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Background: Goutallier’s fatty infiltration of the supraspinatus muscle is a 
critical condition in degenerative shoulder disorders. Deep learning research 
primarily uses manual segmentation and labeling to detect this condition. 
Employing unsupervised training with a hybrid framework of segmentation and 
classification could offer an efficient solution.

Aim: To develop and assess a two-step deep learning model for detecting 
the region of interest and categorizing the magnetic resonance image (MRI) 
supraspinatus muscle fatty infiltration according to Goutallier’s scale.

Materials and methods: A retrospective study was performed from January 
1, 2019 to September 20, 2020, using 900 MRI T2-weighted images with 
supraspinatus muscle fatty infiltration diagnoses. A model with two sequential 
neural networks was implemented and trained. The first sub-model 
automatically detects the region of interest using a U-Net model. The second 
sub-model performs a binary classification using the VGG-19 architecture. The 
model’s performance was computed as the average of five-fold cross-validation 
processes. Loss, accuracy, Dice coefficient (CI. 95%), AU-ROC, sensitivity, and 
specificity (CI. 95%) were reported.

Results: Six hundred and six shoulders MRIs were analyzed. The Goutallier 
distribution was presented as follows: 0 (66.50%); 1 (18.81%); 2 (8.42%); 3 
(3.96%); 4 (2.31%). Segmentation results demonstrate high levels of accuracy 
(0.9977  ±  0.0002) and Dice score (0.9441  ±  0.0031), while the classification 
model also results in high levels of accuracy (0.9731  ±  0.0230); sensitivity 
(0.9000  ±  0.0980); specificity (0.9788  ±  0.0257); and AUROC (0.9903  ±  0.0092).

Conclusion: The two-step training method proposed using a deep learning 
model demonstrated strong performance in segmentation and classification 
tasks.

KEYWORDS

classification, deep learning, fatty infiltration, MRI, supraspinatus

OPEN ACCESS

EDITED BY

Simone Bonechi,  
University of Siena, Italy

REVIEWED BY

Surjeet Dalal,  
Amity University Gurgaon, India
Fred Nicolls,  
University of Cape Town, South Africa

*CORRESPONDENCE

Felipe Feijoo  
 felipe.feijoo@pucv.cl

RECEIVED 11 April 2024
ACCEPTED 20 August 2024
PUBLISHED 03 September 2024

CITATION

Saavedra JP, Droppelmann G, Jorquera C and 
Feijoo F (2024) Automated segmentation and 
classification of supraspinatus fatty infiltration 
in shoulder magnetic resonance image using 
a convolutional neural network.
Front. Med. 11:1416169.
doi: 10.3389/fmed.2024.1416169

COPYRIGHT

© 2024 Saavedra, Droppelmann, Jorquera 
and Feijoo. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 03 September 2024
DOI 10.3389/fmed.2024.1416169

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1416169&domain=pdf&date_stamp=2024-09-03
https://www.frontiersin.org/articles/10.3389/fmed.2024.1416169/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1416169/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1416169/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1416169/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1416169/full
mailto:felipe.feijoo@pucv.cl
https://doi.org/10.3389/fmed.2024.1416169
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1416169


Saavedra et al. 10.3389/fmed.2024.1416169

Frontiers in Medicine 02 frontiersin.org

Introduction

Rotator cuff tears (RCTs) are a prevalent musculoskeletal shoulder 
condition that affects millions of people worldwide, regardless of sex 
(1, 2). This degenerative and progressive condition becomes 
increasingly common with age in the general population (3), leading 
to significant economic consequences for patients and healthcare 
systems alike (4, 5). The magnitude of tear size, muscle atrophy, and 
fatty infiltration are important variables in predicting the prognosis of 
patients (6, 7). Specifically, low levels of fatty infiltration have been 
shown to have significantly better outcomes than those with more 
severe conditions, as they are less likely to experience re-tears (7, 8). 
Therefore, identifying specific stages of fatty infiltration and the 
supraspinatus muscle is crucial in accurately predicting patients’ 
prognoses, particularly for those that are to be exposed to a major 
surgery or in population of high risk with such as older patients. For 
this purpose, magnetic resonance image (MRI) is one of the most 
commonly used medical imaging techniques available for the 
detection of RCT and fatty infiltration, owing to its high diagnostic 
accuracy (9). However, patient access to MRI results may take several 
days due to the large number of exams and the time specialists can 
dedicate to this task. Therefore, developing tools that can speed-up 
this process, while having a high accuracy in identifying fatty 
infiltration, can help reduce waiting times suffered by patients and the 
burden faced by medical experts.

Goutallier et  al. (10) proposed one of the most widely used 
qualitative scales for identifying supraspinatus fatty infiltration, 
consisting of five stages ranging from 0 (normal muscle) to 4 (severe 
fat accumulation). Although Goutallier’s scale was originally 
developed based on CT scan analysis, it has been adapted for use with 
MRI. Fuchs et  al. (11) proposed a new scale by combining the 
previously defined stages in Goutallier’s work. Specifically, levels zero 
and one were merged to create the normal stage, level two was 
redefined as moderate, and level three or four were considered to 
represent severe fatty infiltration. However, there has been some 
controversy over the adaptation of the original scale for use with MRI 
(12). Furthermore, reducing inter-observer variability when assessing 
rotator cuff quality from MRI remains a major challenge in diagnostic 
imaging (13).

On the other hand, deep learning algorithms, especially 
convolutional neural networks (CNNs), have rapidly become the 
preferred methodology for analyzing medical images (14–16). Some 
of the most commonly used deep learning architectures for computer 
vision tasks include Inception-v3, ResNet50, VGG19, and U-Net 
(17–20). However, due to complexity of medical image datasets and 
smaller size compared to other sources of data, transfer learning has 
become a suitable approach for building and training deep learning 
models in clinical research. With transfer learning, most of the 
proposed models for medical diagnosis are based on pre-trained 
models from the ImageNet dataset and trained using transfer learning 
techniques (21). This technique involves using a well-trained model 
from a non-medical source dataset, such as ImageNet, and re-training 
it in a target dataset, such as medical images, including MRIs (22–24).

Most of the existing deep learning applications are based on 
supervised training, a commonly used technique for classification 
using medical images. However, supervised training requires labeled 
images for the models to learn from their structure. Additionally, in 
supervised learning, in order to improve the model’s performance, 

researchers manually select the region of interest (manual 
segmentation). However, manual segmentation is a time-consuming 
task, and manual labelling from medical experts is not always available 
(25). Therefore, to address these limitations, unsupervised training for 
segmenting the region of interest could be a viable solution. In the 
context of identifying shoulder fatty infiltration, four recent and 
highly important articles addressing this problem or closely related 
have been published. Three of these studies focused on magnetic 
resonance images (22, 23, 26) while only one utilized CT scans (27). 
However, all these studies relied on annotated data, which means that 
each image was manually labeled by an expert to create an image and 
corresponding infiltration level pairs, or each image was manually 
segmented to generate a corresponding segmentation mask for that 
specific image.

In order to address the gap in the literature, the objective of this 
research is to develop and assess a two-step deep learning framework. 
The first step performs and automated detection the region of interest 
(segmentation of the region of interest), while the second step uses the 
information from the segmentation model to classify the region of 
interest into one of the Goutallier’s fatty infiltration levels using MRI 
images, hence, fully automating the process of identifying the 
Goutallier’s fatty infiltration levels via the usage of deep learning 
techniques (segmentation and classification hybrid framework).

Materials and methods

Study design

This research was designed as a retrospective, single-site study, 
following the guidelines outlined in the Strengthening the Reporting 
of Observational Studies in Epidemiology (STROBE). Patient records 
were exclusively obtained from MRI examinations conducted at the 
MEDS Clinic in Santiago, Región Metropolitana, Chile. The study 
started on September 25th, 2020.

Learning approach

An end-to-end deep learning model was developed to classify the 
patient risk based on the fatty infiltration of the supraspinatus muscle. 
The training process was performed in a two-step fashion. In the first 
step, we trained a segmentation model to extract the region of interest 
from the image. In the second step, we trained a classification model 
to determine if there was a risk or not for further surgery based on the 
level of fatty infiltration in the region of interest detected in the first 
step. Both models (segmentation and classification) are trained 
independently and non-recursively. However, segmented images from 
the first step (segmentation model) are used to train the classification 
model. Therefore, the training process of the classification model, as 
well as the testing phase, are performed using results from the 
segmentation model (segmented images). The training process and 
workflow of the proposed two-step model is described in Figure 1 as 
well as in Figure 2.

Dataset characteristics
The medical institution provided all the data, consisting of 900 

DICOM files corresponding to unique exams. Each file corresponds 
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FIGURE 1

Workflow diagram.

FIGURE 2

Diagram of the end-to-end model sequence.
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to a T2-weighted Y-view MR sequence of the shoulder. Furthermore, 
we extracted all 900 medical reports associated to each of the DICOM 
files. The medical reports were, authored by three different radiologists. 
These reports used various scales or standards to document the fatty 
infiltration or degeneration stage. To ensure accurate labeling, 
we enlisted the expertise of an experienced radiologist who manually 
labeled the dataset. Moreover, images with diagnostic uncertainties 
underwent manual segmentation under the supervision of another 
radiologist, ensuring detailed and reliable annotations.

According to Figure  3, the labeling process resulted in 666 
registered images, with one being marked as inconclusive and two 
remaining unregistered. Additionally, there were 60 images for which 
segmentation masks could not be  created due to a file error. 
Consequently, our ground truth dataset comprises 606 labeled images 
along with their corresponding segmentation masks. Table 1 provides 
an overview of the image label counts, indicating 403, 114, 51, 24, and 
14 for Goutallier 0, 1, 2, 3, and 4, respectively. More than 82% of the 
images fall into grades 0 or 1, indicating a significant imbalance 
towards lower fatty infiltration grades. The female group exhibited a 
greater number of samples in the higher grades compared to the male 
group. Furthermore, except for the observed mean age in the 
Goutallier 0 group (p < 0.05), there were no significant differences 
between the female and male groups across Goutallier levels in terms 
of proportions or mean age.

Dataset preparation
The DICOM file format is extensively adopted as a standard for 

medical images in clinical settings. A DICOM data object consists of 
multiple attributes, including fields such as name, ID, and more. It also 
incorporates a distinct attribute that contains the image pixel data. In 
order to enhance the efficiency of image processing during model 
ingestion, we extracted the pixel data from every DICOM file and 
converted it to PNG format. This extraction process was facilitated by 
MicroDICOM, a freely available software for viewing DICOM files.

The ITK-Snap3 software was utilized to generate the 
segmentation masks. In this case, separate masks were created for the 

supraspinous fossa area and the supraspinatus muscle area. 
Considering the specific evaluation of the fatty infiltration grade of 
the muscle based on the muscle area alone by physiologists, the focus 
was directed towards the supraspinatus muscle area mask for the 
subsequent steps. The final outcome of the segmentation process is 
visualized in Figure 4.

The data preparation process resulted in multiple images in PNG 
file format, each accompanied by its corresponding segmentation 
mask and label. Figure  1 provides a visual representation of the 
workflow involved in the data preparation.

Criteria for fatty infiltration
The criteria were based on Goutallier’s fatty infiltration definitions. 

According to the original paper, five levels of fatty infiltration were 
proposed, ranging from zero to four, to signify the qualitative presence 
of fat in the muscle. A level zero indicates the absence of fat in the 
muscle, while higher levels correspond to increasing fatty infiltration. 
Goutallier’s scale assigns higher values as the fatty infiltration 
intensifies. A level four indicates a higher amount of fat than 
muscle present.

As mentioned earlier, the objective is to assist clinicians in 
determining the risk associated with performing surgery based on 
the quality of the supraspinatus muscle. From a classifier perspective, 
this task can be  viewed as a binary classification. In this study, 
Goutallier’s fatty infiltration levels zero or one were classified as “not 
risky,” while levels three or four were categorized as “risky.” Samples 
labeled as Goutallier level two were excluded from the analysis. This 
choice is based on previous research [see Saavedra et al. (20)] where 
it is shown that including Goutallier’s level 2 into a binary 
classification task does not significantly impact the performance of a 
classification model. Also, clinical relevance falls in correctly those 
cases where there is high or low level of fatty infiltration [see 
references (10) and (11)].

Proposed model
The proposed model is composed of two sequential neural 

network models that serve distinct purposes. Model A is designed to 
narrow down the region of interest in the MRI image by leveraging 
both the image and the segmentation mask as inputs. The U-Net 
model is proposed for this task (see next). Its primary objective is to 
predict the supraspinatus muscle area. The hypothesis is that this 
approach effectively eliminates irrelevant information from the image, 
thereby enhancing the performance of the second network. Following 
Model A (segmentation), Model B (classification task) takes the 
supraspinatus muscle area of the image as input and predicts the fatty 
infiltration level based on the Goutallier’s fatty infiltration level scale. 
An overview of the workflow is provided in Figure  2, while the 
subsequent subsections offer a detailed explanation.

Cross validation (k-fold) was performed during the training 
process. The total of 606 Y-view MRI shoulder images were grouped 
into five non overlapping folds. Each time, four folds were used as the 
training set and one as the validation set. Every fold was used four 
times as part of the training set and one time as part of the validation 
set. Fold composition was the same for both models (Model A and 
Model B). Model performance was computed as the average of those 
five training processes and 95% confidence intervals (CI) were 
obtained. In every training process the model with the lowest loss 
function value was considered the best model.

FIGURE 3

Flowchart for dataset selection.
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Model development and training
The proposed model was built using two sequenced architectures: 

U-Net (28) (Model A) and VGG-19 (29) (Model B). The first 
sub-model created the segmentation mask of the input image, and the 
second, performed the fatty infiltration classification for that same 
image. The selection of the VGG-19 model for the classification task 
is supported by previous research [see reference (20)] where it is 
shown that the VGG-19 is among the best CNN for fatty infiltration 
(among the tested models). Although the proposed framework follows 
sequential stages, the training process was performed in two steps. In 
the first step, we trained the segmentation model using every image 
and the corresponding segmentation mask as input.

The objective was for the model A to learn to predict the 
corresponding segmentation mask for an image that had not been 
seen previously. In the second step, a classification model was trained 
using the region of interest of the image and its corresponding label. 
Before feeding the classification model, automatic cropping of the 
image was performed, and only the region of interest was used as 
input for the classification model.

A repeated stratified k-fold cross-validation was performed in both 
steps. This method allowed us to use the entire dataset in the training 
process and minimize the influence of data selection, as occurs when 
using random train/validation/test splitting. The k value was set equal 
to 5 and, therefore, 5 non-intersecting groups were created at random. 
The proportion of every class in the original dataset was replicated in 
every group. Each time, four groups were used to create the training set 
and one was used to create the validation set.

The model performance was computed as the average of 5 training 
processes, and the corresponding confidence intervals were reported. 

Confidence intervals obtained from the cross-validation training 
process was used to assess robustness of the trained models. Due to 
the high imbalance of the dataset, the minority class was up sampled. 
In every training process, the smaller class was replicated until the 
proportion between classes was close to 1:1. The added images were 
copies of their originals but with slight differences in terms of rotation 
(±35°), horizontal flipping, and center cropping. The up-sampling 
process was carried out for the training data only. Figure 1 shows the 
workflow of the model training process.

Step 1: Training the segmentation model. For the segmentation 
task, a “U”-shaped neural network was built as described in Khouy 
et al. (28). The only difference is that (1, 1) padding was used in every 
convolutional layer to allow the network to utilize the entire image 
during the training process. The model was training for a maximum 
of 50 epochs and feeding the network with batches of five images at a 
time. We used binary cross-entropy loss, implemented in the PyTorch 
framework. The optimization algorithm used was Adam optimizer 
with its standard configuration. The learning rate was set to 10-5.

The segmentation process was performed using the U-Net model. 
The training hyperparameters were as follows: batch size = 8, 
maximum epochs = 50, input size = 224 × 224 (px), learning rate = 10−3, 
optimizer = Adam (standard configuration). The loss function used 
was the Dice loss, which was defined as:

 
Dice score = × × +( )2

2 2p t p t/
 

(1)

 Dice loss Dice score= −1  (2)

TABLE 1 Patient data distribution Goutallier’s level by sex.

Goutallier 
level

N (%) Female Male p-value

N (%) Age mean (SD) N (%) Age mean (SD) N Age

0 403 (66.50) 140 (35) 53.06 (10.55) 263 (65) 49.24 (13.13) 0.477 ***

1 114 (18.81) 74 (65) 61.50 (10.37) 40 (35) 63.58 (8.17) 0.465 0.371

2 51 (8.42) 31 (61) 66.65 (9.53) 20 (39) 66.40 (10.13) 0.447 0.992

3 24 (3.96) 16 (67) 68.88 (7.74) 8 (33) 64.25 (7.59) 0.424 0.230

4 14 (2.31) 13 (93) 67.31 (7.33) 1 (7) N.A. 0.354 0.8

Total 606 (100) 274 (45) 58.47 (11.67) 332 (55) 52.42 (13.81) 0.483

Mann–Whitney or t-test were used to compute the significance (alpha 0.05).

FIGURE 4

Manually segmentation process. (A) Original image. (B) Resulting segmentation masks. Supraspinous fossa in green, supraspinatus muscle in red. 
(C) Supraspinatus muscle mask.
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In Equation 1, “p” represents predicted values from the output, and 
“t” represents true values from the input. Basically, the Dice score (see 
Equation 2) measures the ratio of the intersection over the union for 
the resulting segmentation mask (30). The better the performance of 
the segmentation model, the higher the Dice score value. On the other 
hand, the Dice loss is the function to be minimized. The higher the 
value of the Dice score, the lower the value of the loss function.

Step 2. Training the classification model: The VGG-19 architecture 
was used for the classification task. We kept the convolutional layers 
of the model as the original and only the last layer of the fully 
connected layers was changed. Originally, the output of the VGG-19 
architecture was 1,000 neurons. In our case we use only one output 
unit. That way, the model was able to perform the binary classification 
of the inputs.

To train the model, we used transfer learning. This means that all 
the weights of the original models trained on the ImageNet dataset 
were utilized. These weights were not optimized during the training 
process, and only the classifier layers were optimized. We employed 
the same maximum number of epochs, batch size, loss function, and 
optimizer as in the segmentation training process. A termination 
function was implemented to stop the training process if there was no 
improvement in the last 10 epochs. The best performance was saved 
and recorded. The only hyper-parameter that was optimized was the 
learning rate, and the best performance was achieved at 10−5. In the 
following section, we will present the output of both models, including 
the segmentation mask and a detailed explanation of the obtained 
metric values.

Statistical analysis

Normality tests were conducted, and the analysis of statistical 
differences between groups utilized either the Mann–Whitney U test 
or t-test. A significance level of p < 0.05 was employed to establish 
statistical significance. Descriptive analysis of patient ages was 
performed, presenting the mean and standard deviation (m ± sd). 
Categorical data were expressed as percentages and frequencies.

The performance of the models was evaluated and compared 
based on accuracy, sensitivity, specificity, and area under the receiver 
operator curve (AU-ROC). A binary classifier produces either 0 or 1 
for a given input, corresponding to the actual expected output. True 
positive (TP) was defined as the model correctly predicting the 
positive class. False positive (FP) refers to the model incorrectly 
predicting the positive class when it is actually negative. False negative 
(FN) occurs when the model incorrectly predicts the negative class 
when it is actually positive. True negative (TN) is when the model 
correctly predicts the negative class. Sensitivity, specificity and 
accuracy (Equations 3–5), were computed as follows:

 Sensitivity true positive rate TP TP FN( ) +( ): /  (3)

 Specificity TN TN FP: / +( ) (4)

 Accuracy TN TP TN FP FN TP: /+( ) + + +( ) (5)

The AU-ROC measures the classifier’s performance regardless of 
the threshold used to convert probability scores into class decisions. 
The horizontal axis represents recall (sensitivity), while the vertical 
axis corresponds to precision, calculated as TP/(TP + FP). As both 
axes range from 0 to 1, the maximum value of the area under the curve 
inside the square is 1, indicating better classifier performance. A 
random classifier would have an AU-ROC equal to 0.5.

For metrics such as accuracy, sensitivity, specificity, and AU-ROC, 
95% confidence intervals over the mean were calculated to assess 
model performance. All statistical analyses were conducted using the 
Python programming language.

Results

Sociodemographic characteristics

Male subjects presented 333 images, representing 55% of the 
sample. The patient’s average age was 55.1 ± 13.2 years. The data 
showed the presence of various types of Goutallier levels in MRI 
exams. An asymmetrical distribution of Goutallier grades was 
identified. A significant majority, exceeding 82% of the images, fell 
into grades 0 and 1, indicating a notable prevalence of low fatty 
infiltration: Goutallier 0 (66.50%), Goutallier 1 (18.81%), Goutallier 
2 (8.42%), Goutallier 3 (3.96%), and Goutallier 4 (2.31%). 
Furthermore, the female group exhibited a higher frequency of 
samples in higher grades compared to the male group, although this 
disparity did not reach statistical significance. For more information, 
refer to Table 1.

Step 1. Segmentation
At the outset of the training process, the loss value was recorded 

at 0.8498 ± 0.0102, serving as an initial baseline for assessing the 
model’s performance. As training progressed through successive 
epochs, a consistent reduction in the loss value was observed. 
Ultimately, post-training, the loss value significantly decreased to 
0.0623 ± 0.0050. The training loss value (and other performance 
metrics) can be observed in Figure 5.

The substantial decline in the loss value reflects a considerable 
improvement in the model’s predictive accuracy. The reduction over 
the epochs suggests that the model became increasingly proficient at 
minimizing errors and refining its predictions. The tight standard 
deviations associated with the initial and final loss values underscore 
the reliability and consistency of the observed improvements.

These results imply that the deep learning model underwent 
effective training, optimizing its ability to generalize patterns and 
make accurate segmentation tasks. The detailed evolution of the loss 
value throughout the epochs provides a quantitative measure of the 
model’s learning process and its enhanced performance at the 
training’s conclusion.

The segmentation task performed by the model can be observed 
in Figure 6. The original input mask is highlighted in red, and the 
model’s output mask is highlighted in green. The background of each 
case displays the original image. Before making modifications, the 
images were rotated before being fed into the segmentation model. 
This rotation aims to prevent the model from memorizing specific 
patterns and, instead, encourages it to learn more generalized concepts 
from the data.
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In most cases, the resulting segmentation mask (in green) closely 
resembles the original input segmentation mask (in red). This suggests 
that the model effectively learned to perform the segmentation task 
without memorizing specific samples from the training dataset. The 
similarity between the masks indicates that the model has generalized 
correctly and can apply its knowledge to new images effectively. In this 
sense, the model efficiently minimized errors during the training 
process, as indicated by the computed average loss value of 0.0587. 
This low loss value is crucial because it signifies the model’s ability to 
consistently converge toward accurate predictions. The small standard 
deviation of 0.0048 further emphasizes the precision and stability of 
the model’s training, reinforcing its reliability in capturing intricate 
patterns within the data. At the same time, the model shows its 
proficiency in correctly classifying instances with an average accuracy 
of 0.9977. With a minimal standard deviation of 0.003, the model also 

shows consistent accuracy across various data points. These findings 
highlight the robustness of the model in performing precise 
segmentation tasks. Finally, the model achieved an average Dice score 
of 0.9441, indicative of its efficacy in capturing the spatial agreement 
between predicted and ground truth segmentations. A small standard 
deviation of 0.0035 shows the model’s stability in consistently 
achieving high Dice scores. These results affirm the model’s 
performance in image segmentation tasks. For more details, please 
refer to Table 2.

Step 2. Classification
Figure 7 shows the original image (A) and the segmentation mask 

obtained from the U-Net model (B). Then using that segmentation 
mask, the region of interest was cropped (automated process) from the 
original image (C). Finally, a resizing function was applied to the 

FIGURE 5

Loss, accuracy, and Dice score for the segmentation model. The average of the five training processes is shown in segment line. The color shadow 
shows the confidence interval (C.I. 95%).

FIGURE 6

Input masks and the respectively, output masks obtained from the U-Net model. The original masks are shown in red; the resulting masks are shown in 
green. For each input image showed in every column of the first or the third row, the corresponding output mask from the U-Net is showed on the 
same column in the second and fourth rows, respectively.
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TABLE 3 Classification model results.

Loss Accuracy Sensitivity Specificity AUROC

Average 0.1065 0.9731 0.9000 0.9788 0.9903

S.D 0.0584 0.0263 0.1118 0.0293 0.0105

CI. (95%) 0.1065 ± 0.0512 0.9731 ± 0.0230 0.9000 ± 0.0980 0.9788 ± 0.0257 0.9903 ± 0.0092

Confidence interval computed from the validation set of the five training processes at α = 0.05. The loss, accuracy, sensitivity, specificity, and area under the ROC curve (AUROC) are shown.

image, resulting in (D). This pre-processing allowed the model to 
decide considering only the supraspinatus muscle, similarly as how 
the clinicians do.

During the training process, the loss function value for the 
validation set was monitored. At the beginning of the training process 
the loss value was 0.6645 ± 0.0228, decreasing to 0.01178 ± 0.0037 after 
the training process was concluded. The accuracy, sensitivity, 
specificity and AUROC were computed as the average of the model 
performance over the validation set in each of the five training 
processes of the k-fold. Table 3 shows the results for those metrics in 
terms of the confidence interval (α = 0.05). As shown, every metric 
value is above 0.9 (on average), hence showing a good binary 
classification performance of fatty infiltration of the supraspinatus 
muscle based on Goutallier’s fatty infiltration scale. In particular, the 
accuracy reached a level of 97.3% with a 0.023 95% CI, showing high 

precision (low variability). Even though the results show a higher 
value of specificity compared to sensitivity, the difference could 
increase if no oversampling (or other data-balancing technique) was 
used. In this case, sensitivity reached a level of 90% with 0.98 95% CI, 
while the sensitivity showed a high level of 97.9% with a low 95% CI 
of 0.02. Finally, the balancing of these two metrics was computed by 
the AU-ROC, which has an average level of 99% with a low 95% CI of 
0.009, indicating a high level of capability to differentiate risky from 
non-risky levels of fatty infiltration based on automated segmented 
images from the U-Net model (see Figures 8, 9).

Results of the proposed automated two steps training model shows 
that the segmentation model could first learn how to find the region of 
interest (supraspinatus muscle). Then, the classification model could 
learn how to classify the input, based on that region of interest, as risky 
or not risky. Cropping the region of interest before feeding the classifier, 
allowed the model to learn as clinicians do. However, the two step 
process proposed here shows a small reduction in classification 
performance (sensitivity, specificity, accuracy and AU-ROC) when 
compared to different CNN trained on the same data but considering 
manual segmentation of the ROI [see Saavedra et al. (20) for details]. 
Table  4 shows the comparison of the two step proposed model 
(U-NET + VGG-19) with VGG-19, ResNET-50 and Inception-v3 
models. As noted, given that manual segmentation done by professional 
clinicians and medical expert is more accurate that segmentation 
performed by U-NET, errors from the U-NET model are passed on to 
the VGG-19 classification model, resulting a slightly lower performance. 
However, the (almost insignificant) reduction of performance is valid 
as the proposed model completely automates the process of identifying 
the level of fatty infiltration, reducing hence the need for lengthily 
process of manual segmentation of the ROI of the supraspinatus muscle.

Discussion

This article introduces a novel deep-learning framework for 
assessing the degree of fatty infiltration in the supraspinatus muscle. 
The framework performs two main tasks: segmenting the region of 
interest and classifying the level of fatty infiltration on a five-level scale 
proposed by Goutallier et al. (10) based on the automated segmentation 
process. To achieve this, we developed two sub-models: the first based 
on the U-Net architecture for segmentation, and the second based on 
the VGG-19 architecture with modified classifier layers for binary 
classification. We  first trained the segmentation sub-model using 
segmentation masks and then trained the classification sub-model 
using the labels associated with the fatty infiltration diagnosis. We used 
transfer-learning weights to train both sub-models. The binary output 
of the model (0 or 1) was interpreted as “not risky” or “risky,” 
respectively, with higher levels of fatty infiltration indicating a greater 
risk of re-tear or poor surgical outcomes.

TABLE 2 Segmentation results.

Loss Accuracy Dice score

Average 0.0587 0.9977 0.9441

S.D 0.0048 0.003 0.0035

CI. (95%) 0.0586 ± 0.0042 0.9977 ± 0.0002 0.9441 ± 0.0031

Loss, accuracy, and Dice score were computed as the average of five training processes. 
Confidence interval calculated at α = 0.05.

FIGURE 7

Automatic cropping process. (A) Original image. (B) Output mask 
from the U-Net model. (C) Cropped region of interest from the 
original image (ROI). (D) Resized region of interest (224 × 224 px).
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Our model achieved strong performance thanks to the 
implementation of transfer learning and k-fold cross-validation 
techniques. By leveraging these approaches, we were able to reduce the 
number of parameters requiring optimization and utilize the full dataset 
for both training and validation purposes, effectively guarding against 
overfitting issues given our relatively small dataset of slightly more than 
600 samples. However, some research has made efforts to optimize the 
process of hyperparameter optimization (31). Still, it’s worth noting that 
relying on transfer learning from a pre-trained model on the ImageNet 
dataset may not always represent the most ideal solution. This can 
be seen as a possible limitation of the relatively small sample of images 
obtained for this study. Future research should focus on evaluating the 
effect of the proposed training process. This is needed to understand if 
the high accuracy levels obtained in this research are driven by transfer 
learning and data augmentation techniques or to identify if the task or 
segmenting and classifying fatty infiltration in the supraspinatus muscle 

is a simpler task compared to more complex images (such as X-rays or 
ultrasounds of different body or biological structures).

In the medical domain, obtaining labeled data or segmentation masks 
for images can be  challenging. Meanwhile, radiological reports are 
abundant and readily available. Manual labeling or segmentation is a 
labor-intensive process, but leveraging the valuable information contained 
in reports can facilitate model training without significant human effort. 
Another approach worth considering is unsupervised learning, which can 
enable the model to learn without relying on fully labeled or segmented 
data. Additionally, using transfer learning with a pre-trained model in a 
related domain, such as shoulder MRI images or MRI images more 
broadly, has the potential to enhance the model’s performance.

Deep learning models have been increasingly applied in radiology, 
with the U-Net (28) being a particularly popular choice for 
segmentation tasks. One example of this is Taghizadeh et al. (27), who 
employed the U-Net model to assess muscle degeneration levels in CT 
scans. Through a supervised training approach with annotated data, 
they successfully segmented the structures and characterized the 
pre-morbid state based on clinical information. By comparing these 
two states, they were able to quantify the degree of muscle degeneration.

Medina et al. (22) proposed two sequential models trained in a 
supervised manner via transfer learning from a model pre-trained on 
the ImageNet dataset. Both models had all their weights initially 
frozen except for the classifier layers, which were optimized by 
training the network on a shoulder MRI dataset. Model A aimed to 
identify the best image in a series depicting the rotator cuff muscles, 
while Model B focused on segmenting the four rotator cuff muscles. 
Model A was constructed using the Inception-v3 architecture, while 
Model B was based on the VGG19 architecture.

Kim et al. (26) proposed a unique approach for assessing muscle 
atrophy in the supraspinous fossa by measuring the occupation ratio 

FIGURE 8

Average and confidence interval (α  =  0.05) for the classification 
validation loss over five-folds cross-validation training processes. 
Average is shown in segmented line, and confidence interval is 
shown in shadow.

FIGURE 9

Average and confidence interval (α  =  0.05) for the classification validation accuracy, sensitivity, specificity, and area under the ROC curve (AUROC), over 
five-folds cross-validation training processes. Average is shown in segmented line, and confidence interval is shown in shadow.

TABLE 4 Classification model comparison with literature.

Loss Accuracy Sensitivity Specificity AUROC

Proposed model 0.106 ± 0.051 0.973 ± 0.023 0.900 ± 0.098 0.978 ± 0.025 0.990 ± 0.009

VGG-19 0.096 ± 0.010 0.973 ± 0.006 0.947 ± 0.039 0.975 ± 0.006 0.991 ± 0.003

ResNet-50 0.123 ± 0.011 0.976 ± 0.006 0.925 ± 0.053 0.980 ± 0.006 0.992 ± 0.003

Inception-v3 0.102 ± 0.009 0.974 ± 0.007 0.869 ± 0.085 0.981 ± 0.006 0.991 ± 0.004

Confidence interval computed from the validation set of the five training processes at α = 0.05. The loss, accuracy, sensitivity, specificity, and area under the ROC curve (AUROC) are shown. 
Models used for comparison are obtained from Saavedra et al. (20).
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(O.R.) of the supraspinatus muscle. They used a VGG19-like network 
to segment the region of interest with annotated data, but gaps in the 
muscle area obtained from the model required filling with a post-
processing algorithm. The authors then determined the stage of 
muscle atrophy based on the O.R. (stage I: O.R. ≥ 0.6; stage 2: 0.4 ≤ 
O.R. ≤ 0.6; stage 3: O.R. > 0.4). Although this method did not assess 
the fatty infiltration grade precisely, it was still a valuable contribution.

Ro et  al. (23) also utilized the VGG19 model to perform a 
segmentation task for identifying the region of interest. To convert the 
grayscale image into a binary representation, they applied Otsu’s 
thresholding (32), a technique commonly used to separate the 
foreground (fat) from the background (muscle) in the image. However, 
as in other studies, post-processing was required, and the results were 
not directly applicable to a fatty infiltration scale like Goutallier’s.

This study has some limitations that must be considered. Firstly, 
a domain bias might have been introduced to the prediction because 
the MRI images and natural images used in the training process came 
from very different dataset. While we  used the cross-validation 
technique to overcome the over-fitting problem, we were unable to test 
our data on an external dataset, which could limit the model’s 
generalizability if it is intended to be  used in a production 
environment. To address this issue, future studies could focus on 
training the model on a larger set of MRI images to improve both the 
model’s performance and the clinician’s reliance on an artificial 
intelligence-driven solution. Also, it is important to consider that in 
order to bring these new models and technologies to production 
environment (deployment), computational resources must 
be considered as the models must be retrained as new data comes in. 
This also helps improving and refining the deployed models. To 
properly do this, deployment environments (hospitals or clinics) must 
be  equipped with appropriate computational tools (servers or 
computers) to efficiently manage the update of models, which also 
increase in complexity and computational resources needed as more 
data becomes available. Additionally, the manual labeling task was 
performed by only one trained radiologist, which might limit the 
reliability of the ground truth. To improve the accuracy and 
consistency of the labeling process, future studies could consider 
involving multiple trained radiologists in the task and comparing the 
model’s performance with that of the professionals. Finally, further 
efforts should be pursued to evaluate the feedback-loops during the 
training process of the proposed two-stage algorithm. This research 
did not focus on the possible improvements of the segmentation and 
classification models when feeding their results and predictive errors, 
similar to what boosting or sequential machine learning algorithms do.

In summary, this study analyzed a dataset of MRI images to assess 
fatty infiltration levels in the supraspinatus muscle among patients 
with rotator cuff conditions. We proposed a two-step training method 
using deep learning models, which demonstrated strong performance 
in segmentation and classification tasks. These findings indicate the 
potential of these models for accurate and reliable evaluation of 
musculoskeletal conditions in similar clinical settings.

Data availability statement

The data analyzed in this study is subject to the following licenses/
restrictions: data might be requested to authors and it will be sent if 

authorized by corresponding authorities as they are images of patients. 
Requests to access these datasets should be directed to guillermo.
droppelmann@meds.cl.

Ethics statement

The studies involving humans were approved by Comité de 
Ética Científico Adultos, Servicio de Salud Metropolitano 
Oriente, Santiago, Chile. The studies were conducted in 
accordance with the local legislation and institutional 
requirements. Written informed consent for participation was 
not required from the participants or the participants’ legal 
guardians/next of kin in accordance with the national legislation 
and institutional requirements.

Author contributions

JS: Formal analysis, Investigation, Methodology, Software, 
Validation, Writing – original draft, Writing – review & editing. GD: 
Writing – original draft, Writing – review & editing. CJ: 
Conceptualization, Methodology, Writing – original draft, Writing 
– review & editing. FF: Conceptualization, Data curation, Formal 
analysis, Investigation, Methodology, Project administration, 
Software, Supervision, Validation, Writing – original draft, Writing 
– review & editing.

Funding

The author(s) declare that financial support was received for the 
research, authorship, and/or publication of this article. The publication 
was financially supported by the Universidad Mayor.

Acknowledgments

The authors are grateful for the kind collaboration and assistance 
of the Sports Medicine Data Science Center MEDS-PUCV.

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors 
and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

https://doi.org/10.3389/fmed.2024.1416169
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
mailto:guillermo.droppelmann@meds.cl
mailto:guillermo.droppelmann@meds.cl


Saavedra et al. 10.3389/fmed.2024.1416169

Frontiers in Medicine 11 frontiersin.org

References
 1. Sabo MT, LeBlanc J, Hildebrand KA. Patient gender and rotator cuff surgery: are 

there differences in outcome? BMC Musculoskelet Disord. (2021) 22:838. doi: 10.1186/
s12891-021-04701-y

 2. Yamamoto A, Takagishi K, Osawa T, Yanagawa T, Nakajima D, Shitara H, et al. 
Prevalence and risk factors of a rotator cuff tear in the general population. J Shoulder Elb 
Surg. (2010) 19:116–20. doi: 10.1016/j.jse.2009.04.006

 3. Lazarides AL, Alentorn-Geli E, Choi JHJ, Stuart JJ, Lo IKY, Garrigues GE, et al. 
Rotator cuff tears in young patients: a different disease than rotator cuff tears in elderly 
patients. J Shoulder Elb Surg. (2015) 24:1834–43. doi: 10.1016/j.jse.2015.05.031

 4. Vitale MA, Vitale MG, Zivin JG, Braman JP, Bigliani LU, Flatow EL. Rotator cuff 
repair: an analysis of utility scores and cost-effectiveness. J Shoulder Elb Surg. (2007) 
16:181–7. doi: 10.1016/j.jse.2006.06.013

 5. Parikh N, Martinez DJ, Winer I, Costa L, Dua D, Trueman P. Direct and indirect 
economic burden associated with rotator cuff tears and repairs in the US. Curr Med Res 
Opin. (2021) 37:1199–211. doi: 10.1080/03007995.2021.1918074

 6. Yamanaka K, Matsumoto T. The joint side tear of the rotator cuff: a followup study 
by arthrography. Clin Orthop Relat Res. (1994) 304:68–73.

 7. Barry JJ, Lansdown DA, Cheung S, Feeley BT, Ma CB. The relationship between tear 
severity, fatty infiltration, and muscle atrophy in the supraspinatus. J Shoulder Elb Surg. 
(2013) 22:18–25. doi: 10.1016/j.jse.2011.12.014

 8. Lee E, Choi J-A, Oh JH, Ahn S, Hong SH, Chai JW, et al. Fatty degeneration of the 
rotator cuff muscles on pre- and postoperative CT arthrography (CTA): is the Goutallier 
grading system reliable? Skeletal Radiol. (2013) 42:1259–67. doi: 10.1007/
s00256-013-1660-1

 9. Ashir A, Lombardi A, Jerban S, Ma Y, Du J, Chang EY. Magnetic resonance 
imaging of the shoulder. Polish J Radiol. (2020) 85:e420. doi: 10.5114/pjr.2020.98394

 10. Goutallier D, Postel J, Bernageau J, LVM L. Fatty muscle degeneration in cuff 
ruptures. Pre- and postoperative evaluation by CT scan. Clin Orthop Relat Res. (1994) 
304:78–83. Available at: https://pubmed.ncbi.nlm.nih.gov/8020238/

 11. Fuchs B, Weishaupt D, Zanetti M, Hodler J, Gerber C. Fatty degeneration of the 
muscles of the rotator cuff: assessment by computed tomography versus magnetic resonance 
imaging. J Shoulder Elb Surg. (1999) 8:599–605. doi: 10.1016/s1058-2746(99)90097-6

 12. Khoury V, Cardinal É, Brassard P. Atrophy and fatty infiltration of the 
supraspinatus muscle: sonography versus MRI. AJR Am  J Roentgenol. (2012) 
190:1105–011. doi: 10.2214/AJR.07.2835

 13. Naqvi G, Jadaan M, Harrington P. Accuracy of ultrasonography and magnetic 
resonance imaging for detection of full thickness rotator cuff tears. Int J Shoulder Surg. 
(2009) 3:94–7. doi: 10.4103/0973-6042.63218

 14. Sarker IH. Deep learning: a comprehensive overview on techniques, taxonomy, 
applications and research directions. SN Comput Sci. (2021) 2:420. doi: 10.1007/
s42979-021-00815-1

 15. Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial 
intelligence in radiology. Nat Rev Cancer. (2018) 18:500. doi: 10.1038/s41568-018-0016-5

 16. Xing L, Giger ML, Min JK. (Eds.). Artificial intelligence in medicine: technical 
basis and clinical applications (2020). London, UK: Academic Press.

 17. Vakalopoulou M, Christodoulidis S, Burgos N, Colliot O, Lepetit V. Basics and 
convolutional neural networks (CNNs) In: Machine learning for brain disorders. 
neuromethods. New York, NY: Humana (2023).

 18. Ahmed SF, Bin AMS, Hassan M, Rozbu MR, Ishtiak T, Rafa N, et al. Deep learning 
modelling techniques: current progress, applications, advantages, and challenges. Artif 
Intell Rev. (2023) 56:13521–617. doi: 10.1007/s10462-023-10466-8

 19. He K, Zhang X, Ren S, Sun J. (2016). Deep residual learning for image recognition. 
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 770–778. 
Available at: http://image-net.org/challenges/LSVRC/2015/

 20. Saavedra JP, Droppelmann G, García N, Jorquera C, Feijoo F. High-accuracy 
detection of supraspinatus fatty infiltration in shoulder MRI using convolutional 
neural network algorithms. Front Med. (2023) 10:1070499. doi: 10.3389/
fmed.2023.1070499

 21. Morid MA, Borjali A, Del Fiol G. A scoping review of transfer learning research 
on medical image analysis using ImageNet. Comput Biol Med. (2020) 128:104115. doi: 
10.1016/j.compbiomed.2020.104115

 22. Medina G, Buckless CG, Thomasson E, Oh LS, Torriani M. Deep learning method 
for segmentation of rotator cuff muscles on MR images. Skeletal Radiol. (2021) 
50:683–92. doi: 10.1007/s00256-020-03599-2

 23. Ro K, Kim JY, Park H, Cho BH, Kim IY, Shim SB, et al. Deep-learning framework 
and computer assisted fatty infiltration analysis for the supraspinatus muscle in MRI. Sci 
Rep. (2021) 11:15065. doi: 10.1038/s41598-021-93026-w

 24. Aggarwal R, Sounderajah V, Martin G, Ting DSW, Karthikesalingam A, King 
D, et al. Diagnostic accuracy of deep learning in medical imaging: a systematic 
review and meta-analysis. npj Digit Med. (2021) 4:65. doi: 10.1038/
s41746-021-00438-z

 25. Dalal S, Lihore UK, Manoharan P, Rani U, Dahan F. An efficient brain tumor 
segmentation methods based on adaptive moving self-organizing map and fuzzy 
clustering. Sensors. (2023) 23:7816. doi: 10.3390/s23187816

 26. Kim JY, Ro K, You S, Nam BR, Yook S, Park HS, et al. Development of an automatic 
muscle atrophy measuring algorithm to calculate the ratio of supraspinatus in 
supraspinous fossa using deep learning. Comput Methods Prog Biomed. (2019) 
182:105063. doi: 10.1016/j.cmpb.2019.105063

 27. Taghizadeh E, Truffer O, Becce F, Eminian S, Gidoin S, Terrier A, et al. Deep 
learning for the rapid automatic quantification and characterization of rotator cuff 
muscle degeneration from shoulder CT datasets. Eur Radiol. (2021) 31:181–90. doi: 
10.1007/s00330-020-07070-7

 28. Khouy M, Jabrane Y, Ameur M, Hajjam El Hassani A. Medical image segmentation 
using automatic optimized U-Net architecture based on genetic algorithm. J Pers Med. 
(2023) 13, 13:1298. doi: 10.3390/jpm13091298

 29. Wen L, Li X, Li X, Gao L. (2019). A new transfer learning based on VGG-19 
network for fault diagnosis. 2019 IEEE 23rd International Conference on Computer 
Supported Cooperative Work in Design (CSCWD). 205–209.

 30. Eelbode T, Bertels J, Berman M, Vandermeulen D, Maes F, Bisschops R, et al. 
Optimization for medical image segmentation: theory and practice when evaluating 
with dice score or Jaccard index. IEEE Trans Med Imaging. (2020) 39:3679–90. doi: 
10.1109/TMI.2020.3002417

 31. Lihore UK, Dalal S, Faujdar N, Margala M, Chakrabarti P, Charkrabarti T, et al. 
Hybrid CNN-LSTM model with efficient hyperparameter tuning for prediction of 
Parkinson’s disease. Sci Rep. (2023) 13:14605. doi: 10.1038/s41598-023-41314-y

 32. Otsu N. Threshold selection method from gray-level histograms. IEEE Trans Syst 
Man Cybern. (1979) 9:62–6. doi: 10.1109/TSMC.1979.4310076

https://doi.org/10.3389/fmed.2024.1416169
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://doi.org/10.1186/s12891-021-04701-y
https://doi.org/10.1186/s12891-021-04701-y
https://doi.org/10.1016/j.jse.2009.04.006
https://doi.org/10.1016/j.jse.2015.05.031
https://doi.org/10.1016/j.jse.2006.06.013
https://doi.org/10.1080/03007995.2021.1918074
https://doi.org/10.1016/j.jse.2011.12.014
https://doi.org/10.1007/s00256-013-1660-1
https://doi.org/10.1007/s00256-013-1660-1
https://doi.org/10.5114/pjr.2020.98394
https://pubmed.ncbi.nlm.nih.gov/8020238/
https://doi.org/10.1016/s1058-2746(99)90097-6
https://doi.org/10.2214/AJR.07.2835
https://doi.org/10.4103/0973-6042.63218
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1007/s42979-021-00815-1
https://doi.org/10.1038/s41568-018-0016-5
https://doi.org/10.1007/s10462-023-10466-8
http://image-net.org/challenges/LSVRC/2015/
https://doi.org/10.3389/fmed.2023.1070499
https://doi.org/10.3389/fmed.2023.1070499
https://doi.org/10.1016/j.compbiomed.2020.104115
https://doi.org/10.1007/s00256-020-03599-2
https://doi.org/10.1038/s41598-021-93026-w
https://doi.org/10.1038/s41746-021-00438-z
https://doi.org/10.1038/s41746-021-00438-z
https://doi.org/10.3390/s23187816
https://doi.org/10.1016/j.cmpb.2019.105063
https://doi.org/10.1007/s00330-020-07070-7
https://doi.org/10.3390/jpm13091298
https://doi.org/10.1109/TMI.2020.3002417
https://doi.org/10.1038/s41598-023-41314-y
https://doi.org/10.1109/TSMC.1979.4310076

	Automated segmentation and classification of supraspinatus fatty infiltration in shoulder magnetic resonance image using a convolutional neural network
	Introduction
	Materials and methods
	Study design
	Learning approach
	Dataset characteristics
	Dataset preparation
	Criteria for fatty infiltration
	Proposed model
	Model development and training
	Statistical analysis

	Results
	Sociodemographic characteristics
	Step 1. Segmentation
	Step 2. Classification

	Discussion

	References

