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Regulation of idiopathic 
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Pulmonary fibrosis (PF) is a highly complex and challenging disease affecting the 
respiratory system. Patients with PF usually have an abbreviated survival period 
and a consequential high mortality rate after the diagnosis is confirmed, posing 
serious threats to human health. In clinical practice, PF is typically treated by 
antifibrotic agents, such as Pirfenidone and Nintedanib. However, these agents 
have been reported to correlate with substantial adverse effects, escalating costs, 
and insufficient efficacy. Moreover, it remains unclarified about the multifactorial 
pathology of PF. Therefore, there is an urgent demand for elucidating these 
underlying mechanisms and identifying safe, efficient, and targeted therapeutic 
strategies for PF treatment. The crucial role of the transforming growth factor-β 
(TGF-β) signaling pathway in PF development has been explored in many studies. 
MicroRNAs (miRNAs), which function as post-transcriptional regulators of gene 
expression, can significantly affect the development of PF by modulating TGF-β 
signaling. In turn, TGF-β signaling can regulate the expression and biogenesis 
of miRNAs, thereby substantially affecting the progression of PF. Hence, the 
therapeutic strategies that focus on the drug-targeted regulation of miRNAs, either 
by augmenting down-regulated miRNAs or inhibiting overexpressed miRNAs, may 
hinder the pathways related to TGF-β signaling. These strategies may contribute 
to the prevention and suppression of PF progression and may provide novel 
insights into the treatment of this disease.
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1 Introduction

Pulmonary fibrosis (PF) encapsulates a range of persistent and progressively deteriorating 
lung disorders that incrementally affects the interstitium. This disease may induce hampered 
gas exchange, breathlessness, and compromised quality of life, ultimately resulting in 
respiratory failure and death (1). As the most prevalent subtype of PF, idiopathic pulmonary 
fibrosis (IPF) is an chronic, progressive, and fibrotic disorder in the interstitial lung (2). 
Globally, the estimated incidence of IPF ranges from 0.09 and 1.30 per 10,000 individuals, 
while the average age of patients with IPF is approximately 65–70 years, presenting a 
significantly higher incidence with an increase in age (3). In the context of the aging population 
worldwide, the burden of PF on patients and healthcare systems is predicted to rise 
progressively. According to current treatment guidelines, Pirfenidone and Nintedanib are 
recommended in the treatment of PF (4). However, the efficacy of these agents in decelerating 
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disease progression and enhancing the quality of life is limited to a 
certain extent. Additionally, they are often associated with 
gastrointestinal tolerability concerns (5–7). Therefore, the 
development of novel drug therapies is of paramount importance for 
the treatment of this disease.

IPF is characterized by the excessive production and disorganized 
deposition of extracellular matrix (ECM) components, resulting in 
irreversible structural distortions and loss of organ function (8). It is 
now widely recognized that IPF arises from a complex interplay of 
genetic and environmental risk factors, with repetitive localized 
microinjuries to the senescent alveolar epithelium playing a central 
role. These micro-injuries initiate aberrant epithelial–fibroblast 
communication, the induction of matrix-producing myofibroblasts, 
and considerable extracellular matrix accumulation and remodelling 
of lung interstitium (2).

Transforming growth factor-β (TGF-β) is a pivotal mediator in 
fibrogenesis (9, 10). There are three TGF-β isoforms (TGF-β1, β2, and 
β3), alongside three cell-surface receptors - Type I (TGFBR1), Type II 
(TGFBRI2), and Type III (TGFBR3), all of which contribute to the 
TGF-β signaling pathway (11). Triggered by the ligand-receptor 
interaction (9), TGF-β signaling may be initiated when TGF-β first 
binds to its specific receptor, TGFBR2, thereby recruiting TGFBR1 
into the complex via the unique interface generated by the TGF-β-
TGFBR2 complex. This forms a heterotetramer complex consisting of 
a single dimeric TGF-β molecule binding to two TGFBR1 molecules 
and two TGFBR2 molecules. The formation of this complex leads to 
the phosphorylation of TGFBR1 by TGFBR2, which subsequently 
phosphorylates Smad proteins to propagate signals to the nucleus, 
bind to consensus sequences, and regulate gene transcription (11). As 
a co-receptor, TGFBR3 promotes the binding of ligands to TGFBR2, 
which augments TGF-β signaling (12). As the downstream 
components of SMAD signaling, Smad2/Smad3 are hypothesized to 
be paramount intermediators of TGF-β signaling in tissue fibrogenesis. 
Smad4 can work synergistically with Smad2/3 to facilitate this process, 
while Smad6 and Smad7 can function as negative regulators to 
mitigate TGF-β-mediated fibrosis (13). Apart from initializing Smad-
dependent signaling chains, TGF-β can instigate Smad-independent 
signaling cascades, including the MAPK family (Erk (14, 15), JNK (16, 
17), and p38 MAPK (18, 19)), Rho-like GTPases (20, 21), and the AKT/
phosphatidylinositol-3 kinase pathway (22, 23). IPF is a disease 
primarily associated with aging, and elevated TGF-β1 is a major factor 
in its pathogenesis (24). TGF-β is released following epithelial cell 
injury and serves as a central pro-fibrotic growth factor driving the 
progression of pulmonary fibrosis. Its multifunctional roles include 
stimulating the proliferation and differentiation of epithelial cells and 
fibroblasts, activating ECM production in myofibroblasts, catalyzing 
epithelial-mesenchymal transition, accelerating epithelial apoptosis 
and cell migration, and inducing the production of connective tissue 
growth factor (CTGF) along with other mediators such as Fibroblast 
Growth Factor (FGF), Insulin-like Growth Factor (IGF), and Platelet-
Derived Growth Factor (PDGF) (25).The heightened level of TGF-β1 
has been observed in both animal models of IPF and tissue samples 
from IPF patients (26). The overexpression of active TGF-β1 may 
result in the progression of PF (27), whereas inhibiting TGF-β 
signaling can mitigate PF in animal models (28).

MicroRNAs (miRNAs) are a highly conserved group of small 
single-stranded non-coding RNAs measuring between 19 to 25 
nucleotides. They can modulate genes at both the transcriptional 

and post-transcriptional levels by binding to the 3′-untranslated 
region (UTR) of target mRNAs (29, 30). In animals, miRNA gene 
transcription, facilitated by RNA polymerase II (pol II), first yields 
extended primary transcripts (pri-miRNAs). These pri-miRNAs are 
subsequently cropped by the RNase-III enzyme Drosha to produce 
hairpin intermediates (pre-miRNAs) located within the nucleus. 
Drosha can be fused with its indispensable cofactor DGCR8/Pasha 
into a large ensemble (500-650 kDa) named the microprocessor 
complex (31). DGCR8/Pasha, accounting for approximately 
120 kDa in size, is equipped with two dsRNA-binding structural 
domains. Thereafter, the pre-miRNA is shuttled into the cytoplasm 
through exportin-5, a constituent of the Ran-dependent nuclear 
transporter receptor family. Upon reaching the cytoplasm, 
pre-miRNAs are finally processed into approximately 22-nucleotide 
miRNA duplexes by the cytoplasmic RNase-III protein Dicer, but 
their cellular persistence is typically transient. Typically, one strand 
of this transient duplex would degrade while the other would 
transform into the mature miRNA. The strand choice for retention 
is determined by the relative thermodynamic stability of both ends 
of the duplex (32). Dicer, a cog in the miRNA machinery, is known 
to form interactions with a variety of proteins, each imparting 
different functions in miRNA stability, effector complex formation, 
and operational actions. For instance, human AGO2, a member of 
the Argonaute protein family, has been recently validated to 
function as a “slicer” enzyme, which can cleave target mRNAs 
(33, 34).

Mature miRNAs are sorted into exosomes or microvesicles (35), 
and extracellular miRNAs can also be  loaded into high-density 
lipoproteins (HDL) (36, 37) or bound to AGO2 proteins outside of 
vesicles (38). These three mechanisms protect miRNAs from 
degradation and ensure their stability. Given the transporter capability 
of vesicles, the role of miRNAs in exosomes has garnered increasing 
attention. Since exosomal miRNAs can stably persist in the blood, 
urine, and other body fluids of patients, exosomes can reflect their 
tissue or cellular origin through the presence of specific surface 
proteins. The use of exosomes and their cargo miRNAs as clinical tools 
for diagnosing and monitoring diseases holds substantial promise and 
may even be beneficial for gene therapy in certain conditions.It has 
been shown that HDL can deliver miRNAs to recipient cells and alter 
gene expression. For example, HDL delivery of miR-223 significantly 
reduced EFNA1 and RhoB mRNA levels in hepatocytes (36). 
Manipulation of HDL-miRNA levels and the use of HDL as a delivery 
vehicle for RNA and chemicals have demonstrated potential in the 
treatment of cardiovascular disease. HDL-miR-223 mimic approaches 
can be  used to prevent or treat hypercholesterolemia (hepatic 
cholesterol biosynthesis) and endothelial activation (monocyte and 
neutrophil adhesion) and attenuate atherosclerosis (39).

It has been recently revealed that there is a strong association 
between numerous miRNAs and tissue or organ fibrogenesis (40–43). 
Promising results have been elicited from miRNA mimics and miRNA 
inhibitors, and they are expected to become novel therapeutic agents, 
which are currently under preclinical development (44). KADOTA 
et al. corroborated the antifibrotic properties of miR-16, miR-26a, 
miR-26b, miR-141, miR-148a, and miR-200a located in human 
bronchial epithelial cell-derived extracellular vesicles (HBEC EVs). 
They further proposed that the introduction of these HBEC EVs may 
hold promise as an antifibrotic strategy in the treatment of IPF 
through miRNA-mediated curbs on TGF-β signaling (45).
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2 The interaction between TGF-β 
signaling and MiRNAs

TGF-β signaling can exert impacts on the expression of miRNAs 
while concurrently being regulated by these miRNAs. Moreover, a 
majority of the classical TGF-β signaling pathway constituents may 
be  susceptible to miRNA impacts. Specifically, miR-424 enhances 
profibrotic properties via stimulating the TGF-β/Smad pathway, which 
can be attributed to the direct engagement with TGIF2, an intrinsic 
repressor of TGF-β signaling. This further results in sub-mucosal 
fibrosis within the oral mucosa (46). On the contrary, miR-130a also 
presents antifibrotic properties by modulating the expression of 
TGFBR1 via directly targeting TGFBR1, thus inhibiting cardiac fibrosis 
after myocardial infarction (47). Additionally, miR-326 is validated to 
correlate with TGF-β1 3’UTR, which inhibits the expression of TGF-β1 
at the post-transcriptional stage, thereby mitigating PF (48).

Furthermore, the molecules involved in TGF-β signaling are 
capable of modulating the expression and biogenesis of miRNAs. The 
biogenesis of miRNAs encompasses synchronized processes, including 
miRNA transcription and the consequent processing and maturation 
of miRNA units. Davis et al. uncovered that TGF-β signaling enhanced 
the processing of the primary transcript of miR-21 (pri-miR-21) into 
the precursor miR-21 (pre-miR-21) through the DROSHA complex 
(49). Receptor-activated Smad (R-Smad) proteins that are exclusive to 
TGF-β signaling are enlisted to the RNA deconjugating enzyme p68 
complex (also termed DDX5) of the ‘pri-miR-21’, where they facilitate 
the maturation of miRNAs by managing DROSHA, which is a 
constituent of the DROSHA microprocessor complex.

Marquez et al. reported a unique positive feedback loop, in which 
TGF-β stimulated the processing of the primary miR-21 precursor 
(pri-miRNA) into mature miR-21 (50). Interestingly, the mature 
miR-21 suppressed TGF-β signaling, but the R-Smad protein was also 
conscripted to the primiR-21 RNA deconjugating enzyme p68 
complex. The suppression of SMAD7, a TGF-β signaling inhibitor, can 
be induced by mature miR-21, thereby facilitating fibrosis. It has been 
confirmed in numerous studies that the expression of various miRNAs 
can be altered in different cell types after the treatment with TGF-β 
family ligands. For example, Ottaviani et al. found that TGF-β incited 
the lncRNA MIR100HG through SMAD2/3 transcription, which 
housed miR-100, miR-125b, and let-7a within its intron (51). 
Additionally, Yang et al. observed that miR1306 negatively influenced 
TGF-β/Smad3 signaling by targeting TGFBR2 (52). In contrast, 
SMAD4 was directly associated with the miR-1306 promoter, thereby 
inhibiting its transcriptional activity.

The connection between TGF-β signaling and miRNA 
mechanisms has been proved in many studies. In this review, the 
acting patterns of this interaction and their functions in the occurrence 
and progression of PF are summarized. This interaction is illustrated 
in the following Figure 1.

3 MiRNAs impeding the progression of 
PF

3.1 MiR-133a

MiR-133a is mainly expressed in muscle tissues (53) 
predominantly conserved in skeletal and cardiac muscles. It plays a 

critical role in various physiological processes, such as fibrosis (54, 55), 
myocardial infarction (56), scarring (57), cancer (58), and bone 
metabolism (59). It has been recently revealed that the expression of 
miR-133a is considerably down-regulated in the lungs of patients with 
IPF compared with age-matched males without fibrotic lung diseases 
(60). Wei et  al. unveiled a novel role of miR-133a as a negative 
feedback regulator in the profibrotic signaling pathway of TGF-β1 
(55). MiR-133a can impede the differentiation of myofibroblasts by 
targeting multiple constituents of the profibrotic pathway of TGF-β1, 
including TGFBR1, CTGF, and collagen type 1-alpha1 (Col1a1). 
Besides, TGF-β1 promotes the transcription of miR-133a through the 
activation of both conventional (Smad3) and unconventional 
(p38MAPK) signaling pathways. This instigates a negative feedback 
loop, thereby inhibiting the progression of PF. Intriguingly, the 
overexpression of miR-133a has been found to alleviate PF induced by 
bleomycin in mice, underscoring its potential therapeutic utility (55) 
(Table 1).

3.2 MiR-29

The miRNA-29 family, including miR-29a, miR-29b, and miR-29c, 
has been confirmed to have a pivotal role in the fibrosis process within 
several organs, thus, garnering interest as a potential antifibrotic 
regulator (61). CUSHING et al. reported a negative correlation of the 
level of miR-29 with the expression of profibrotic genes and the 
severity of fibrosis. In IMR-90 cells, a fetal lung fibroblast cell line 
commonly utilized in fibrosis molecular mechanism studies, miR-29 
is suppressed by TGF-β, and many fibrosis-related genes normally 
up-regulated by TGF-β are derepressed after the knockdown of 
miR-29. Remarkably, it has been demonstrated in a comparative 
analysis between TGF-β and miR-29 targets that miR-29 can 
independently regulate different subsets of profibrotic genes, such as 
laminin, integrins, ADAMTS9, ADAM12, NID1 gene, and integrin 
ITGA11 (62). Xiao et al. found that miR-29 was negatively regulated 
by TGF-β/Smad signaling during fibrosis, with Smad3 identified as a 
downstream target. Notably, the overexpression of miR-29 could 
inversely regulate the expression of TGF-β, connective tissue growth 
factors (CTGFs), and Smad3 signaling. Importantly, non-invasive 
miR-29 gene therapies based on the SB transposon system have been 
developed for the treatment of PF. These therapies could enhance the 
expression of miR-29 in normal mouse lungs to prevent bleomycin-
induced fibrosis. Besides, they can also significantly restore the higher 
level of miR-29 in fibrotic lungs, thus avoiding the progression of PF 
in mouse models (63). Chioccioli et al. uncovered that the decreased 
level of miR-29 in the peripheral blood of IPF patients was correlated 
with the poor prognosis and significantly decreased survival rate of 
these patients (64). Astonishingly, the supplementation with the 
miR-29 mimic, MRG-229, can mitigate the up-regulation of fibrosis-
associated genes instigated by TGF-β and inhibit the synthesis and 
secretion of collagen in both standard and IPF cells in vitro. Moreover, 
similar outcomes are also observed in bleomycin-induced PF rats and 
non-human primate models, indicating an improvement in fibrosis. 
These findings may support the exploration of miR-29 as an innovative 
and potentially effective therapy for lung diseases characterized 
by fibrosis.

Interestingly, IPF is characterized by the progression from the 
periphery toward the center. This disease presents distinct pathological 
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characteristics in different lung regions that may resemble varying 
stages of the disease, hence it can be considered a heterogeneous and 
progressive disease (65).

McDonough et  al. demonstrated that the expression of many 
collagen genes in the lungs of IPF patients, least affected by the disease, 
was up-regulated significantly before observable changes in protein 
levels. Simultaneously, a decrease in the miRNA level of miR-29 was 
also observed at this stage, implying that IPF patients, even with 
normal histology, may exhibit molecular abnormalities (66). These 

findings may potentially assist in implementing more effective 
diagnostic measures or tailoring more efficient therapies for patients 
with PF.

3.3 MiR-130a-3p

The close association between miR-130a-3p and fibrosis across 
various tissues has been reported in many studies. Specifically, 

FIGURE 1

This schema elucidates the role of miRNAs that modulate the pivotal molecules involved in the TGF-β signaling pathway in PF. Likewise, the central 
molecules of the TGF-β signaling pathway have interactive roles in regulating miRNA expression and biogenesis. Emphasizing the presence of 
feedback loops, miRNAs involved in forming negative and positive feedback with the TGF-β signaling pathway are specifically highlighted in different 
colors. Specifically, blue represents negative feedback loops, whereas red represents positive feedback pathways.

TABLE 1 Impact of miRNAs in pulmonary fibrosis.

MicroRNA Brief role in fibrosis Molecular target Organism Reference

miR-133a Protective TGFBR1, CTGF, Col1a1 Human, mouse (55)

miR-29 Protective TGF-β, CTGF, Smad3 Mouse (63)

miR-130a-3p Protective TGFBR2 Mouse (71, 72)

miR-200 Protective ZEB1, ZEB2/SIP1 Human (75)

miR-9-5p Protective TGFBR2, p-Smad2, NOX4 Human (79, 80)

miR-26a Protective p-samd3 Human, mouse (84)

miR-21 Enhancing Smad7, p-Smad2 Mouse (95)

miR-145 Enhancing α-SMA Mouse (100)

miR-155 Enhancing TGF-β1 Human (102)

miR-424 Enhancing Slit2, Smurf2 Human (110, 111)

miR-182-5p Enhancing Smad7 Human, mouse (112)

miR-199a-5p Enhancing CAV1, Smad4 Human, mouse (117)
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miR-130a-3p can bind to MAPK1, TGFBR1, and TGFBR2 and inhibit 
their expression, a mechanism that contributes to alleviating hepatic 
fibrosis (67). However, in the context of obstructive nephropathy, 
miR-130a-3p directly targets the 3’-UTR of SnoN to suppress the 
expression of SnoN, thereby inadvertently promoting the activation of 
TGF-β1/Smad signaling related to renal fibrosis (68). The correlation 
of miR-130a-3p with lung inflammation (69) and airway remodeling 
(70) has been demonstrated in some studies. In the previous, TGFBR2 
was identified as a potential target of miR-130a-3p. Besides, the 
interaction of miR-130a-3p/TGFBR2 axis can inhibit the 
differentiation of lung fibroblasts via the TGF-β1/Smad signaling 
pathway. Additionally, it has been found that the down-regulated 
expression of miR-130a-3p can affect the secretion of inflammatory 
cytokines (including IL-1β, IL-6, TNF-α, and TGF-β1) in the 
inflammatory and fibrosis phases and the deposition of the 
extracellular matrix (α-SMA, FN, HYP, and collagen). Overall, these 
findings suggest that miR-130a-3p can exert anti-inflammatory and 
antifibrotic effects in the treatment of PF (71, 72).

3.4 MiR-200

Among vertebrates, the miR-200 family is deemed one of the most 
conserved miRNAs, encompassing five members: miR-200a, 
miR-200b, miR-200c, miR-141, and miR-429. This family holds a 
central role in establishing epithelial phenotypes during embryogenesis 
and organogenesis (64). Yang unraveled the significant down-
regulated expression of miR-200a, miR-200b, and miR-200c in the 
lungs of mice affected by experimental PF. Concurrently, the 
expression of miR-200a and miR-200c was down-regulated in the 
lungs of IPF patients. Interestingly, it was validated that the members 
of the miR-200 family were inversely correlated with the TGF-β1-
induced EMT, and miR-200c even demonstrated the ability to 
attenuate PF in mice (73). As revealed in recent studies, miR-200a 
exhibits an antifibrotic effect by inhibiting the profibrotic TGF-β/
SMAD-3/α-SMA pathway (74). Moreover, the expression of ZEB1 is 
up-regulated by the TGF-β pathway in IPF. Hence, it can be speculated 
that miR-200 s can potentially govern the EMT in IPF by targeting and 
suppressing ZEB1 and ZEB2/SIP1 (75). These findings could pave the 
way for future therapeutic strategies targeting miR-200 s in the 
treatment of IPF.

3.5 MiR-9-5p

The dysregulation of miR-9-5p has been found to correlate with 
fibrosis in various tissues and organs (76–78). It has been corroborated 
that the expression of miR-9-5p is down-regulated in PF tissues 
compared with normal physiological conditions. Interestingly, the 
overexpression of miR-9-5p has been found to suppress the expression 
of TGF-β1 and p-Smad2 (79). Recently, Fierro et  al. identified a 
feedback loop between TGF-β1 and miR-9-5p, demonstrating an 
intriguing interaction. They found that TGF-β1 up-regulated the 
expression of miR-9-5p through a mechanism dependent on reactive 
oxygen species (ROS), while miR-9-5p was found to negatively 
regulate the TGF-β signaling pathway by targeting TGFBR2 and 
NADPH oxidase 4 (NOX4). These data prove that miR-9-5p exerts 
antifibrotic effects in a bleomycin-induced PF animal model. Notably, 

miR-9-5p delays the TGF-β1-dependent transformation of lung 
fibroblasts into myofibroblasts by inhibiting the phosphorylation of 
Smad2 and the nuclear translocation of Smad2/3 (80). These findings 
highlight the complex and dynamic interplay of miR-9-5p in the 
modulation of fibrosis, offering an intriguing target for the therapeutic 
intervention of PF.

3.6 MiR-26a

MiR-26a has been reported to play an important role in the 
regulation of many diseases, such as renal tubulointerstitial fibrosis, 
lens fibrosis, and cataract (81, 82). MiR-26a can regulate the expression 
of let-7d by targeting Lin28B, which contributes to the regulatory 
effect of miR-26a on EMT, and ultimately, may enhance the anti IPF 
This could help miR-26a to regulate EMT and ultimately enhance the 
anti-fibrotic activity of miR-26a against IPF (83). LIANG found that 
overexpression of miR-26a inhibited TGF-β1-induced fibrosis in 
MRC-5 cells and attenuated experimental pulmonary fibrosis in mice. 
More importantly, the positive feedback loop between miR-26a and 
p-Smad3 was associated with pulmonary fibrosis. TGF-β1 negatively 
regulated miR-26a expression by regulating Smad3, and miR-26a 
inhibited the nuclear translocation of p-Smad3  in order to block 
signaling events downstream of TGF-β1, which ultimately attenuated 
collagen deposition and mitigated pulmonary fibrosis (84).

4 MiRNAs facilitating the progression 
of PF

4.1 MiR-21

MiR-21 has been implicated in an array of lung diseases, including 
acute lung injury/acute respiratory distress syndrome (85), asthma 
(86), PF (87), and lung cancer (88). An increase in the expression level 
of miR-21 has been documented in both the PF mouse model (in the 
bleomycin model) and tissue samples in IPF patients (89, 90). 
Similarly, Zhou et al. observed that TGF-β1 induced the expression of 
miR-21 upon the interaction with TGFBR1 through the binding of 
SMAD3 or SMAD2/3/4 complexes to the miR-21 promoter region. 
This process culminates with the promotion of ECM protein 
deposition in both human lung fibroblasts IMR-90 and a mouse 
model related to bleomycin-induced PF. This implies a novel 
molecular mechanism working via the positive feedback axis of 
TGFβ1/SMADs/miR-21 (91).

Sato et al. analyzed the influence of TGF-β1 and tissue stiffness on 
the expression of miR-21 in rat lung fibrocytes and human circulating 
fibrocytes. They found that fibrocytes treated with varying 
concentrations of TGF-β1 and cultured on plates exhibited different 
levels of stiffness. Fibrocytes were cultivated on soft (1 kPa) plates to 
simulate the characteristics of normal pulmonary tissue as well as on 
stiff (50 kPa) plates to replicate the conditions in fibrotic lung tissues. 
Interestingly, the substrate stiffness changes miR-21 expression in 
fibrocytes. Culturing lung fibrocytes on hard plates increased miR-21 
expression compared to culturing lung fibrocytes on soft plates (92).

Radiation-induced lung fibrosis (RILF) is one of the most severe 
side effects of lung cancer radiotherapy on normal tissues. It poses a 
considerable challenge to the broader application of radiotherapy in 
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treating lung cancer patients (93, 94). It has been revealed that the 
expression of miR-21 is significantly up-regulated in regions affected 
by radiation injury. Concomitantly, miR-21 has been found to down-
regulate the expression of Smad7 while amplifying the phosphorylation 
of Smad2. This, in turn, propels the activation of Smad-dependent 
TGF-β signaling, a noteworthy contributor to the onset of RILF. Hence, 
the targeted mitigation of miR-21 in the affected regions may hold 
potential as an effective therapeutic strategy in preventing the 
progression of RILF (95).

4.2 MiR-145

MiR-145 is highly expressed in blastomeres, which constitute a 
collection of pluripotent stem cells. The primary function of miR-145 
is to inhibit the self-renewal of embryonic stem cells (ESCs), thereby 
inducing lineage-specific differentiation. Specifically, miR-145 has 
been observed to reprogram fibroblasts into smooth muscle cells 
during development (96–98). As reported in recent studies, patients 
with COVID-19 and IPF may exhibit the mutual up-regulation of 
miRNAs, including miR-145-5p, which may play a role in the 
progression of PF (99). Yang et  al. identified that the level of the 
primary transcript of the miR-145 cluster gene (pri-miR-145) 
increased in TGF-β1-treated lung fibroblasts. This implied that the 
up-regulated expression of mature miR-145 may be attributed to the 
enhanced transcription of the miR-145 gene cluster. Besides, they also 
confirmed that miR-145 played a pivotal role in promoting the 
progression of PF by reinforcing the activation of latent TGF-β1. 
MiR-145 can fulfill this function by up-regulating the expression of 
α-SMA, thereby boosting the contractility of myofibroblasts. 
Intriguingly, the mechanical forces presented by cell contraction can 
act as a trigger to activate latent TGF-β1. It has further been observed 
that the knockout of miR-145 protected mice from bleomycin-
induced PF, suggesting that miR-145 could be targeted as a potential 
treatment strategy for resisting pathological fibrotic diseases (100).

4.3 MiR-155

As a principal miRNA, miR-155 has been validated to play a 
pivotal role in the development of fibrosis, with persistent up-regulated 
expression observed across various fibrotic diseases (101). Notably, 
miR-155 has been confirmed to enhance collagen synthesis in animal 
models related to fibrosis and in human fibroblast cell lines derived 
from fibrotic tissues, thus exacerbating fibrosis. Further, it has been 
identified that miR-155 is instrumental in the activation of TGF-β1 in 
fibroblasts and macrophages, offering a potential alternative target for 
the treatment of fibrotic lesions (102). Kong et al. demonstrated that 
the TGF-β/Smad4 pathway incited the activity and expression of the 
miR-155 promoter. This, in turn, stimulates the TGF-β-induced EMT 
and the dissolution of tight junctions, as well as encouraging cell 
migration and invasion (103). Sun et  al. unraveled that using a 
miR-155 antagonist could significantly mitigate histological changes 
and decrease hydroxyproline levels in a mouse model related to 
bleomycin-induced PF. The inhibition of miR-155 can down-regulate 
the expression of IL-4, TGF-β, and interferon-γ after BLM treatment. 
It was further observed that the mitogen-activated protein kinase 
signaling pathway of TGF-β-activated kinase 1/MAPK 7 

(MAP3K7)-binding protein 2 (TAB2) was activated by BLM. However, 
this process could be suppressed by the miR-155 antagonist. The in 
vivo application of the antagomir-155 can mitigate BLM-induced 
pathological changes and may, therefore, represent a promising 
therapeutic strategy for PF (104).

Due to the central role of miRNAs in the immune system, 
miR-155-5p is intimately involved in the inflammatory response. 
Capsaicin (Cap) quenched the inflammatory response in a rat model 
of bleomycin-induced PF by interrupting the IL-1β, TNF-α, and 
TGF-β1 pathways through down-regulating the expression of 
miR-155-5p. Hence, IPF-related lung injury may be ameliorated by 
regulating the expression of miR-155 (105).

4.4 MiR-424

MiR-424-5p has been validated to correlate with the occurrence, 
progression, treatment, and prognosis of tumors, embodying either 
the role of an oncogene or a tumor suppressor gene (106–108). The 
results of recent studies have provided novel insights into the function 
of miR-424 in the landscape of PF. The elevated level of miR-424 has 
been detected in the extracellular vesicles of lung fibroblasts 
originating from IPF patients (109). Moreover, a 1.7-fold increase in 
miR-424 expression was also observed in human fibrotic lung tissues, 
and a notable 2.6-fold increase was documented in TGF-β1-treated 
HLFs, compared with non-fibrotic lung tissues. MiR-424 can exert 
profibrotic effects by targeting the expression of Slit2, a prohibitive 
regulator that can curb profibrotic signaling of TGF-β1 and function 
as an inhibitor of the TGF-β1 signaling pathway (110). Xiao revealed 
that TGF-β propagated the expression of miR-424, which in turn 
suppressed Smurf2, a negative regulator of TGF-β signaling. 
Intriguingly, the silencing of Smurf2 by miR-424 augmented the 
activity of Smad3, thereby cementing the significance of miR-424 in 
TGF-β signaling. Overall, miR-424 orchestrates a positive feedback 
loop in the TGF-β signaling pathway, which promotes the 
differentiation of myofibroblasts in IPF (111).

4.5 MiR-182-5p

MiR-182-5p is markedly over-expressed in the lung tissues of 
mice suffering from BLM-induced fibrosis. TGF-β1 is a protein with 
known profibrotic effects, and it can induce the over-expression of 
miR-182-5p. Interestingly, miR-182-5p plays a role in the down-
regulation of Smad7, which is specifically targeted by miR-182-5p, and 
this negative regulation results in the exacerbation of PF (112). As a 
major checkpoint in the TGF-β1/Smad signaling pathway, Smad7 is a 
negative regulator that can inhibit the phosphorylation of Smad2/
Smad3, thereby interrupting TGF-β1 signaling (113). More 
importantly, miR-182-5p forms a positive feedback loop, a mechanism 
that expedites the deterioration of PF. By diminishing the level of 
miR-182-5p, it was observed that PF was alleviated through the 
suppression of profibrotic proteins (namely, fibronectin, α-smooth 
muscle actin, and p-Smad2/p-Smad3) and the potentiation of Smad7. 
Remarkably, the concurrent inhibition of miR-182-5p and miR-23a-3p 
in vitro and in vivo resulted in a reversal of the progression of 
lipopolysaccharide-induced lung injury and fibrosis in MLE-12 cells 
and mice (114).
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4.6 MiR-199a-5p

It has been shown that miR-199a-5p is significantly increased in 
the serum of IPF patients compared to healthy controls (115). 
MiR-199a-5p regulates autophagy and mediates mesenchymal stem 
cell (MSC) senescence in IPF patients by targeting the Sirt1/AMPK 
signaling pathway, inhibition of miR-199a-5p rejuvenated IPF-MSCs 
and increased their capacity to prevent lung fibrosis progression 
induced by bleomycin in mice (116). Lung fibroblasts overexpressing 
miR-199a-5p can increase SMAD4 expression, and miR-199a-5p can 
directly inhibit Caveolin-1 (CAV1 is a key effector of TGF-β signaling 
in lung fibroblasts) in lung fibroblasts, which can stimulate their 
proliferation, migration, invasion, and differentiation into 
myofibroblasts, thus promoting fibrotic (117).

5 Conclusion and perspective

TGF-β is a crucial instigator of pulmonary fibrogenesis and a 
principal mediator in the progression of PF. The activation of the 
TGF-β signaling pathway can catalyze the overexpression of profibrotic 
genes within the organism from various angles, culminating in fibrotic 
alterations within lung tissues. MiRNAs hold a pivotal role in the 
progression of PF. The existing findings underline the dual effects of 
miRNAs, suggesting that they can be utilized not only as diagnostic 
markers for PF but also as therapeutic targets for the treatment of 
diseases associated with PF. Of note, therapeutic miRNAs have been 
investigated in clinical trial stages (118). In the context of escalating 
disease severity, there are dramatic changes in the gene expression 
regulation patterns based on down-regulated miRNAs. The miR-29 
family plays a dominant role in the early stages of PF, whereas the let-7 
family takes precedence in the later stages of this disease (66).

In this comprehensive review, the intricate interplay between the 
TGF-β signaling mechanism and miRNAs in the progression of PF is 
elucidated. Antifibrotic miRNAs, such as miR-133a, miR-29, 
miR-130a-3p, miR-200, miR-9-5p and miR-26a, can inhibit the 
TGF-β signaling pathway and deter the progression of PF by acting 
on the positive regulators of signal transduction. Conversely, 
profibrotic miRNAs, such as miR-21, mir-145, miR-155, miR-424, 
miR-182-5p and miR-199a-5p, can enhance the TGF-β signaling 
pathway by repressing relevant negative regulators, thereby 
promoting the PF phenotype. Interestingly, there are also complex 
feedback regulatory loops. MiR-133a, miR-29, and miR-9-5p form a 
negative feedback loop with TGF-β-linked molecules, thus 
ameliorating PF. Simultaneously, miR-21, mir-145, miR-155, 
miR-424, and miR-182-5p generate a positive feedback loop with 
TGF-β-associated molecules, which promotes the progression of PF.

Many of the concerns about drugs with miRNAs are based on 
the fact that miRNA targeting has a broader and less specific 
mechanism that can easily lead to off-target effects compared to 
siRNA targeting, which has a high specificity. This factor is mainly 

due to incomplete binding at the 3’-UTR of the target sequence, 
especially at the seed region (119). Some miRNAs (within the same 
family) share a common seed region (bases 2–7 at the 5′ end), 
which is a key region for mRNA target recognition (120), and thus 
miRNA family members can target and repress the same genes. 
MiRNA therapeutics do not necessarily confine their effects to the 
intended tissues or cells, but they may also cause systemic side 
effects. For example, MRX34, a synthetic miR-34a mimic. MiR-34a 
not only acts as a tumor suppressor, but also affects immune cell 
signaling. MiR-34a is not only uptaken in tumor tissues, but also 
similarly uptaken in the bone marrow and the spleen, producing 
severe immune-associated side effects (121, 122).

Potential off-target effects and immunostimulation of miRNA-
based drugs should be  rigorously and extensively studied before 
application to animal models or human use. Overall, further 
unraveling the dynamic interaction between miRNAs via the TGF-β 
signaling pathway remains an indispensable trajectory for the 
development of novel antifibrotic treatment modalities.
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