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The deposition of calcium pyrophosphate (CPP) crystals in joint tissues causes 
acute and chronic arthritis that commonly affect the adult and elderly population. 
Experimental calcium pyrophosphate deposition disease (CPPD) models are 
divided into genetically modified models and crystal-induced inflammation 
models. The former do not reproduce phenotypes overlapping with the human 
disease, while in the latter, the direct injection of crystals into the ankles, dorsal 
air pouch or peritoneum constitutes a useful and reliable methodology that 
resembles the CPP induced-inflammatory condition in humans. The translational 
importance of the induced model is also strengthened by the fact that the key 
molecular and cellular mediators involved in inflammation are shared between 
humans and laboratory rodents. Although, in vivo models are indispensable 
tools for studying the pathogenesis of the CPPD and testing new therapies, their 
development is still at an early stage and major efforts are needed to address this 
issue. Here, we analyze the strenghts and limitations of each currently available 
CPPD in vivo model, and critically discuss their translational value.
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Introduction

Crystal deposition in the articular and periarticular tissues causes arthropathies that 
commonly affect the adult and elderly population. Among the most common and well-
known of these crystals is calcium pyrophosphate (CPP), which is the causative agent of 
inflammation and joint damage. The clinical manifestations of calcium pyrophosphate 
deposition disease (CPPD) can range from asymptomatic tissue calcification to acute or 
chronic arthritis, and in some cases it may be associated with other conditions, such as 
osteoarthritis (1).

Although CPPD is a prevalent rheumatic musculoskeletal disease, the precise processes 
that lead to crystal formation and the molecular mechanisms involved in inflammation remain 
unclear. The use of experimental murine models has proven to be an indispensable tool to 
study the pathogenesis of this disease and efficacy of potential treatments; however, their 
translational value with respect to the corresponding human pathology has to be carefully 
evaluated considering the strengths, species-specific differences, and possible critical points 
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during the experimental design. Since rodents do not develop crystal 
deposition diseases spontaneously, experimental modeling is 
performed either through transgenic strains that reproduce 
characteristics observed in patients or by exploiting the inflammatory 
potential of crystals directly injected into joint tissues, peritoneum, 
artificial dorsal pouches, or bone marrow of wild-type animals (2–5).

Genetically modified models

So far, it has not yet been possible to create laboratory rodents that 
spontaneously develop CPP crystal-induced arthritis or in which 
crystal formation is observed.

Since the presence of extracellular inorganic pyrophosphate 
(ePPi) in cartilage tissues is critical for CPP crystal formation (6, 7), 
knockout (KO) mice for enzymes or other proteins involved in PPi 
metabolism and calcification processes were generated. However, 
despite KO mice for TNAP (Tissue-nonspecific Alkaline Phosphatase, 
(Akp2−/−)), Phospho1 (phosphoethanolamine/phosphocholine 
phosphatase 1, (Phospho1−/−)) and osteopontin (OPN) are 
characterized by high circulating levels of ePPi, they did not show 
signs of arthritis or a phenotype compatible with CPPD (8–10). The 
absence of articular involvement was also confirmed in double knock 
out Akp2−/-OPN−/− and Akp2−/-Phospho1−/− mice, generated to alter 
the concerted action of ePPi regulators (10, 11). Furthermore, these 
knock-out models characterized by high levels of ePPi exhibit high 
embryonic lethality and shortened lifespan, severe disturbances in 
bone mineralization, and skeletal abnormalities that did not overlap 
with the human condition (8, 12).

Several hypotheses may be  formulated to explain why CPP 
crystals are not deposited in mice, which should be considered when 
using genetically conditioned models. For instance, yet unknown 
molecular mechanisms underlying the regulation of ePPi level, or the 
thickness of the articular cartilage layers on average 50-fold thinner 
than in humans, together with different temperatures and tissutal pH 
could prevent the crystal formation. Furthermore, the relatively short 
lifespan of the laboratory mouse may not allow enough time for 
crystal formation to occur.

Unlike the models described above in which mutations are 
induced artificially, the progressive ankylosis (ank/ank) mouse is a 
strain with a spontaneous mutation in the Ank gene, that shows 
progressive impairment of joint mobility and extremely early arthritis 
with progressive unrelenting ectopic calcification and vertebral fusion 
conducing to death within 6 months of age (13). The progressive 
ankylosis gene (ank) encodes a transmembrane protein that regulates 
the cellular efflux of ATP. Interestingly, several missense mutations 
have been described in familial CPPD disease and up-regulation of 
ANK protein expression was found in articular tissues from patients 
with CPP deposition (14, 15). In particular, this human condition is 
associated with increases in ePPi and presumed gain-of-function of 
ANK (14). However, the ank/ank murine model displays important 
differences compared to human patients with CPPD. Indeed, mice 
develop a disorder clinically, radiographically, and histologically more 
similar to human spondyloarthropathies than to CPPD (16), and 
histopathological evaluation demonstrated significant deposition of 
hydroxyapatite (HA) crystals but not CPP in the affected joints. 
Furthermore, this model is characterized by a loss-of-function 

mutation in ANK, an increase in intracellular PPi (iPPi) that triggers 
HA crystal deposition, and a decrease in ePPi (2, 17).

Another naturally occurring mutant mouse model linked to 
altered mineralization is the “tiptoe walking” (ttw/ttw) mouse. This 
model shows a defective expression of NPP1, the main enzyme that 
generates PPi, caused by a nonsense mutation in the corresponding 
gene (18). The ttw/ttw mice exhibit marked postnatal ectopic 
ossification, including the development of progressive intervertebral 
ankylosis, arterial calcification, as well as spontaneous increased 
bone formation process and calcification of articular cartilage in 
joints (18, 19). However, although calcium crystal deposition was 
observed in the joint tissues of these mutant mice, the presence of 
CPP was not evidenced (19, 20). This may be due to reduced levels 
of ePPi, which have been determined in ttw/ttw and other NPP1-
deficient mice (21).

The most widely used genetically modified mouse models to 
reproduce PPi metabolism and calcification processes are summarized 
in Table 1.

Crystal-induced inflammation models

In the absence of spontaneous models, CPP crystal injection can 
be used to reproduce inflammatory responses similar to those of patients 
with CPPD. For example, injection of CPP crystals in the ankle causes 
joint swelling that develops after a few hours, progressively increases, and 
then declines within a few days (22). Similar conditions are also observed 
after injection of monosodium urate (MSU) crystals, which are 
responsible for gout. However, unlike MSU crystal-induced inflammation 
model in which ankle swelling is maximal at 24 h and completely resolves 
within 5 days (23), swelling induced by CPP injection peaks after 48 h and 
persists longer, remaining higher than control even after 6 days (22). 
Interestingly, this reflects the clinical course in patients. Indeed, untreated 
gout flares commonly remit spontaneously within a few days, while acute 
CPP crystal arthritis may persist longer and usually resolve within 1 to 
3 weeks (24).

The strength points of this model include: (1) similarity between 
the human and mouse anatomical joint structure, (2) the acute attack 
following CPP stimulation induces, in both species, non-specific 
lesions such as edema, inflammatory infiltrate characterized mainly 
by neutrophils and macrophages, and (3) in the most severe 
exacerbations, it is also possible to observe muscle, cartilaginous 
injury, and synovial hyperplasia (25). Furthermore, swelling of the 
paw, ankle or knee tissues is extremely rapid and is usually measured 
using a precision caliber and constitutes a useful parameter for 
quantifying edema and inflammation. The main limitation of the 
model is related to the technical difficulty of carrying out the 
procedure. Crystals are injected into the ankle at the tibio-tarsal joint, 
but it can be difficult to establish whether it occurred correctly within 
the joint or in the peri-articular tissues. Of note, despite the 
importance of the synovial fluid (SF) collection and analysis in clinical 
diagnosis in human patients (1), these are generally excluded from 
experimental research designs due to the low amount of SF, which is 
estimated to be less than 1 μL in mouse knee and ankle joints (26, 27).

The air pouch, crystal-induced peritonitis and pleuritis are 
experimental models that do not directly involve the joint tissues. In 
these contexts, the injection of crystals into the cavity triggers a rapid 
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infiltration of neutrophils and macrophages and an increase in the 
volume of exudate which is also enriched with inflammatory 
mediators that can be quantified (28–32).

The dorsal air pouch model, described for the first time by Selye, 
is an easily performed procedure and widely used for the study of 
several anti-inflammatory and antirheumatic agents because it is able 
to mimic the synovial environment (30, 33).

However, repeated injection of sterile air into the back of mice 
may cause microtraumas that trigger an inflammatory response.

CPP crystal-induced inflammation as an 
experimental model for sterile 
inflammation

Mice and humans share about 80% of the genetic background and, 
by comparing genome-wide transcriptional data, Shay et  al. 
demonstrated that both species have essentially the same molecular 
pathways involved in inflammation and in innate and cellular immune 
system (34). These findings make experimental models of crystal-
induced inflammation a powerful tool for studying sterile 
inflammation. It is known that crystals, through the activation of 
inflammasome NLRP3 and TLRs and production of IL-1β, induce 
massive expression of pro-inflammatory cytokines such as IL-8, 
CCL2, IL-6, TNF-α as well as other inflammatory mediators (30, 
35–39). In this context, several knock-out/knock-in and transgenic 
mice have been produced for several factors involved in the NRLP3 
inflammatory pathway. Generally, knock-out animals are resistant to 

inflammation induced by crystal injection, making them a useful 
system for pathophysiological studies rather than for testing new 
therapies. For example, mice deficient in various key proteins in the 
inflammasome complex NRLP3 or the IL-1 receptor (IL-1R) are fertile 
and viable, but did not show inflammatory changes when isolated 
macrophages were stimulated, or animals were intraperitoneally 
injected with CPP crystals (38). Interestingly, opposite conditions 
were observed after injection of BCP crystals, which are frequently 
found in OA joints. Indeed, i.a. administration of BCP crystals in the 
knee of NLRP3 and ASC, IL-1β or IL-1α deficient mice showed 
similar inflammation compared to WT mice (40), thus suggesting that 
different crystals can trigger distinct inflammatory pathways and 
careful consideration should be  taken when choosing the most 
appropriate animal model.

TLR-4 is another key factor shared between the two species. 
Indeed, this is mainly expressed in myeloid cells in both humans and 
mice and has high sequence homology in the promoter sequence and 
receptor transcript (41). However, unlike humans, murine TLR-4 is 
also significantly expressed in skeletal muscles, where CPP can 
accumulate during experimental procedures; this may explain the 
reason of persistent edema observed after injection of crystals into the 
ankle of mice (22, 42).

The use of murine models of crystal-induced inflammation is 
further corroborated by the fact that mice and humans do not differ 
in total leukocyte count in peripheral blood. Furthermore, although 
in healthy mice lymphocytes are the predominant leukocyte making 
up 70 to 80%, while neutrophils generally comprise 20 to 30% of the 
white blood cell differential count, in acute inflammatory conditions 

TABLE 1 Genetically modified mouse models to reproduce PPi metabolism and calcification processes.

Mouse 
Model

Phenotype PPi levels Outcomes Strenghts Weakness References

Akp2−/− Early axial skeletal 

mineralization defects and 

impaired condrocytes 

differentiation

ePPi↑ Skeletal development, 

PPi metabolism

Model of 

hypophosphatasia and 

osteopenia

No CPP deposition in 

joints, no arthritis

(8)

Phospho1−/− Cartilage growth abnormalities, 

spontaneous fractures, 

osteomalacia, scoliosis

ePPi↑ Endochondral 

ossification, skeletal 

development

Model of 

hypophosphatasia

No CPP deposition in 

joints, no arthritis

(10)

OPN−/− Normal skeleton ePPi↑ Bone mineralization, 

PPi metabolism

Crosstalk between OPN 

and phosphatases

Normal phenotype (9)

Akp2−/-OPN−/− Mild defects in bone 

mineralization

ePPi↑ Bone mineralization 

and PPi metabolism

Crosstalk between OPN 

and phosphatases

No CPP deposition in 

joints, limited lifespan, 

no arthritis

(9)

Akp2−/-

Phospho1−/−

Impaired skeletal mineralization ePPi↔ Skeletal calcification 

and PPi metabolism

Crosstalk PPi enzymes No CPP deposition in 

joints, limited lifespan, 

no arthritis

(10)

ank/ank Early arthritis and progressive 

ankylosis

iPPi↑ ePPi↓ Calcification and PPi 

metabolism

Involvement of ANK 

transporter

No CPP deposition in 

joints, model based on 

ANK loss-of-function

(2)

ttw/ttw Severe disorders in bone 

mineralization

ePPi↓ Bone mineralization 

and PPi metabolism

Model of 

spondyloarthropathy 

and ossification of 

posterior longitudinal 

ligaments of spine

No CPP deposition in 

joints, no arthritis

(18, 19)
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FIGURE 1

Specific and shared characteristics of human CPPD and corresponding mouse models. In mice, no spontaneous CPPD and CPP crystals formation has 
ever been observed. In humans, inflammation occurs at the joint level; in mice, induced inflammation is carried out in the ankle or in extra-articular 
anatomical districts such as the dorsal air pouch or in the intraperitoneal visceral compartment that has no homologies with the human pathology. 
Furthermore, laboratory rodent strains differ significantly for clinical conditions from the human population affected by CPPD. Apart from some 
species-specific molecular mediators such as IL-8 or KC and differences in the basal composition of leukocytes, humans and mice share the same 
molecular and histopathological mechanisms of CPP-induced inflammation.

the lymphocyte/neutrophil ratio is rapidly reversed, thus reproducing 
the typical pattern of acute inflammation observed in humans 
(43–45).

These events occur despite the fact that the homolog of human 
IL-8, the main chemokine regulating neutrophil recruitment, has not 
been detected in rodents (46). The absence of IL-8 in mice seems 
compensated for by the ligands CXCL1/KC, which bind the murine 
CXCR2 receptor and attract immune cells to inflamed tissues (30, 47).

Conclusion

In conclusion, animal models are needed to understand the 
pathophysiology of CPPD, but their development is still at an early 
stage. In this context, some general critical issues have to be considered 
in the creation of animal models that may interfere with their 
translational value. For example, in vivo experiments to study CPPD 
involve the use of healthy and pathogen-free animals of inbred strains 
with many homozygous mutations, whereas the human population is 
highly heterogeneous in terms of genetic background and individual 
clinical history. Furthermore, there are often significant age- and 
sex-related biases in exclusively using young and male mice that 
scarcely overlap with the epidemiology of CPPD. It usually affects 
elderly subjects and is slightly more common in women than in men.

Currently available genetically conditioned models contribute to 
understanding of some aspects of disease but are far to mimic the 
human CPPD pathology.

CPP crystal-induced inflammation models reproduce some 
important aspects of the disorder and provide key information on the 
molecular pathophysiology of human disease (Figure 1). They are 
relatively simple, fast to realize, and useful for testing new therapeutical 

approaches. However, they only reproduce what the crystals cause but 
not their formation, thus not providing useful information on the 
mechanisms of the early stage of the disease. Furthermore, no 
experimental studies have been conducted to characterize the specific 
differences in the various clinical manifestations associated with CPP 
deposition. Finally, none of the models used to date consider the 
frequent presence of osteoarthritis or associated conditions such as 
hyperparathyroidism, hemochromatosis, or hypomagnesaemia 
observed in CPPD patients. Therefore, one of future efforts should 
be  to develop animal models that reproduce the impact of these 
concomitant diseases to investigate their role in CPPD.
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