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Background: Polycystic ovary syndrome (PCOS) can lead to infertility and 
increase the risk of endometrial cancer. Analyzing the macrophage polarization 
characteristics in ovarian tissues of PCOS is crucial for clinical treatment.

Methods: We obtained 13 PCOS and nine control ovarian samples from the 
CEO database and analyzed differentially expressed genes (DEGs). Macrophage 
polarization-related genes (MPRGs) were sourced from the GeneCards and 
MSigDB databases. Intersection of DEGs with MPRGs identified DEGs associated 
with macrophage polarization (MPRDEGs). Gene ontology (GO), Kyoto 
Encyclopedia of Genes and Genomes (KEGG), and Protein–protein interaction 
(PPI) Network analysis were conducted on MPRDEGs. Moreover, the top  10 
genes from three algorithms were identified as the hub genes of MPRGs. In 
addition, miRNAs, transcription factors (TFs), and drugs were retrieved from 
relevant databases for regulatory network analysis of mRNA-miRNA, mRNA-TF, 
and mRNA-Drug interactions. Immune cell composition analysis between the 
PCOS and control groups was performed using the CIBERSORT algorithm to 
calculate correlations across 22 immune cell types.

Results: A total of 13 PCOS samples and nine control ovarian samples were 
obtained in this study. We  identified 714 DEGs between the two groups, with 
394 up-regulated and 320 down-regulated. Additionally, we  identified 774 
MPRGs, from which we derived 30 MPRDEGs by intersecting with DEGs, among 
which 21 exhibited interaction relationships. GO and KEGG analyses revealed 
the enrichment of MPRDEGs in five biological processes, five cell components, 
five molecular functions, and three biological pathways. Immune infiltration 
analysis indicated a strong positive correlation between activated nature killer 
(NK) cells and memory B cells, while neutrophils and monocytes showed the 
strongest negative correlation. Further investigation of MPRDEGs identified 
nine hub genes associated with 41 TFs, 82 miRNAs, and 44 drugs or molecular 
compounds. Additionally, qRT-PCR results demonstrated overexpression of the 
CD163, TREM1, and TREM2 genes in ovarian tissues from the PCOS group.

Conclusion: This study elucidated the polarization status and regulatory 
characteristics of macrophages in ovarian tissues of the PCOS subjects, 
confirming significant overexpression of CD163, TREM1, and TREM2. These 
findings contribute to a deeper understanding of the pathogenesis of PCOS.
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1 Introduction

Polycystic ovary syndrome (PCOS) is a prevalent reproductive 
and metabolic disorder affecting women of childbearing age. It is 
associated with a range of symptoms, including menstrual 
irregularities, hyperandrogenism, and even fertility failure (1, 2). 
Furthermore, multiple cohort studies indicate that PCOS patients 
have significantly higher rates of hypertension, renal disease, 
gastrointestinal disorders, eating disorders, mental health issues, 
depression, anxiety, rheumatoid arthritis, respiratory infections, 
obesity, dyslipidemia, non-alcoholic fatty liver disease, type 2 diabetes, 
cardiovascular diseases, dementia, and endometrial cancer compared 
to controls (3, 4), this underscores the critical importance of early 
prevention and detection of PCOS. According to WHO reports, 
approximately 8–20% of women worldwide suffer from PCOS, and 
effective treatment options are currently limited (1, 5, 6). A thorough 
analysis of the immunopathological characteristics of PCOS-related 
diseases will contribute to advancing global women’s healthcare.

Recent research highlights that dysregulation of macrophage 
polarization within the immune microenvironment of ovarian tissue 
may contribute significantly to ovulatory dysfunction and impaired 
egg maturation in PCOS (7–10), although the exact mechanisms 
remain unclear. Therefore, a detailed exploration of macrophage 
polarization characteristics within the local immune 
microenvironment of PCOS ovaries is essential for better 
understanding PCOS pathogenesis and advancing innovations in 
clinical interventions and preventive strategies. The ovarian immune 
microenvironment comprises diverse innate immune cells (such as 
macrophages, dendritic cells, and NK cells) and adaptive immune cells 
(including B and T cells), collectively maintaining normal ovarian 
function (8, 11). Alterations in the number and function of immune 
cells within this microenvironment can lead to compromised egg 
quality, impaired maturation, and ovulation disorders. Among these 
cells, macrophages are predominant in ovarian tissue and play a 
crucial role in ovarian function maintenance (12). Clinical evidence 
shows significant macrophage infiltration in the ovarian tissue of 
PCOS patients (10, 13), with a notably higher ratio of M1 to M2 
macrophage compared to healthy individuals, a pattern also observed 
in PCOS animal models (14, 15).

Macrophage polarization is influenced by various factors, 
including local immune microenvironment, gene expression levels, 
and regulation by noncoding RNAs (ncRNAs) (16–19). In the early 
stages of PCOS, the immune microenvironment predominantly 
activates macrophages towards the M1 phenotype, leading to the 
release of proinflammatory cytokines such as interleukin-1 (IL-1), 
interleukin-6 (IL-6), interleukin-12 (IL-12), interferon-gamma 
(IFN-γ), and tumor necrosis factor-alpha (TNF-α), thereby initiating 
chronic low-grade inflammation (20–22). IL-1α inhibits plasminogen 
activator activity and interferes with regular ovulation, and IL-1β high 
expression harms oocyte maturation and fertilization rate (22, 23). 
IL-6 may cause ovarian dysfunction by interfering with follicle 
maturation (24); TNF-α reduces the production of progesterone and 
affects ovulation by inhibiting the expression of genes related to 
progesterone production (25, 26). In addition, M1 macrophages 
produce reactive oxygen species (ROS) that stimulate nitric oxide 
(NO) synthesis, exacerbating tissue damage (27). As PCOS progresses, 
macrophages can transition to the M2 phenotype under certain 
conditions, marked by overexpressing of surface receptors like a 

receptor for advanced glycation end-products (RAGE), a cluster of 
differentiation (CD) 163 (CD163), and CD206. M2 macrophages 
secrete C-C motif chemokine ligands (CCL) such as CCL24, CCL22, 
CCL17, and CCL18 (28, 29), which recruit eosinophils, basophils, and 
type 2 T helper (Th2) cells to the immune microenvironment (30, 31). 
M2 macrophages exhibit anti-inflammatory and immunomodulatory 
effects by promoting interleukin-10 (IL-10) and transforming growth 
factor-beta (TGF-β) production, which is crucial for maintaining local 
immune homeostasis in the ovaries (21). In PCOS patients, serum and 
follicular fluid levels of IL-1β, IL-6, IL-12, IL-23, and TNF-α are 
significantly elevated (32, 33), whereas IL-10 and TGF-β levels are 
reduced compared to the healthy individuals (34, 35). Triggering 
receptors expressed on myeloid cells (TREM) and Plexin-D1 
(PLXND1) are implicated in promoting M1 macrophage polarization 
through inflammatory signal amplification and hemodynamic 
changes, respectively (36, 37). At the ncRNA level, microRNAs 
(miRNAs) play regulatory roles during macrophage polarization: 
miR-147 (38), miR-127 (39), miR-155 (40), miR-27a-3p (41), 
miR-30d-5p (42) and miRNA-19b-3p (43) are up-regulated in M1 
macrophages, while miR-125a-5p (44), miR-143-3p (45), miR-145-5p 
(46), and miR-146a-3p (47) are up-regulated in M2 macrophages. 
miR379 inhibits M2 macrophage polarization, increasing the M1/M2 
ratio and potentially affecting follicular development and ovulation in 
PCOS (48). The inflammatory response mediated by macrophage 
polarization significantly contributes to PCOS pathogenesis. 
Therefore, balancing the ratio of M1 to M2 macrophages may 
be crucial for improving PCOS outcomes (49).

However, the polarization characteristics, differential gene 
expression, and biological functions of macrophages in PCOS, 
particularly their involvement with miRNAs and signaling pathways, 
remain poorly understood. Therefore, this study aims to analyze 
differential gene expression related to macrophage polarization in 
PCOS tissues using a database approach. It will explore enriched 
signaling pathways and regulatory networks while thoroughly 
investigating immune cell infiltration patterns associated with 
PCOS. The focus will be on elucidating the differential expression and 
biological roles of genes related to macrophage polarization in PCOS, 
uncovering potential gene regulatory networks and drug targets. 
These findings aim to provide a theoretical basis for the clinical 
development of novel therapies targeting PCOS.

2 Materials and methods

2.1 Data download

The PCOS-related datasets GSE5850 (50) and GSE34526 (51) were 
retrieved from the Gene Expression Omnibus (GEO) database using 
the R package GEOquery (52). In our study, we analyzed the GSE5850 
dataset, which contains oocytes at the metaphase II (MII) stage, and 
the GSE34526 dataset, which includes granulosa cells. Although these 
tissues are not traditionally classified as immune-related, research has 
suggested their interactions with the immune system within the 
ovarian microenvironment are of interest (10, 53). Furthermore, Liu L 
et  al. have used these same datasets (GSE5850 and GSE34526) to 
investigate the role of chronic low-grade inflammation in the 
pathogenesis of PCOS (54). Their study, through functional enrichment 
analysis of immune cell infiltration, identified new diagnostic markers 
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and potential small-molecule drugs, underscoring the importance of 
studying inflammatory responses in PCOS. Thus, our research employs 
the GSE5850 and GSE34526 datasets for related analytical investigations.

All samples originated from Homo sapiens. The chip platform 
utilized was GPL570, with detailed specifications provided in Table 1. 
Dataset GSE5850 comprises 6 PCOS samples and 6 control samples, 
while the dataset GSE34526 shall consist of 7 PCOS samples and 3 
control samples. This study included all PCOS and control samples in 
these datasets.

Additionally, macrophage polarization-related genes (MPRGs) 
were gathered from the GeneCards database (55) and the Molecular 
Signatures Database (MSigDB) (56). GeneCards offers 
comprehensive information on human genes, where we  utilized 
“Macrophage Polarization” as the search term, focusing specifically 
on “Protein Coding” genes, resulting in 623 MPRGs. Similarly, in 
MSigDB, using the keyword “Macrophage Polarization,” 
we identified 83 MPRGs from the COATES MACROPHAGE M1 VS 
M2 DN gene set and 86 MPRGs from the COATES MACROPHAGE 
M1 VS M2 UP gene set. After merging and removing duplicates, 
we obtained a total of 774 MPRGs. Detailed information is provided 
in Supplementary Table S1.

Furthermore, batch correction was performed on datasets 
GSE5850 and GSE34526 using the R package sva (57), integration a 
combined GEO dataset (Combined Datasets) comprising 13 samples 
from individuals with PCOS and nine control samples. Subsequently, 
the combined datasets were standardized and normalized, and probe 
annotations were conducted using the R package limma (58).

2.2 DEGs associated with macrophage 
polarization in PCOS

The R package limma was employed to conduct differential gene 
expression analysis comparing the PCOS and control groups. 
Differential expression was defined using thresholds of |log fold 
change (FC)| > 1 and p-value <0.05. Genes exhibiting logFC >1 and 
p-value <0.05 were categorized as up-regulated DEGs, while those 
with logFC<−1 and p-value <0.05 were categorized as down-
regulated DEGs. To identify MPRDEGs associated with PCOS, 
we  intersected all DEGs meeting the criteria of |logFC| > 1 and 
p-value <0.05 from the integrated GEO dataset with MPRGs. The 
Venn diagram was utilized to visualize the overlap and identify 
MPRDEGs. The differential analysis results were visualized using a 
volcano plot generated by the R package ggplot2 and a heatmap 
generated by the R package heatmap.

2.3 GO and KEGG enrichment analysis

GO is a commonly used method for large-scale functional 
enrichment analysis, which includes Biological Process (BP), 
Molecular Function (MF), and Cell Component (CC) (59). KEGG is 
a widely used database that stores information on genomes, 
biological pathways, diseases, drugs, and more (60). The present 
study used the R package clusterProfiler to perform GO and KEGG 
enrichment analysis on MPRDEGs. The entry screening criteria were 
adjusted to a p (adj. p) value less than 0.05 and a false discovery rate 
(FDR) value less than 0.25, which were considered statistically 
significant. The adj. p correction method used was Benjamini-
Hochberg (BH).

2.4 Gene set enrichment analysis

Gene set enrichment analysis (GSEA) assesses the distribution 
pattern of genes within a predefined gene set in a gene expression 
dataset sorted by their correlation with phenotypes, aiming to determine 
their association with the phenotype (61). In this study, genes from the 
combined datasets were categorized into PCOS and Control. GSEA was 
performed on all genes in the integrated GEO dataset using the R 
package clusterProfiler based on their logFC values. The parameters for 
GSEA included a seed value of 2020, 1,000 permutations, a minimum 
gene set size of 10, a maximum gene set size of 500, and p-values 
corrected using the BH method. Gene sets used in GSEA were retrieved 
from the c2.all.v7.5.1.symbols.gmt gene set in MSigDB. Criteria for 
significant enrichment were set at p-value <0.05 and FDR < 0.25.

2.5 PPI network and hub gene selection

The PPI Network involves proteins interacting through mutual 
interactions (62). The Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database is utilized to explore known and predicted 
protein interactions (63). In this study, the PPI network specific to 
MPRDEGs was constructed using the STRING database, with a 
minimum required interaction score set at 0.400 (medium confidence 
level). The network was visualized using Cytoscape software (64).

In addition, the top  10 hub genes related to macrophage 
polarization were identified using three algorithms within the 
cytoHubba plugin (65): Maximum Neighborhood Component 
(MNC), Degree, and Maximal Clique Centrality (MCC) (66). First, 
scores for MPRDEGs in the PPI network were computed and ranked. 
Subsequently, the intersection of the top 10 genes from each algorithm 
was determined, and a Venn diagram was generated to analyze the 
overlap. Genes appearing in all three algorithm results were considered 
hub genes associated with macrophage polarization.

2.6 Construction of regulatory networks

miRNAs play a crucial regulatory role in biological development 
and evolution by targeting multiple genes, and conversely, a single 
gene can be regulated by various miRNAs. To explore the association 
between hub genes involved in macrophage polarization and miRNAs, 
miRNAs associated with these hub genes were extracted from the 

TABLE 1 GEO microarray chip information.

GSE5850 GSE34526

Platform GPL570 GPL570

Species Homo sapiens Homo sapiens

Tissue MII Arrested Oocyte Granulosa Cell

Samples in PCOS Group 6 7

Samples in the Control Group 6 3

Reference PMID: 17148555 PMID: 22904171

PCOS, Polycystic Ovary Syndrome; GEO, Gene Expression Omnibus.
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TABLE 2 The primer sequences used for qRT-PCR.

Name Forward 5′  →  3′ primer Reverse 5′  →  3′ primer

AIF1 GGATCTGCCGTCCAAAC GCATTCGCTTCAAGGACA

CD163 ACATAGATCATGCATCTGTCATTTG CATTCTCCTTGGAATCTCACTTCTA

TREM2 CCTCTCCACCAGTTTCTCCT CAGTGCTTCAAGGCGTCATAAG

GRN CTGTCGTGTGCCCTGATGCTAAG CCCCAGTCCCCAGAATTGAGTTTG

HSPA5 TGTGGTACCCACCAAGAAGTC TTCAGCTGTCACTCGGAGAAT

TREM1 ACTGCTGTGCGTGTTCTTTG GCCTTCTGGCTGTTGGCATA

GAPDH CGACTTCAACAGCAACTCCCACTCTTCC TGGGTGGTCCAGGGTTTCTTACTCCTT

TarBase database (67), and an mRNA-miRNA regulatory network was 
constructed and visualized using Cytoscape software.

TFs govern gene expression by interacting with target genes post-
transcriptionally. TFs that regulate the hub genes related to 

macrophage polarization were identified using data from the 
ChIPBase database (68). Subsequently, an mRNA-TF regulatory 
network was constructed using Cytoscape software to illustrate these 
regulatory interactions.

FIGURE 1

Flow chart for the comprehensive analysis of MPRDEGs. PCOS, Polycystic Ovary Syndrome; DEGs, Differentially Expressed Genes, MPRGs, 
Macrophage Polarization-Related Genes; MPRDEGs, Macrophage Polarization-Related Differentially Expressed Genes; GO, Gene Ontology; KEGG, 
Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment Analysis; PPI, Protein–protein Interaction; TF, Transcription Factor.
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The comparative toxicogenomics database (CTD) was employed 
to predict both direct and indirect drug targets of hub genes associated 
with macrophage polarization (69). This exploration aimed to 
elucidate the interactions between hub genes and drugs. Finally, the 
mRNA-drug regulatory network was visualized using Cytoscape 
software to depict these regulatory relationships comprehensively.

2.7 Immune infiltration analysis

CIBERSORT is a linear support vector regression-based method 
used to deconvolute of transcriptome expression matrices, estimating 
the composition and abundance of immune cells within heterogeneous 
cell populations (70). By applying the CIBERSORT algorithm 
alongside the LM22 feature gene matrix and filtering data with 
immune cell enrichment scores above zero, specific results of immune 
cell infiltration matrices can be derived. Subsequently, correlation 
heatmaps are generated using the R package heatmap to visualize 
integrated GEO datasets (combined datasets) and illustrate correlation 
analyses between LM22 immune cells and hub genes associated with 
macrophage polarization.

2.8 Differential expression analysis of hub 
genes related to macrophage polarization

We generated grouping comparison plots based on the expression 
levels of these hub genes to further investigate differential expression 

related to macrophage polarization in the PCOS and control groups 
of the integrated GEO datasets. The Receiver Operating Characteristic 
(ROC) curve is an analysis tool used to assess model performance, 
distinguish optimal from suboptimal models, or establish optimal 
thresholds within a model (71). The ROC curve provides a 
comprehensive measure of sensitivity and specificity for continuous 
variables, demonstrating how well the model discriminates between 
classes. Using the R package ROC, ROC curves were plotted for hub 
genes associated with macrophage polarization in the integrated GEO 
datasets of PCOS, and the Area Under the Curve (AUC) was 
calculated to evaluate the diagnostic performance of these hub genes’ 
expression levels for PCOS. AUC values range between 0.5 and 1, 
where a value closer to 1 indicates better diagnostic performance. 
AUC values below 0.7 suggest low accuracy, values between 0.7 and 
0.9 indicate moderate accuracy, and values 0.9 indicate high accuracy.

2.9 Animals and PCOS modeling

Twelve female mice of specific pathogen-free (SPF) grade, aged 3 
weeks, were randomly divided into two groups of six mice each. Mice 
in the PCOS group received daily injections of dehydroepiandrosterone 
(DHEA) at a dose of 6 mg per 100 g body weight, dissolved in sesame 
oil, for 21 consecutive days. Mice in the control group received an 
equivalent volume of sesame oil daily. All mice were purchased from 
the Animal Experimental Center of Lanzhou University and housed 
in the SPF standardized laboratory animal facility at the Medical 
Experimental Center of Lanzhou University. DHEA was purchased 

FIGURE 2

Batch effects removal of GSE5850 and GSE34526. (A,B) Boxplots of the combined datasets before (A) and after (B) batch effect removal. (C,D) PCA 
plots of the combined datasets before (C) and after (D) batch effect removal. PCA, Principal Component Analysis; PCOS, Polycystic Ovary Syndrome. 
The orange color represents the PCOS dataset GSE5850, and the light blue color represents the PCOS dataset GSE34526.
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from Shanghai McLean Biochemical Technology Co., Ltd. The study 
protocol was approved ty the Ethics Committee of Lanzhou University.

2.10 Hematoxylin and eosin (HE) staining

We utilized HE staining to evaluate polycystic ovarian changes in 
the animal models. Each mouse was anesthetized with 0.2 mL of 3% 
Pentobarbital Sodium and euthanized by neck dislocation. Both 
ovaries were surgically collected, and after the removal of fatty tissue 
and the capsule under an anatomical microscope, they were preserved 
intact. The left ovaries from both groups were fixed in 4% 
paraformaldehyde. In contrast, the right ovaries were frozen at −80°C 
for subsequent quantitative real-time polymerase chain reaction (qRT-
PCR) and further analyses. The fixed ovaries underwent routine 

processing, including dehydration, paraffin embedding, sectioning at 
5 μM thickness, dewaxing, rehydration, and staining with 
HE according to standard protocols (72).

2.11 qRT-PCR analysis

The mRNA levels of DEGs including allograft inflammatory factor 
1 (AIF1), CD163, TREM1, TREM2, granular protein (GRN), and heat 
shock protein family A member 5 (HSPA5) in ovarian tissue were 
quantified by qRT-PCR analysis. Total RNA extraction was performed 
with RNAkey™ Reagent (SEVEN, China), followed by reverse 
transcription using FastKing gDNA Dispelling RT SuperMix (KR118, 
TIANGEN Biotech). PCR primer sequences were designed using 
DNAMAN software, and the amplification protocol consisted of 

FIGURE 3

Combined datasets differential gene expression analysis. (A) Volcano plot of DEGs analysis between the PCOS and control groups in the combined 
datasets. (B) Venn diagram of DEGs and MPRGs in the combined datasets. (C) Heatmap of correlation of MPRDEGs in the combined datasets. PCOS, 
Polycystic Ovary Syndrome; DEGs, Differentially Expressed Genes; MPRGs, Macrophage Polarization-Related Genes; MPRDEGs, Macrophage 
Polarization-Related Differentially Expressed Genes. The light blue color represents the control group, and the orange color represents the PCOS 
group.
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40 cycles of denaturation at 95°C for 30 s and annealing/extension at 
55°C for 20 s in a 20 μL reaction volume. Melting curve analysis 
included steps at 95°C, 60°C, and 95°C each for 15 s. GAPHD was 
employed as an internal reference gene. The qRT-PCR primer 
sequences used in this study are detailed in Table 2.

2.12 Statistical analysis

Data processing and analysis for this study were performed using 
R software (Version 4.2.0). Continuous variables are expressed as 
mean ± standard deviation. The Wilcoxon Rank Sum Test was applied 
to compare differences between two groups. Unless otherwise stated, 
Spearman correlation analysis was employed to determine the 
correlation coefficient between different molecules, with statistical 
significance set at p-value <0.05.

3 Results

3.1 Technology roadmap

Our study obtained 13 PCOS and 9 control samples from two 
major databases. It conducted differential gene analysis between these 
groups and identified MPRDEGs through the intersection of DEGs 
and MPRGs. Subsequently, GO, KEGG, and PPI network analyses 
were performed on the MPRDEGs. Hub genes were identified from 

the PPI network, and their differential expression was validated. 
Additionally, the study included immune infiltration analysis and 
regulatory network analysis (mRNA-miRNA, mRNA-TF, and mRNA-
Drug) of the hub genes. The overall research workflow is depicted in 
Figure 1.

3.2 Integration of polycystic ovary 
syndrome datasets

Initially, we combined datasets from the PCOS datasets GSE5850 
and GSE34526 using the R package sva to mitigate batch effects. To 
assess the effectiveness of this process, we compared the datasets using 
distribution boxplots and Principal Component Analysis (PCA) plots 
(Figure  2). Both distribution boxplot and PCA plots indicate 
substantial reduction in batch effects among the PCOS dataset samples 
following batch effect removal.

3.3 Analysis of MPRDEGs in polycystic 
ovary syndrome

The combined datasets were stratified into PCOS and a 
control groups. Using the R package limma, we  analyzed 
differential gene expression on the integrated GEO dataset, 
identifying 714 DEGs meeting the |logFC| > 1 criteria and p-value 
<0.05. Among them, 394 genes were up-regulated (logFC>1 and 

TABLE 3 Results of GO and KEGG enrichment analysis for MPRDEGs.

Ontology ID Description GeneRatio BgRatio p-value p. adjust q-value

BP GO:0032602 Chemokine production 6/29 98/18800 7.41E-09 1.01E-05 5.86E-06

BP GO:0001819 Positive regulation of cytokine production 9/29 475/18800 2.49E-08 1.70E-05 9.83E-06

BP GO:0050777 Negative regulation of immune response 6/29 179/18800 2.71E-07 8.08E-05 4.67E-05

BP GO:0002275 Myeloid cell activation is involved in the immune 

response

5/29 93/18800 2.87E-07 8.08E-05 4.67E-05

BP GO:0002443 Leukocyte mediated immunity 8/29 457/18800 3.14E-07 8.08E-05 4.67E-05

CC GO:0030667 Secretory granule membrane 6/30 312/19594 6.68E-06 6.95E-04 4.64E-04

CC GO:0070821 Tertiary granule membrane 3/30 73/19594 1.87E-04 9.74E-03 6.51E-03

CC GO:0035579 Specific granule membrane 3/30 91/19594 3.59E-04 1.25E-02 8.32E-03

CC GO:0045121 Membrane raft 4/30 326/19594 1.47E-03 2.57E-02 1.72E-02

CC GO:0098857 Membrane microdomain 4/30 327/19594 1.48E-03 2.57E-02 1.72E-02

MF GO:0001530 Lipopolysaccharide binding 3/30 34/18410 2.26E-05 2.71E-03 1.90E-03

MF GO:0097110 Scaffold protein binding 3/30 67/18410 1.74E-04 8.52E-03 5.98E-03

MF GO:0005041 Low-density lipoprotein particle receptor activity 2/30 15/18410 2.66E-04 8.52E-03 5.98E-03

MF GO:0038024 Cargo receptor activity 3/30 79/18410 2.84E-04 8.52E-03 5.98E-03

MF GO:0030228 Lipoprotein particle receptor activity 2/30 18/18410 3.86E-04 9.27E-03 6.51E-03

KEGG hsa04145 Phagosome 4/14 152/8164 1.00E-04 7.40E-03 6.00E-03

KEGG hsa05133 Pertussis 3/14 76/8164 2.62E-04 9.70E-03 7.86E-03

KEGG hsa04936 Alcoholic liver disease 3/14 142/8164 1.63E-03 4.02E-02 3.26E-02

BP GO:0032602 Chemokine production 6/29 98/18800 7.41E-09 1.01E-05 5.86E-06

BP GO:0001819 Positive regulation of cytokine production 9/29 475/18800 2.49E-08 1.70E-05 9.83E-06

GO, Gene Ontology; BP, Biological Process; CC, Cellular Component; MF, Molecular Function; KEGG, Kyoto Encyclopedia of Genes and Genomes; MPRDEGs, Macrophage Polarization-
Related Differentially Expressed Genes.
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p-value <0.05), while 320 genes were down-regulated (logFC<−1 
and p-value <0.05). A volcano plot visualizing there results is 
presented in Figure 3A. To identify MPRDEGs, we intersected all 

DEGs meeting the criteria |logFC| > 1 and p value <0.05 with 
MPRGs, resulting in 30 MPRDEGs, illustrated in a Venn diagram 
(Figure 3B). These MPRDEGs include IGF2R, HAVCR2, PLBD1, 

FIGURE 4

GO and KEGG enrichment analysis for MPRDEGs. (A) The bubble chart displays the results of GO and KEGG enrichment analysis for MPRDEGs: BP, CC, 
MF, and pathways. The horizontal axis shows GO terms and KEGG terms. (B–E) The network diagrams show the results of GO and KEGG enrichment 
analysis for MPRDEGs: BP (B), CC (C), MF (D), and KEGG (E). MPRDEGs, Macrophage Polarization-Related Differentially Expressed Genes; GO, Gene 
Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, Biological Process; CC, Cellular Component; MF, Molecular Function. The red 
nodes represent BP, CC, MF, and KEGG entries, while the dark blue nodes represent molecules. The connections define the relationships between 
entries and molecules. The screening criteria for GO and KEGG enrichment analysis were adj. p <  0.05 and an FDR value <0.25, which were considered 
statistically significant. The adj. p correction method used was the Benjamini-Hochberg method.
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IL4R, TREM2, SLCO2B1, HSPA5, MAFB, GSTM2, LAIR1, 
HLA-B, ADAM8, GRN, CD163, NINJ1, C1QB, CXCL16, AIF1, 
TREM1, FCGBP, C3, CD14, CEBPD, OLR1, P2RY13, PLEKHO1, 
HMOX1, TET1, HHLA2, and PAQR3. Subsequently, we analyzed 
the expression differences of these MPRDEGs across different 
sample groups in the integrated GEO dataset and generated a 
heatmap using the R package heatmap to visualize the results 
(Figure 3C).

3.4 Enrichment analysis of GO and KEGG 
for MPRDEGs

We conducted GO and KEGG enrichment analyses to explore the 
functional roles of the 30 identified MPRDEGs in PCOS. The results, 
presented in Table 3, reveal significant enrichments across several BP, 
MF, CC, and biological pathways. BP enrichments include chemokine 
production, positive regulation of cytokine production, negative 
regulation of immune response, myeloid cell activation involved in 
immune response, and leukocyte-mediated immunity in PCOS. CC 
enrichments encompass secretory granule membrane, tertiary granule 
membrane, specific granule membrane, membrane raft, and 
membrane microdomain. MF enrichments involve activities such as 
lipopolysaccharide binding, scaffold protein binding, low-density 
lipoprotein particle receptor activity, cargo receptor activity, and 

lipoprotein particle receptor activity. Additionally, MPRDEGs are 
involved in biological pathways, including Phagosome, Pertussis, and 
Alcoholic liver disease. The findings were visualized using a bubble 
chart (Figure  4A) to illustrate the significance of enrichments. 
Moreover, network diagrams (Figures 4B–E) were constructed based 
on the results of the GO and KEGG enrichment analyses, highlighting 
connections between molecules and annotated items. Nodes of greater 
significance indicate the involvement of more molecules in the 
respective item.

3.5 Gene set enrichment analysis

To assess the collective impact of all gene expression levels from 
the combined GEO dataset on PCOS, we conducted GSEA to explore 
their involvement in biological processes, cellular components, and 
molecular functions (Figure  5A). The detailed outcomes are 
summarized in Table 4. The analysis revealed significant associations 
between gene expression and various biological functions and 
signaling pathways. Specifically, pathways such as PID_IL8_CXCR2_
PATHWAY (Figure 5B), WP_IL1_ AND _MEGAKARYOCYTES _ 
IN_OBESITY (Figure 5C), _IL8_CXCR1_PATHWAY (Figure 5D), 
and WP_I L4_ SIGNALING_PATHWAY (Figure  5E) were 
prominently affected by the gene expression profiles in the integrated 
GEO dataset.

FIGURE 5

GSEA for combined datasets. (A) The GSEA of four biological functions in the combined GEO dataset is shown in mountain plots. (B–E) The GSEA 
showed that PCOS significantly affected PID_IL8_CXCR2_PATHWAY (B), WP_IL1_AND_MEGAKARYOCYTES_IN_OBESITY (C), PID_IL8_CXCR1_
PATHWAY (D), and WP_IL4_SIGNALING_PATHWAY (E). The screening criteria for GSEA were p value <0.05 and FDR value <0.25.
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3.6 Construction of PPI network and 
screening of hub genes

First, we conducted a PPI analysis to construct the PPI Network 
of 30 MPRDEGs associated with macrophage polarization using the 
STRING database. Cytoscape software was used to visualize the 
MPRDEGs exclusively (Figure  6A). The PPI Network results 
revealed interactions among 21 MPRDEGs, including AIF1, C1QB, 
C3, CD14, CD163, CXCL16, GRN, GSTM2, HAVCR2, HHLA2, 
HLA-B, HMOX1, HSPA5, IL4R, LAIR1, MAFB, OLR1, P2RY13, 
SLCO2B1, TREM1, and TREM2. Subsequently, using the Cytohubba 
plugin, we  applied three algorithms-MNC (Figure  6B), Degree 
(Figure  6C), and MCC (Figure  6D) to compute scores for the 
MPRDEGs. Based on their scores, the 21 MPRDEGs were ranked, 
and the top  10 genes identified by all three algorithms were 
intersected to generate a Venn diagram (Figure  6E) for further 
analysis. Nine hub genes associated with macrophage polarization 
were identified: AIF1, CD163, TREM2, C1QB, CD14, GRN, HSPA5, 
TREM1, and HMOX1.

3.7 Constructing regulatory networks

Firstly, miRNAs associated with hub genes involved in 
macrophage polarization were retrieved from the TarBase database. 
Using Cytoscape software, we constructed and visualized an mRNA-
miRNA regulatory network (Figure 7A). The network included 3 hub 

genes (HSPA5, GRN, and HMOX) and 82 miRNAs, such as 
miR-424-5p, miR-107, miR103a-3p, and miR-27a-3p, among others. 
Further details are provided in Supplementary Table S2.

Subsequently, TFs binding to hub genes associated with 
macrophage polarization were identified through the ChIPBase 
database. Using Cytoscape software, we constructed and visualized an 
mRNA-TF regulatory network (Figure 7B). The network encompassed 
9 hub genes (AIF1, CD163, TREM2, C1QB, CD14, GRN, HSPA5, 
TREM1, and HMOX1) and 41 TFs, including SPI1, CEBPB, RAD21, 
CTCF, and MAX. Further details are provided in 
Supplementary Table S3.

Finally, potential drugs or molecular compounds targeting hub 
genes associated with macrophage polarization were confirmed using 
the CTD database. Cytoscape software was utilized to construct and 
visualize an mRNA-Drug regulatory network (Figure  7C). The 
network comprised 3 hub genes (HSPA5, CD14, and HMOX) and 44 
drugs or molecular compounds, such as cyclosporine, quercetin, and 
others. Further details are provided in Supplementary Table S4.

3.8 Immune infiltration analysis of 
polycystic ovary syndrome dataset

The CIBERSORT algorithm was utilized to calculate the 
correlation between 22 immune cell types and the PCOS and control 
groups based on the combined GEO dataset. Subsequently, the 
proportion of immune cells in the combined GEO datasets was 
visualized using a bar chart (Figure 8A). A correlation heatmap was 

TABLE 4 Results of gene set enrichment analysis for combined datasets.

ID setSize Enrichment 
score

NES p-value q-values

WP_MICROGLIA_PATHOGEN_PHAGOCYTOSIS_PATHWAY 40 7.31E-01 2.64E+00 1.98E-03 4.38E-02

REACTOME_NEUTROPHIL_DEGRANULATION 448 5.08E-01 2.61E+00 1.65E-03 4.38E-02

WP_TYROBP_CAUSAL_NETWORK_IN_MICROGLIA 59 6.32E-01 2.46E+00 1.98E-03 4.38E-02

REACTOME_INTERFERON_ALPHA_BETA_SIGNALING 70 5.95E-01 2.41E+00 1.89E-03 4.38E-02

PID_IL8_CXCR2_PATHWAY 34 6.81E-01 2.35E+00 1.96E-03 4.38E-02

REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_

LYMPHOID_AND_A_NON_LYMPHOID_CELL
124 5.28E-01 2.35E+00 1.81E-03 4.38E-02

KEGG_ANTIGEN_PROCESSING_AND_PRESENTATION 74 5.66E-01 2.31E+00 1.89E-03 4.38E-02

REACTOME_INTERLEUKIN_10_SIGNALING 43 6.26E-01 2.28E+00 2.01E-03 4.38E-02

KEGG_LEISHMANIA_INFECTION 67 5.67E-01 2.28E+00 1.93E-03 4.38E-02

KEGG_VIRAL_MYOCARDITIS 65 5.68E-01 2.26E+00 1.93E-03 4.38E-02

KEGG_ALLOGRAFT_REJECTION 33 6.56E-01 2.24E+00 1.96E-03 4.38E-02

REACTOME_PURINERGIC_SIGNALING_IN_LEISHMANIASIS_INFECTION 26 6.87E-01 2.22E+00 1.98E-03 4.38E-02

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 50 5.90E-01 2.21E+00 2.00E-03 4.38E-02

REACTOME_GENERATION_OF_SECOND_MESSENGER_MOLECULES 29 6.57E-01 2.20E+00 1.96E-03 4.38E-02

WP_TYPE_II_INTERFERON_SIGNALING 36 6.28E-01 2.20E+00 1.94E-03 4.38E-02

WP_IL1_AND_MEGAKARYOCYTES_IN_OBESITY 24 6.85E-01 2.19E+00 3.92E-03 6.38E-02

KEGG_TYPE_I_DIABETES_MELLITUS 39 6.12E-01 2.19E+00 1.98E-03 4.38E-02

REACTOME_PD_1_SIGNALING 19 7.34E-01 2.18E+00 2.00E-03 4.38E-02

PID_IL8_CXCR1_PATHWAY 27 6.58E-01 2.16E+00 3.91E-03 6.38E-02

WP_IL4_SIGNALING_PATHWAY 54 5.04E-01 1.92E+00 2.00E-03 4.38E-02
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then generated to illustrate the relationship in immune cell infiltration 
abundance (Figure 8B). The results showed that several immune cells 
exhibiting significant correlation: NK cells activated and B cells 
memory showed the strongest positive correlation. In contrast, 
Neutrophils and Monocytes showed the strongest negative correlation. 
Additionally, another correlation heatmap was generated to depict the 
associations between macrophage polarization-related hub genes and 
immune cell infiltration abundance in the PCOS dataset (Figure 8C). 
The results indicated that Macrophages M1, Monocytes, and CD8+ T 
cells demonstrated a strong positive correlation with macrophage 
polarization-related hub genes, including TREM2, GRN, CD163, 
CD14, C1QB, AIF1, and so on. Conversely, CD4+ memory-resting T 
cells and CD4+ memory-activated T cells exhibited a strong negative 
correlation with macrophage polarization-related hub genes.

3.9 Differential expression analysis of hub 
genes related to macrophage polarization

To further investigate the differential expression of hub genes 
associated with macrophage polarization in the integrated GEO 
dataset, the box plots were generated to compare the expression levels 

of nine hub genes between the PCOS and control groups (Figure 9A). 
Differential analysis of the integrated GEO dataset revealed statistical 
significance (p-value <0.05) for six hub genes related to macrophage 
polarization. Specifically, TREM2 and HSPA5 showed highly 
significant differences (p-value <0.01) between the PCOS and control 
groups. Additionally, AIF1, CD163, GRN, and TREM1 exhibited 
statistical significance (p-value <0.05) in the integrated GEO dataset 
comparison. Furthermore, ROC curves were plotted to assess the 
diagnostic potential of these six hub genes associated with macrophage 
polarization in the integrated GEO dataset (Figures 9B–D). The ROC 
curves demonstrated moderate to high accuracy (0.7 < AUC < 0.9) in 
distinguishing between the PCOS and control groups for AIF1, 
CD163, TREM2, GRN, HSPA5, and TREM1.

3.10 PCOS modeling and DEGs expression 
levels verification by qRT-PCR

We have successfully established and evaluated the PCOS model 
in mice (Figure 10A). HE staining revealed normal ovarian tissue in 
control mice, characterized by well-organized follicles and corpus 
luteum at various developmental stages, with orderly arranged 

FIGURE 6

PPI network and hub genes analysis. (A) PPI network of MPRDEGs. (B–D) PPI networks of the top 10 MPRDEGs in the maximum neighborhood 
component algorithm (B), degree algorithm (C), and maximal clique centrality algorithm (D). (E) Venn diagram of the top 10 MPRDEGs in the three 
algorithms. PPI Network, protein–protein interaction network; MPRDEGs, macrophage polarization-related differentially expressed genes; MNC, 
Maximum Neighborhood Component; MCC, Maximal Clique Centrality. The color of each square represents the score from high to low, ranging from 
red to yellow.
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granulosa cells (Figure 10B). In contrast, ovarian tissue from mice in 
the PCOS group exhibited significantly enlarged follicles, decreased 
granulosa cells numbers, increased immature small follicles, and 
absence of oocytes (Figure  10B), confirming the successful 
construction of PCOS model. qRT-PCR analysis indicated significantly 
higher expression levels of CD163, TREM1, and TREM2 genes in the 
PCOS group compared to the control group (Figure 10C), consistent 
with the database sequencing results. However, the expression levels 
of GRN and HSPA5 did not align with the sequencing data. GRN 

showed a slightly increase compared to the control group, while 
HSPA5 displayed a marginal decrease (Figure 10C).

4 Discussion

PCOS is a clinically heterogeneous syndrome characterized by 
various metabolic and reproductive abnormalities. Many 
researchers have highlighted the pivotal role of 

FIGURE 7

Regulatory network of hub genes. (A) mRNA-miRNA Regulatory Network (mRNA-miRNA regulatory network of hub genes associated with 
macrophage polarization). (B) mRNA-TF Regulatory Network (mRNA-TF regulatory network of hub genes associated with macrophage polarization). 
(C) mRNA-Drug Regulatory Network (mRNA-Drug regulatory network of hub genes associated with macrophage polarization). TF, Transcription Factor. 
Red ellipses represent mRNA, orange circles represent miRNA, dark blue diamond represent TFs, and light blue triangles represent drugs.
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macrophage-mediated low-grade chronic inflammation in both the 
onset and progression of PCOS (73, 74). Specifically, understanding 
the mechanisms behind macrophage migration and adhesion is 
crucial. These processes are intricately linked to the dysregulation 
of ovarian function, insulin resistance, and hyperandrogenism 
observed in PCOS patients. By elucidating how macrophage activity 
influences these pathophysiological features, we  can potentially 
uncover new therapeutic targets and diagnostic markers. Through 
extensive data analysis, this study identified 394 significantly 
up-regulated genes and 320 down-regulated genes in the PCOS 
group compared to the control group. Among them, 30 genes 
closely related to macrophage polarization were identified, 
predominantly enriched in molecular functions such as chemokine 
and cytokine production and immune response regulation. 
qRT-PCR experiments confirmed significantly higher expression 
levels of three MPRDEGs (CD163, TREM1, and TREM2) in the 
PCOS group. Additionally, we observed a strong positive correlation 
between monocytes and CD8 T cells and hub genes, while CD4 
memory T cells showed a robust negative correlation with these 
proteins. These findings offer valuable insights into PCOS 

pathogenesis and potential implications for more targeted 
treatments and personalized management strategies in 
clinical practice.

Gene expression levels are crucial in regulating macrophage 
polarization (75). CD163 functions as a critical endocytic receptor, 
particularly for the haptoglobin-hemoglobin complex, marking it as an 
M2 type-specific marker (76, 77). In this study, CD163 expression was 
significantly increased and regulated by TFs such as REST and 
JUND. Previous studies have highlighted the enrichment of CD163+ 
macrophages in inflammation and tumor occurrence 
microenvironments (78), with anti-inflammatory or anti-tumor drugs 
targeting CD163+ macrophages showing promising therapeutic effects 
in animal models (79). Similarly, GRN is a multifunctional protein 
associated with inflammatory diseases, enhancing macrophage 
polarization towards the M2 phenotype when overexpressed. In this 
study, GRN was mainly involved in myoid cell activation within 
immune response biological processes, regulated by miRNAs such as 
miR-145-5p, miR-34a-5p, and miR-542-5p, as well as TFs like RAD21, 
CTCF, and TEAD4. However, qRT-PCR results did not show significant 
differences in GRN gene expression between PCOS and control mice. 

FIGURE 8

Combined datasets immune infiltration analysis by CIBERSORT algorithm. (A) Proportional bar chart of immune cells in the combined datasets. 
(B) Heat map of the correlation between immune cell infiltration abundance in the combined datasets. (C) Heat map of the correlation between hub 
genes related to macrophage polarization and immune cell infiltration abundance in the combined datasets. PCOS, Polycystic Ovary Syndrome. Light 
blue represents the control group, and orange represents the PCOS group. Blue indicates a negative correlation, and red indicates a positive 
correlation.
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Additionally, TREM can serve as a specific immune target capable of 
activating anti-tumor immune cells (36, 80). Activation of TREM1 
amplifies inflammatory responses, potentially enhancing systemic 
immunity. Specifically, in the context of PCOS, TREM1 activation in 
the wound microenvironment recruits immune cells like T cells, NK 
cells, DCs, and macrophages, thereby promoting the activation of anti-
tumor immune cells (80). In this study, TREM1 expression was 
significantly up-regulated in PCOS patients and primarily regulated by 
transcription factors such as SPI1, CTCF, and STAG1. It is involved in 
scaffold protein binding and contributes to the biological process of 
leukocyte-mediated immunity. TREM2 has been implicated in 
fostering an immunosuppressive tumor microenvironment (81) and is 
expressed in tumor-associated macrophages, correlating negatively 
with cancer prognosis (82). The high expression of TREM2 in our 
study suggests its potential significance as a therapeutic target in 
PCOS. Recent research underscores TREM2’s pivotal role in various 
diseases, including Alzheimer’s disease, obesity, fatty liver, arterial 
congee, stroke, and other diseases. In addition, TREM2 expression 
levels appear to be regulated by TFs such as SPI1, CEBPB, and RAD21, 
although the specific regulatory signaling pathways remain unclear.

HSPA5 increased expression is considered an essential indicator of 
poor prognosis and reduced survival rate in cancer patients (83). 
Macrophage differentiation may affect the HSPA expression level. 
Previous studies have demonstrated the significant impact of macrophage 
differentiation into the M1 type on HSPA expression, whereas 
differentiation towards the M2 type does not notably affect 
HSPA. Notably, the expression level of HSPA5  in the PCOS group 

remains uncertain. Our analysis using the GEO database indicated 
significantly higher expression of HSPA5 in the PCOS group compared 
to the control group. However, qRT-PCR validation showed no 
significant difference between the two groups, with HSPA5 expression 
levels in the PCOS group even significantly lower than those in the 
control group. This inconsistency may be attributed to the limited sample 
size or our data did not directly originate from macrophages, potentially 
introducing bias into the conclusions. The precise expression level and 
functional role of HSPA5 in the PCOS group require further validation 
through cellular or animal experiments. Previous studies have 
highlighted overexpression of HSPA5 in breast, ovarian, colorectal, and 
other tumors, suggesting its role in regulating immune microenvironment 
homeostasis through apoptosis-related signaling pathways such as 
MAPK/ERK and PI3K/AKT (83, 84). However, in renal tumors, 
increased HSPA5 expression did not show a statistically significant 
correlation with prognostic survival and even suggested a favorable 
prognosis in kidney renal clear cell carcinoma (KIRC) (84, 85). The 
predictive utility of HSPA5 may vary with tumor type or specific 
subtypes. Future studies could explore targeted approaches to HSPA5 
and investigate potential miRNA regulatory mechanisms and specific 
signaling pathways. Furthermore, HSPA5 has been predicted to have 
close associations with seven potential drugs or molecules (bortezomib, 
brefeldin, glucosamine, cyclosporine, tunicamycin, and quercetin), but 
their efficacy and other factors require further validation.

Although this study systematically analyzed the macrophage 
polarization characteristics of PCOS, several limitations should be noted. 
Firstly, while the sample size met statistical requirements, a larger dataset 

FIGURE 9

Expression difference and ROC curve analysis. (A) Boxplots of expression differences of hub genes related to macrophage polarization in the group 
comparisons in the combined datasets. (B–D) ROC curves of 6 hub genes related to macrophage polarization in the combined datasets. ROC, 
Receiver Operating Characteristic. Light blue represents the control group, and orange represents the PCOS group. “*” indicates p value <0.05, which is 
statistically significant; “**” indicates p value <0.01, which is highly statistically significant. AUC has a certain accuracy when it is between 0.7–0.9.
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could yield more precise results. In future studies, we plan to expand the 
sample size and conduct an in-depth analysis of the regulatory 
mechanisms underlying macrophage polarization. We aim to provide 
more valuable insights for the pathological research and clinical 
management of PCOS. Secondly, this study did not analyze and validate 
pro-inflammatory factors related to M1 macrophage polarization (such 
as TNF-a, IL-6, IL-1, and IFN-γ) in PCOS samples, and factors associated 
with M2 macrophage polarization (such as IL-4 and IL-10) were not 
examined. Understanding these inflammatory factors could provide 
deeper insights into the immune microenvironment and disease 
progression of PCOS. Thirdly, This study did not use a dataset exclusively 
containing macrophages. However, the GSE5850 and GSE34526 datasets, 
which were utilized, have been shown to interact significantly with the 
immune system in the ovarian microenvironment and have been 
recognized in PCOS and inflammation research (10, 53, 54). While our 
study provides important insights and preliminary evidence regarding the 
potential role of macrophages in PCOS, the conclusions may require 
validation with datasets specifically focused on immune cells. Fourthly, 
this study did not investigate the localization of differential genes such as 

AIF1, CD163, and TREM2. Due to limited research resources, additional 
animal experiments were not feasible to validate our current findings. 
However, future studies will focus on exploring the expression, 
localization, and functions of these genes in animal models, aiming to 
investigate further specific signaling pathways and mechanisms regulating 
macrophage polarization in the progression of PCOS. Furthermore, 
we have not yet conducted a detailed analysis of the specific expression 
level differences of these miRNAs and TFs between the PCOS group and 
the control group. Currently, we have only analyzed miRNAs and TFs that 
may influence the expression of MPRDEGs through network interaction 
analysis. We also plan to validate our findings from mouse models in 
human samples in the future to ensure the clinical applicability of our 
conclusions. Additionally, we aim to incorporate comprehensive multi-
omics data analysis and compare it with clinical samples. Our specific 
experimental plan includes isolating and extracting specific immune cells 
from the peripheral blood of PCOS patients, followed by detailed gene 
expression, functional analysis, and phenotypic studies of these cells. 
Through these approaches, we hope to uncover and validate key immune 
characteristics and mechanisms associated with PCOS. We also plan to 

FIGURE 10

PCOS modeling and DEGs expression levels verification by qRT-PCR. (A) PCOS model construction and experimental flowchart. (B) HE staining of 
ovarian cross-section. Healthy follicles (black arrow), corpus luteum (CL), cystic follicles (#), immature small follicles (red arrow), atresia follicles (yellow 
arrow). (C) qRT-PCR validation of DEG levels.
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validate our findings from mouse models in human samples in the future 
to ensure the clinical applicability of our conclusions. Additionally, we aim 
to incorporate comprehensive multi-omics data analysis and compare it 
with clinical samples. Our specific experimental plan includes isolating 
and extracting specific immune cells from the peripheral blood of PCOS 
patients, followed by detailed gene expression, functional analysis, and 
phenotypic studies of these cells. Through these approaches, we hope to 
uncover and validate key immune characteristics and mechanisms 
associated with PCOS.

5 Conclusion

In summary, our study identified 714 DEGs in the PCOS group 
compared to controls, including 30 MPRDEGs. Furthermore, 
we  identified regulatory relationships where 41 TFs regulated 9 
MPRDEGs, and 82 miRNAs were implicated in the regulation of 3 
MPRDEGs. Additionally, 3 MPRDEGs were found to be associated with 
44 drugs or molecular compounds. Using a PCOS animal model, 
qRT-PCR validation confirmed significant overexpression of CD163, 
TREM1, and TREM2 genes in the ovarian tissue of PCOS mice. This 
research provides insights into the polarization state and regulation of 
macrophages in PCOS, offering potential new drug targets for clinical 
prevention and treatment strategies.
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