensional activations into
a one-dimensional vector and concatenate vectors from various
scales. The MLSP method yields one-dimensional vectors and
inevitably leaves out much spatial information. Therefore, it is
challenging to integrate spatial attention mechanisms into the one-
dimensional feature.

In order to improve prediction accuracy and combine
both multi-scale features and spatial mechanisms into our
quality prediction model, we included a spatial-information-
retained (SIR) multi-scale feature extractor to combine both
local and global quality-aware features through an attention-
incorporated perspective.

Specifically, let X denote the input image with size [3,H,W],
and denote the multi-scale feature (Scale#1 to Scale #3) extracted
from ResNet50 as:

si = f (X|Stagei), i ∈ {1, 2, 3} (1)
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FIGURE 1

An overview of the study approach and methodology. The multi-source heterogeneous fundus (MSHF) dataset is collected, and then serves as an
input to train the local and global attention aggregated deep neural network (LGAANet). The output is the image quality of each image based on
three metrics, and a heap map is created to show the interpretability.

Where f (·|Stagei) denotes the activations extracted from
the last convolutional layer of ResNet50 in Stage#i. The si
is rescaled channel-wise via a convolutional layer with kernel
size 1x1 and followed by a batch-normalization and a RELU
layer, i.e., s′i = g(si|T1,0

Ii,Oi
), in which g(·|Tk,p

Cin,Cout
) denotes the

convolutional unit mentioned above with kernel size, padding,
input channel size Cin, and output channel size Cout . In the
architecture of ResNet50, [I1, I2, I3] = [256, 512, 1024], and we
set [O1,O2,O3] = [16, 32, 64] to prevent the channel size after
concatenation from being too large. Therefore, the size of s′1, s′2, s′3
is [16,W/4,H/4], [32,W/8,H/8], [64,W/16,H/16], respectively.

In order to maintain the detailed spatial information of features
extracted from each scale and simultaneously rescale them to
coordinate with features extracted from the last Stage of ResNet50
(i.e., Stage#4 with spatial size [W/32,H/32]), the s′1, s′2, s′3 are
non-overlapped and spatially split into several chunks with spatial
size [W/32,H/32], i.e.,:

chunki = split
(

s
′

i

)
=


c(i)1,1 · · · c(i)1,ki
...
. . .

...

c(i)ki,1
· · · c(i)ki,ki

 (2)

Where chunki denotes the set of chunks after spatial split from
s′i, and each of the chunks is denoted as c(i)m,n (m and n denote the
spatial index of the chunk) with a channel size coordinated with s

′

i
and a spatial size of [W/32,H/32]. In addition, k1 = 64, k2 = 16,
k 3 = 4.

As for each chunki, its elements are concatenated channel-wise
by,

s′′i = concat(
{

c(i)m,n

∣∣∣ m ∈ ki, n ∈ ki

}
, dim channel_wise) (3)

After this, the size of s′′1,s′′2,s′′3 is
[16∗64,W/32,H/32], [32∗16,W/32,H/32], [64∗4,W/32,H/32].
Finally, s′′1,s′′2,s′′3 and the activations extracted via f (·|Stage4)

are fed into g(·|T1,0
Cin,128) and yield 4 multi-dimensional features

with the same size, representing both local and global information.
Channel-wise concatenation is then employed to obtain a
local spatial-information-retained multi-scale feature with size
[128∗4,W/32,H/ 32].

The above-described spatial-information-retained multi-scale
feature extraction is also illustrated in Figure 2, taking Stage#1 as
an example, and the pseudocode is listed in Table 1.

LGAANet

Based on the proposed SIR multi-scale feature extractor, we
developed the LGAANet, as shown in Figure 3. Our LGAANet is
comprised of a ResNet50-based SIR multi-scale feature extractor
f (·; θ), an attention module Att(·; γ), and a feature-aggregation
module g(·; δ). Let X denote the input image; the final quality
prediction q̂ is obtained via,

q̂ = g(f (X; θ) × att
(
f (X; θ) ; γ

)
; δ) (4)

Since the quality label q is binary, the loss to be optimized,
denoted as L, is calculated by,

L = BCE(Sigmoid
(
q̂
)
, q) (5)

Where Sigmoid(·) denotes the Sigmoid layer and BCE(·)
denotes the binary cross-entropy.

The attention mechanism could be implemented via various
CNN architectures. Here spatial attention [denoted as BaseLine
(BL) + SpatialAtt + MultiScale (MS)] and self-attention (denoted
as BL+SelfAtt+MS) are leveraged to learn the spatial weighting
strategy for multi-scale quality-aware features. The spatial
attention is implemented by several stacks of convolutional-batch
normalization-RELU units while the self-attention is following
(20). Also, we constructed a multi-scale excluded and attention-
incorporated CNN framework for the ablation study, denoted
as BL+SpatialAtt.

For the sake of comparison, we considered the BL in the
performance comparison, in which the feature extracted from
ResNet50 was directly fed into a GAP followed by stacks
of the fully-connected layer. The MASK-incorporated model
is also involved (denoted as BL+MASK) and has an overall
pipeline similar to the BL, but the extracted features are
multiplied elemental-wise with the MASK signal before being fed
into the GAP layer.
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FIGURE 2

Illustration of spatial-information-retained (SIR) multi-scale feature extraction. The activations extracted from Stage#1 of ResNet50, denoted as s1,
are first rescaled into s′1 by a convolutional layer with kernel size 1x1. Then s′1 is spatially split into multiple chunks whose spatial size is coordinated
with the features extracted from Stage#4 of ResNet50. The chunks are concatenated into s′′1 and rescaled to a size of [128, H/32, W/32]. In this way,
the spatial information of multi-scale features is retained while the feature size within each scale is consistent.

Network hyperparameters: the minibatch size is 8, and the
learning rate is 1e-3. The optimizer is Adam, and the weight-
decay is 5e-4. The ratio of the learning rate of the ResNet
model parameters to the subsequent newly added layer is 1:10;
that is, the learning rate of the newly added layer is 1e-3,
and of the ResNet layer is 1e-4. The training process traverses
the training data in the database 20 times, which means the
epoch = 20, and the highest test accuracy is selected as the
final result. The division of training-test samples is randomly
generated (a total of two, namely round = 2). The image index
being used for training/testing is in the supplementary files
teIdx01.mat (first test index), trIdx01.mat (first-time training
index), teIdx02.mat (second test index), trIdx02.mat (second
training index). The host configuration is i7-8700 CPU @3.2GHz
& 32GB RAM + GTX1080@8GB.

To facilitate the development of deep learning models
using the MSHF dataset, it was manually segmented into
an 80% training set and a 20% test set. The training set
facilitated model learning, while the test set served for
performance evaluation. There was no overlap between these
two sets, ensuring a fair distribution of image variety. Each set
maintained an approximately equal proportion of high- and
low-quality images.

Statistical methods

For statistical validation, we employed a stratified 5-fold cross-
validation technique to ensure that each subset of data was
representative of the overall distribution, thus mitigating any
potential bias due to imbalanced data. This method involved
dividing the data into 5 of folds, each containing an equal
proportion of images from different categories and quality
levels, ensuring that each fold was used once as a test set
while the others served as the training set. We utilized the
Receiver Operating Characteristic (ROC) curve to evaluate the
sensitivity and specificity of LGAANet across different thresholds
of classification.

TABLE 1 Pseudocode of spatial-information-retained multi-scale
feature extractor.

Let X denote the input image

Step1. Extract multi-scale feature si , i = {1, 2, 3} from ResNet50 according to
Equation 1

Step2. For each scale i:

Rescale si via s′ i = g(si|T1,0
Ii,Oi

) channel-wise

Spatially split si into chunki according to Equation 2

Concatenate elements in chunki channel-wise according to Equation 3 and
obtain s′′ i

Rescale s′′ i channel-wise via g(·|T1,0
Cin,128) according to Equations 4, 5 and obtain

fti

End

Step3. Get ft4 by feeding f (X|Stage4) into g(·|T1,0
Cin,128)

Step4. Concatenate
{

fti|iε[1, 4]
}

channel-wise and obtain the final
spatial-information-retained multi-scale feature

Results

Experimental settings

We cropped blank areas of each image so that the width and
height were equal and then scaled the cropped image to a resolution
of 512 × 512. The eye-area mask was obtained through brightness
and edge information, which was the alpha channel, denoted as
MASK. The prediction model outputs a real value in the range of
[0,1], outputs a 0/1 signal through the threshold judgment, and
then compares it with the ground truth. In the experiment, the
threshold (TH) was selected as 0.5.

Color fundus photography dataset

The dataset annotations are listed in Table 2. For the
color fundus photography (CFP) dataset, images with good I/C
accounted for 61.0%, while GLU contained 86.5% of the poor I/C
images. As for ‘blur’, the CFP dataset had 58.6% images without
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FIGURE 3

Overall pipeline of proposed local and global attention aggregated deep neural network (LGAANet) for quality prediction. (A) ResNet50 structure.
(B) Spatial-information-retained (SIR) multi-scale feature extractor illustrated in Figure 2 and Section Methods-D. The green sphere labeled “C”
denotes channel-wise concatenation of SIR features extracted at each scale. (C) The attention module is leveraged to learn the spatial weighting
strategies and multiplied elemental-wise with the SIR multi-scale feature. (D) The global average pooling layer is incorporated and followed by
several fully connected layers to aggregate the quality prediction.

TABLE 2 Dataset annotations.

Item I/C Blur LC Overall

0 1 0 1 0 1 0 1

LOCAL_1 158 41 94 105 85 114 142 57

LOCAL_2 78 25 59 44 41 62 77 26

DR_1 31 156 34 153 6 181 40 147

DR_2 36 199 120 115 78 157 117 118

GLU 45 7 48 4 42 10 50 2

NORMAL 2 24 0 26 0 26 0 26

DRIMDB 54 140 74 120 76 118 70 124

DRIVE 0 40 0 40 0 40 0 40

DR_UWF 215 285 163 337 50 450 168 332

noticeable blur conditions, where DRIVE and NORMAL datasets
had no blurry images. The same thing happened with regard to LC,
and 68.3% of the images in the CFP dataset showed eligible contrast.
In each aspect, images from LOCAL_1 and LOCAL_2 were inferior
to those from DR_1 and DR_2.

Except for the DRIVE database, 80% of the CFP databases
were randomly selected as the training set and 20% as the test
set. We calculated the average prediction accuracy of the test set,
attaining an acceptable result for the baseline; and with the addition
of MASK, the accuracy increased to over 0.9. Spatial attention,
multiscale, and self-attention algorithms all improved accuracy:
BL+SelfAtt+MS achieved the best I/C and blur results, with
accuracies of 0.947 and 0.924, respectively, and BL+SpatialAtt+MS
produced the best results for LC, with an accuracy of 0.947.

Also, we added Gaussian white noise (Gauss) with a mean of 0
and a variance of 0.05 to images in the CFP datasets to improve the
competence of the human visual system (HVS) -based algorithm.
We conducted the experiments on each model, and the results
showed robust properties, with the best accuracy over 0.85.

ROC curves were drawn to further evaluate the performance
of the models, as shown in Figure 4, and the areas under the ROC
curves (AUCs) were calculated. For the CFP dataset, the AUC of
each model on every item was over 0.95. Detailed information
on accuracy and AUCs of the datasets is presented in Tables 3,4,
respectively.

Visualization of the prediction is interpreted by heat map, as
shown in Figure 5. For high-quality images, the activated area is
even and covers the whole image. When an image is suspected of
poor quality, such as an area of uneven illumination, the model will
not activate the designated area.

Ultra-wide field fundus image dataset

In the UWF dataset, images with good quality accounted for
66.4%. Blurring was less common in UWF images, and the overall
contrast was acceptable. The UWF dataset was not exploited for
training, and we tested it with the proposed model as an external
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FIGURE 4

ROC curve of different items for (A–D) CFP datasets. (E–H) UWF datasets. (A,E) Detection of uneven illumination or color. (B,F) Detection of blur.
(C,G) Detection of low contrast. (D,H) Overall quality.

TABLE 3 Overall accuracy of different models on various datasets.

Model CFP dataset UWF dataset Noise dataset

I/C Blur LC Overall I/C Blur LC Overall I/C Blur LC Overall

BL 0.886 0.874 0.874 0.897 0.826 0.839 0.852 0.876 0.802 0.802 0.819 0.809

+MASK 0.922 0.902 0.917 0.919 0.852 0.862 0.889 0.893 0.819 0.822 0.839 0.826

+SpatialAtt 0.927 0.914 0.929 0.932 0.869 0.899 0.903 0.909 0.832 0.813 0.852 0.849

+SpatialAtt+MS 0.947 0.919 0.947 0.944 0.883 0.909 0.916 0.926 0.852 0.856 0.879 0.873

+SelfAtt+MS 0.947 0.924 0.942 0.939 0.889 0.913 0.923 0.923 0.862 0.869 0.873 0.869

The bold values in the table represent the highest values in the respective columns.

TABLE 4 The AUC of different models on various datasets.

Model CFP dataset UWF dataset Noise dataset

I/C Blur LC Overall I/C Blur LC Overall I/C Blur LC Overall

BL 0.957 0.959 0.956 0.972 0.909 0.936 0.891 0.962 0.862 0.879 0.874 0.884

+MASK 0.979 0.975 0.972 0.983 0.931 0.938 0.925 0.958 0.874 0.877 0.878 0.854

+SpatialAtt 0.968 0.967 0.983 0.981 0.907 0.956 0.956 0.972 0.888 0.899 0.89 0.922

+SpatialAtt+MS 0.976 0.969 0.986 0.986 0.923 0.954 0.948 0.974 0.891 0.915 0.928 0.931

+SelfAtt+MS 0.977 0.972 0.972 0.969 0.906 0.936 0.952 0.944 0.905 0.894 0.88 0.917

The bold values in the table represent the highest values in the respective columns.

FIGURE 5

Heat map of the proposed model. (A) is a high-quality fundus image; the activated area is even and covers the whole image. (B) is a fundus image
that contains a small area of uneven illumination, and therefore the top of the image is not activated. (C) contains a large area of strong light around
the optic disk as well as the top of the image, and the rest area is properly activated.

dataset. Performance on the BL was moderate, and compared
with the BL, the following models all achieved better results.
BL+SelfAtt+MS attained accuracies of 0.889, 0.913, and 0.923 for
I/C, Blur, and LC separately.

The ROC curves for UWF images exhibited similar
performance. BL+SpatialAtt+MS attained an AUC of 0.923
for I/C. Nevertheless, the AUCs for Blur and LC reached their
maximums (both 0.956) in the BL+SpatialAtt model.
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TABLE 5 Appendix explains key technical terms and concepts.

Term and Concepts Simple Explanation

Image Quality Assessment (IQA) Evaluating how clear and useful an image
is for medical purposes.

LGAANet A smart system assessing eye images by
analyzing both local details and the
overall picture.

Multi-Source Heterogeneous
Fundus (MSHF) Database

Collection of eye images from various
sources and cameras.

Color Fundus Photography (CFP) Standard color images of the retina.

Ultrawide-Field (UWF) Imaging Wide-angle images capturing a broad
view of the retina.

Attention Mechanisms Focuses on significant parts of the image
for analysis.

Saliency Maps Highlights important image regions for
decision-making in the neural network.

Multi-Level Spatially Pooled
(MLSP)

Combines information from multiple
levels of image analysis.

Global Average Pooling (GAP) Computes the average of all feature maps
in a neural network layer.

Spatial-Information-Retained
(SIR)

Method preserving spatial details during
image processing.

Receiver Operating Characteristic
(ROC)

Graphical representation of a classifier’s
performance.

Human Visual System (HVS) System responsible for processing visual
information in humans.

Areas Under the ROC Curves
(AUCs)

Measure of the overall performance of a
classifier.

Table 5 provides a clear overview of the key technical terms and
concepts used in the study, making it easier for readers from diverse
backgrounds to understand the key aspects of the research.

Discussion

In the realm of IQA, much of the existing literature has
concentrated on singular modalities, predominantly CFP. The
incorporation of alternative imaging modalities, such as portable
fundus photography and UWF fundus imaging, which may
be preferable in certain clinical scenarios, has been relatively
overlooked. Wang et al represented a notable exception, employing
both portable fundus camera images and public CFP datasets,
demonstrating the machine learning model’s robust performance
across these modalities (21).

To date, our research indicates a scarcity of research employing
UWF images for fundus IQA, particularly studies that integrate
CFP, portable fundus photography, and UWF imaging. Given
that each imaging method addresses specific clinical requirements,
developing an IQA system capable of accommodating this diversity
is crucial. Furthermore, the challenge of ’domain variance’ has been
partially addressed in the prior research, which involved collecting
images from both the source and target domains to train the
network (22). Therefore, to fill these gaps, we compiled a multi-
source heterogeneous fundus (MSHF) dataset, designed to meet

the varied demands of clinical practice and mitigate the issue of
domain variability.

Our Local and Global Attention Aggregated Deep Neural
Network (LGAANet) was initially trained on images from
portable and tabletop cameras, yet it demonstrated commendable
adaptability and effectiveness when applied to UWF images. This
underscores our model’s potential and versatility across different
clinical settings. Previous contributions have introduced several
notable networks, focusing on segmentation or generic evaluation,
leveraging both conventional machine learning techniques and
advanced deep learning methodologies. Our LGAANet, aimed at
enhancing algorithmic performance and accommodating multi-
source heterogeneous data, integrates both local and global
information, resulting in incremental improvements in accuracy
and AUC with each enhancement.

The advent of AI in clinical practice has underscored the
importance of medical imaging quality assessment. Li et al.
introduced DeepQuality, a deep learning-based system for
assessing and enhancing the quality of infantile fundus images
to mitigate misdiagnosis risks in infant retinopathy screening,
demonstrating significant improvements in diagnostic models’
performance through analysis of over two million real-world
images (23). This study introduces the innovative LGAANet for
evaluating the quality of fundus images. Our MSHF dataset
encompasses three primary types of retinal images: those captured
by portable cameras, CFP images, and UWF images. These
images were annotated by clinical ophthalmologists based on three
distinct HVS characteristics and overall quality. The diversity of
our dataset is visually represented through a spatial scatter plot.
Developed on the sophisticated multi-level feature extractor SIR
and incorporating an attention mechanism, the LGAANet was
trained with images from portable cameras and CFP images. To
evaluate the model’s robustness, we also tested it with UWF images
and noisy data, analyzing overall accuracy and generating ROC
curves to calculate the AUC for each set. Additionally, we propose
the use of a salience map as a post hoc interpretability tool.
This model paves the way for further exploration into AI-driven
diagnostics, especially in the field of ophthalmology.

While the LGAANet has demonstrated significant
advancements in fundus IQA, there are notable limitations
that must be addressed in future research. One such limitation
is the current model’s inability to enhance poor-quality images.
Although LGAANet excels at assessing image quality, it does
not yet possess the capability to improve subpar images to meet
diagnostic standards. Future work should focus on developing
algorithms that can transform low-quality images into high-quality
ones, thereby increasing their diagnostic utility. Additionally, the
reliance on a manually annotated dataset for model training and
validation could introduce biases; thus, expanding the dataset and
incorporating more diverse imaging conditions will be crucial for
further validation. Finally, the generalizability of LGAANet to other
imaging modalities and diseases outside of diabetic retinopathy
and glaucoma remains to be explored. Addressing these limitations
will be essential to fully realize the potential of LGAANet in clinical
applications and to enhance the robustness and versatility of
computer-aided diagnostic systems in ophthalmology.
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