
TYPE Original Research

PUBLISHED 30 September 2024

DOI 10.3389/fmed.2024.1415058

OPEN ACCESS

EDITED BY

Lorenzo Faggioni,

University of Pisa, Italy

REVIEWED BY

Daniele Panetta,

National Research Council (CNR), Italy

Michel Hesse,

Cliniques Universitaires Saint-Luc, Belgium

*CORRESPONDENCE

Ivan Kruzhilov

iskruzhilov@sberbank.ru

†These authors have contributed equally to

this work and share first authorship

RECEIVED 09 April 2024

ACCEPTED 30 August 2024

PUBLISHED 30 September 2024

CITATION

Kruzhilov I, Kudin S, Vetoshkin L, Sokolova E

and Kokh V (2024) Whole-body PET image

denoising for reduced acquisition time.

Front. Med. 11:1415058.

doi: 10.3389/fmed.2024.1415058

COPYRIGHT

© 2024 Kruzhilov, Kudin, Vetoshkin, Sokolova

and Kokh. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Whole-body PET image
denoising for reduced acquisition
time

Ivan Kruzhilov1,2*†, Stepan Kudin2†, Luka Vetoshkin3,

Elena Sokolova4 and Vladimir Kokh2

1Applied Mathematics and AI, Moscow Power Engineering Institute, Moscow, Russia, 2Sber AI Lab,

Moscow, Russia, 3Moscow Institute of Physics and Technology, Dolgoprudny, Russia, 4LLC SberMedAI,

Moscow, Russia

Purpose: A reduced acquisition time positively impacts the patient’s comfort

and the PET scanner’s throughput. AI methods may allow for reducing PET

acquisition time without sacrificing image quality. The study aims to compare

various neural networks to find the best models for PET denoising.

Methods: Our experiments consider 212 studies (56,908 images) for 7MBq/kg

injected activity and evaluate themodels using 2D (RMSE, SSIM) and 3D (SUVpeak

and SUVmax error for the regions of interest) metrics. We tested 2D and 2.5D

ResNet, Unet, SwinIR, 3D MedNeXt, and 3D UX-Net. We have also compared

supervised methods with the unsupervised CycleGAN approach.

Results and conclusion: The best model for PET denoising is 3D MedNeXt. It

improved SSIM on 38.2% and RMSE on 28.1% in 30-s PET denoising and on

16.9% and 11.4% in 60-s PET denoising when compared to the original 90-s PET

reducing at the same time SUVmax discrepancy dispersion.

KEYWORDS

artificial intelligence, positron emission tomography, SUV, noise reduction, MedNeXt,

SwinIR

1 Introduction

Positron emission tomography (PET) is a molecular imaging technique that produces a

three-dimensional radiotracer distribution map representing properties of biologic tissues,

such as metabolic activity. Many patients undergo more than one PET/CT scan per year.

According to the OECD/EU report (42), an average number of PET scans per 1,000

people is 3.3 in EU25 countries, with a maximum value of 10.2 in Denmark. The higher

the injected activity, the less noise in the reconstructed images and the more radioactive

exposure for a patient and for the healthcare operators.

The task of accelerating a PET/CT scan is to create an algorithm that takes a low-

time PET image as input and converts it into an image with diagnostic quality that

corresponding to a PET image with a standard exposure time. This task is equivalent to

reducing the administered dose of a radio-pharmaceutical. Both of these tasks are noise

reduction tasks (54).

Deep learning methods may reduce injected activity or acquisition time by utilizing

low-dose (LD)/low-time (LT) and full-dose (FD)/full-time (FT) images (Figure 1)

to train models that can predict standard-dose images from LD/LT inputs. A

reduced acquisition time positively impacts the patient’s comfort or the scanner’s

throughput, which enables more patients to be scanned daily, lowering costs.
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The drawback of the recent studies is the need for more

comparison between a broad group of methods on a level playing

field, especially between supervised and unsupervised methods.

Moreover, as methods are tested on different data sets and

for various PET time frames, comparing them is complicated.

Furthermore, studies differ in themetrics used for denoising quality

assessment, for example, some (20, 23, 59, 62) evaluate only image

similarity metrics such as RMSE but do not take into account

SUV characteristics.

Our study aims to overcome the drawbacks by finding the

best backbone and model and comparing the performance of

supervised and unsupervised methods for PET denoising. We

tested supervised 2D and 2.5D methods [ResNet, Unet, SwinIR

(31)] and 3D MedNeXt (49). We have also applied unsupervised

pix2pix and CycleGAN with identity and image prior losses (36,

62). We reconstructed FT 90-s/bed position PET from LT PET

30 and 60 s/bed position. Our PET denoising is indicated for

use in whole-body PET-CT in patients with primary staging and

for assessing the dynamics of those with adenocarcinoma [with a

proliferation index of more than 20% (ki67)] and melanomas.

1.1 Related works

The latest (as of 2024) review on the low-count PET

reconstruction are the studies (8, 19). Early studies of PET

denoising treated specific parts of the human body, such as the

brain and lungs, and used small-size data sets to produce low-

quality reconstructions. For example, Gong et al. (16) utilized

pretrained VGG19 and perception loss for supervised denoising

lungs and brains. One could find the comprehensive overview of

methods before 2020 in (50). Table 1 represents the summary of

the later studies on PET denoising. In the table, the sign * indicates

the SUV metrics where the authors did not specify what kind of

SUV—mean, peak, or max they estimated.

An obvious approach for self-supervised PET denoising is to

train the model on artificially degraded images (43). CycleGAN

is the most popular unsupervised model for PET denoising. The

article (28) was the first applied CycleGAN model for whole-body

PET denoising. The study (9) also used unsupervised learning.

CycleGAN performed better over Unet and Unet GAN in peak

signal-to-noise ratio (PSNR) for all human body parts. Sanaat et

al. (51) also utilized CycleGAN architecture and demonstrated its

performance over ResNet, both trained on 60 studies data set. The

ResNet showed, in turn, better results than Unet, which coincides

with the results of our experiments. The studies (28, 51) do not

reveal the CycleGAN backbone used in their studies; therefore,

it remains to be seen if CycleGAN in (28, 51) achieved high

performance due to the unsupervised scheme and the adversarial

losses or because of difference in the backbone. CycleGAN model

applies in different medical image denoising problems such as

optical coherence tomography images (39) and low-dose X-ray CT

(26, 60). 3D CycleGAN framework with self-attention generates

the FC PET image from LC PET with CT aid in the study (29).

The study (66) used CycleGAN with Wasserstein loss for stability.

Another type of generative models used for PET denoising is

diffusion models (17, 45, 46, 57) .

The PET denoising problem is very similar to the PET

reconstruction from CT. The study (5) demonstrated that non-

contrast CT alone could differentiate regions with different

FDG uptake and simulate PET images. To predict three clinical

outcomes, using the simulated PET, the article (5) constructed

random forest models on the radiomic features. The objective of

this experiment was to compare predictive accuracy between the

Cycle GAN-simulated and FT PET. ROC AUC for simulated PET

achieved to be comparable with ground truth PET—0.59 vs. 0.60,

0.79 vs. 0.82, and 0.62 vs. 0.63. The study (30) denoised CT images

by a GAN with the reconstruction loss.

The most popular supervised models [Table 1 in (33)] for PET

denoising are ResNet [e.g., (51)] and Unet-style networks [e.g.,

(53, 55)]. The article (52) used HighResNet, demonstrating that

due to PET acquisition’s stochastic nature, any LD versions of

the PET data would bear complementary/additional information

regarding the underlying signal in the standard PET image. This

complementary knowledge could improve a deep learning-based

denoising framework and [as (52) showed] enhance the quality

of FD prediction—PSNR increased from 41.4 to 44.9 due to

additional LD images. The study (20) used Swin transformer for

FD brain image reconstruction from LC sinograms. The article (23)

proposed spatial and channel-wise encoder–decoder transformer—

Spatch Transformer that demonstrated better denoising quality

over Swin transformer, Restormer, and Unet for 25% low-

count PET. An important metric for noise reduction quality

is tumor edge preservation. The study (41) showed that

CNNs have the same edge preserving quality as bilateral

filtering, but it does not provide any quantitative measure of

edge preservation.

SubtlePETTM (12) is a commercial product; its official site

claims that “SubtlePET is an AI-powered software solution that

denoises images conducted in 25% of the original scan duration

(e.g., 1min instead of 4)”. SubtlePET usesmulti-slice 2.5D encoder–

decoder U-Net (61) optimizing L1 norm and SSIM. The networks

were trained with paired low- and high-count PET series from a

wide range of patients and from various PET/CT and PET/MR

devices (10 General Electric, 5 Siemens, and 2 Philips models).

The training data included millions of paired image patches from

hundreds of patient scans with multi-slice PET data and data

augmentation.

The studies (25, 61, 62) investigated FT 90-s PET

reconstruction from LT 30-, 45-, and 60-s images using SubtlePET.

The work (61) conducted a study on the efficiency of SubtlePET

by comparing denoised LT 45-s PET with FT 90-s PET. The visual

analysis revealed a high similarity between FT and reconstructed

LT PET. SubtlePET detected 856 lesions for 162 (of 195) patients.

Of these, 836 lesions were visualized in both original 90-s PET and

denoised 45-s PET, resulting in a lesion concordance rate of 97.7%.

The study (3) examined the limits of the SubtlePET denoising

algorithm applied to statistically reduced PET raw data from three

different last-generation PET scanners compared to the regular

acquisition in phantom (spheres) and patient. Enhanced images

(PET 33% + SubtlePET) had slightly increased noise compared

to PET 100% and could potentially lose information regarding

lesion detectability. The PET 100% and PET 50% + SubtlePET

were qualitatively comparable regarding the patient data sets. In

this case, the SubtlePET algorithm was able to correctly recover the
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FIGURE 1

Comparison of denoising methods applied on low-time (30 s) PET reconstruction and SUVmax estimation within the region of interest. Tumor

segmentation is done automatically by nnUnet using CT and PET. (A) CT (B) Low-time PET (30 s). (C) Full-time PET (90 s). (D) Reconstructed PET (by

SwinIR 5 layers). (E) Reconstructed PET (by MedNeXt small). (F) Reconstructed PET (by Gaussian filter).

SUVmax values of the lesions and maintain a noise level equivalent

to FT images.

The main issue with the studies mentioned above is

that it is difficult to compare methods as they use different

metrics and data sets. In this study, we have compared

various methods, including approaches from other studies and

new methods.

The main contribution of the article are

• Our comparative experiments of 2D, 2.5D, and 3D models

with different backbones and losses trained and tested in

the same conditions on a specially collected data set from

clinical practice data showed better performance [Root Mean

Square Error (RSME) and Structural Similarity Index] of

3D methods.

• We have trained neural networks of the SwinIR (2D and

2.5), 3D UX-Net (3D), and MedNeXt (3D) architectures. Our

tests have shown that MedNeXt is the best at restoring an

image from 30 s to 90 s and it is approximately equal to

3D UX-Net, and they solve the problem better than all other

tested architectures.

2 Materials and methods

2.1 Whole-body PET data set

We used 212 PET scans from 212 patients obtained during

a retrospective study. The data were obtained from scanners

calibrated using the NEMA phantom according to the EARL

method in June and July 2021. The training subset contains 160

scans with 42,656 images, validation, and test data both consist of

26 scans and 7,126 images, respectively. The patient age is between

21 and 84 years old, and two-thirds of patients are between 49 and

71 years old. The median age is 61; 71% of patients are women. An

average height is 1.66 ± STD = 0.09 meters and ranges from 1.47

to 1.94 meters. The weight range is from 34 kg to 150 kg with an

average value of 79 ± STD = 18 kg. The body mass index (BMI) is

28.5± STD= 6.3.

The number of tumors in the train subset is 521. When

excluding 4 patients with more than 50 tumors, the total number

of tumors is 139. Of the 160 patients in train subset, 30 do not have

any tumors detected. The number of tumors detected in the test

set is 74 (for 26 patients, four do not have any tumors), and in the
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TABLE 1 Summarization of low-count PET denoising methods.

References Input data, number
of studies

Network
architecture

Low count, full
count

Scanner
model

Metrics

Sanaat et al. (50) Brain sinograms, 140 3D Unet –, 20 min Siemens

biograph mCT

RMSE, SSIM, PSNR, SUV* bias

STD

Sanaat et al. (51) Whole body, 100 Cycle GAN, ResNet 3 min, 27 min Siemens

biograph mCT

RMSE, SSIM, PSNR, Visual

eval, SUV* bias STD, R2

Sanaei et al. (52) Brain, head, neck, 140 Nifty Net, High ResNet 2-4% 6%, 100% Siemens

biograph 6

SSIM, PSNR, RMSE, SUVmean

bias

Weyts et al. (61) Whole body, 195 Subtle PET 2.5D Unet 45 s, 90 s VEREOS

Philips Health

care

SULmax, SULpeak, median

IQR, visual eval

Bonardel et al. (3) Whole body, 100 Subtle PET 2.5D Unet 33%, 50%, 100% GE discovery

MI 4 710, IQ4

CRS, BV, CNR SUVmax, visual

eval

Yang et al. (62) Brain,

15000 images

Cycle GAN supervised,

quasi supervised

— — RMSE, SSIM, PSNR

Jang et al. (23) Whole body, 112 Unet, Swin, Restormer 25%, 100% GE DMI SSIM, PSNR, CNR

Yu et al. (63) Whole body, 377=302+15+50 2D, 3D DDPM, 3D UNet 5%, 100% Siemens

Biograph

Vision Quadra

SSIM, PSNR

Our Whole body, 212=160+26+26 SwinIR, ResNet, Unet,

3D MedNeXt, 3D

UX-Net, Cycle GAN

image prior,

30 s, 60 s, 90 s GE Discovery

710

RMSE, SSIM, IQR, SUVmax,

SUVpeak median bias

validation set, it is 97 (for another 26, four patients also do not have

a tumor). We analyzed the PET scan as a 3D object and, therefore,

used all slices to detect the tumor.

There are two ways (5) to simulate low-dose PET—short time

frame and decimation. The most common way of decimation is the

simulation of a dose reduction by randomized subsampling of PET

list-mode data. Another decimation method is randomly sampling

the data by a specific factor in each bin of the PET sinogram (50).

Short time frames with the corrections taking a shorter amount

of time into account will produce images with an SUV uptake

similar to the original one. We use short time frame approach in

our study collecting PET data with 30, 60 and 90 s/bed positions.

All images were collected during the same acquisition session that

differs, for example, from studies (50, 51) where the LT images

obtained through a separate fast PET acquisition corresponding to

the FT scans.

In the data set we used in this study, patients were injected

intravenously with 7 MBq/kG [18F]FDG after a 6-h fasting period

and blood glucose level testing. The PET data are collected from

GE Discovery 710 and were reconstructed using the VPFXS

reconstruction method (24). PET frame resolution is 256×256. The

slice thickness is 3.27 mm, and pixel spacing is 2.73 mm.

The studies are in anonymized DICOM (*.dcm) format, from

which one can extract the patient weight, half-life, total dose values

and delay1t between the injection time, and the scan start time for

the further SUV calculation.

2.2 Methodology

2.2.1 Problem statement
The study aims to assess the quality of the PET denoising for

supervised and unsupervisedmodels and find the best model. Unet,

ResNet, CycleGAN, pix2pix GAN, SwinIR transformer, MedNeXt,

and 3D UX-Net are models to be tested in this research. More

details of the network architecture are in the next section.

In academic research, gaussian convolution has been widely

recognized as a baseline model for denoising due to its simplicity

and proven effectiveness in various denoising tasks. The filter’s

parameters are crucial for achieving optimal denoising results,

and therefore, we optimized them on a validation data set. All

models shared the same learning schedule and parameters (with

minor differences described in the next section) and, therefore

have the same level playing field and could be fairly compared.

Table 2 is a systematization of the methods and models used in

the study.

2.2.2 Denoising quality assessment
Two metric types describe the quality of denoising: a similarity

of 2D PET images and concordance of the tumor’s SUV

characteristics. The metrics for similarity are SSIM (48) and RMSE:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(FTi − ˆLTi)2 (1)

where FTi is the i-th measurement, ˆLTi is its corresponding

prediction, and n is a number of pixels. The SSIM parameters in

our study are the same as in scikit-image library. In this report, we

used ISSIM=1-SSIM instead of SSIM as ISSIM is more convenient

for similar images, and SSIM is higher than 0.9 for most original

and denoised PET. We defined relative metrics in the same way

as in (50):

relRMSE = 1−
RMSE(denoising(LT), FT)

RMSE(LT, FT)
(2)
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TABLE 2 Studied models.

Type of model GANs unsupervised Supervised GANs + supervised

Transformer – 2D&2.5D SwinIR –

Convolutional transformer-inspired – 3D MedNeXt, 3D UX-Net –

Convolutional (Unet, ResNet) 2D CycleGAN 2D&2.5D Unet, ResNet + decoder 2D pix2pix GAN, CycleGAN

superv

the Equation 2 demonstrates the improvement of the denoising

method for noised LT image by showcasing the decrease in

the discrepancy between the denoised and original image. This

equation provides a clear and quantifiable measure of the

improvement achieved through the denoising process. The relative

ISSIM is defined similarly as Equation 2. The relative metric

changes in range from−∞ to 100%. The negative value means that

the method has deteriorated the quality of the image, 0%—there are

no changes, 100%—the image has been fully denoised and coincides

with the original one.

2.2.3 SUV error estimation
The use of standard uptake value (SUV) is now commonplace

(14) in clinical FDG-PET/CT oncology imaging and has a specific

role in assessing patient response to cancer therapy. SUVmean,

SUVpeak (58), and SUVmax are the values commonly used in

PET studies. There are many ways to estimate the correlation

between pairs of SUV values for the FT original PET and denoised

PET reconstructed from LT. The most common are bias and STD

(Figure 6) in terms of Bland–Altman plots (25, 29, 61) and R2

(Figure 2).

CT is available along with the ground truth PET and

could enhance the quality of the tumor segmentation. Instead

of employing a radiologist for the malignant tumor detection,

we segmented tumors automatically in 3D with the help of

nnUnet (21). The pretrained weights are the same as in the

AutoPET competition baseline (15). The nnUnet neural network

manipulated two channels (PET & CT) input with 400 ×

400 resolution. Figure 1 demonstrates tumor segmentation and

SUVmax estimation for the region of interest. The CT and PET

images are to be resized as they have 512 × 512 and 256 × 256

resolution.

Figure 3 illustrates the SUV confidence interval estimation

scheme. After the nnUnet segmentation, cc3d library1 extracts

3D connected components and separates different tumors. We

excluded from the study tumors with a maximum length of less

than 7 mm and an average SUV of less than 0.5. Bland–Altman plot

is a standard instrument of data similarity evaluation in biomedical

research. The plot operates with the region of interest SUV for

original and denoised PET. The Bland–Altman plot’s bias and

dispersion are indicators of denoising quality and are used in the

latest step of the scheme in Figure 3 for the confidence interval

assessment. The total number of tumors in validation and test

data is 171.

1 https://github.com/seung-lab/connected-components-3d/

FIGURE 2

Correlation between 90- and 30-s PET SUVmax (regions of

interests).

2.3 Neural network implementation and
training details

2.3.1 2D convolutional networks
Unet and ResNet models, pix2pix, and CycleGAN are

based on the pytorch implementation of CycleGAN.2 The

model parameter numbers are in Table 3. The number of

channels in the bottleneck for both models is 64. The Unet

model has 54.4 million parameters, the ResNet served as

encoder has 11.4 mil. parameters itself, and the decoder

has 0.37 mil parameters—11.8 mil parameters in total. The

decoder exploits transposed convolutions and does not have

skip connections.

SwinIR (31) integrates the advantages of both CNN and

transformer. On the one hand, CNN has the advantage of

processing images of a large size due to the local attention

mechanism. On the other hand, it has the benefit of the

transformer to model long-range dependency with the

shifted window (34). SwinIR exceeded state-of-the-art

CNN performance in denoising and JPEG compression

2 https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
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FIGURE 3

SUV confidence interval estimation scheme with automatic tumor segmentation.

artifact reduction. We implemented code from the official

SwinIR repository.3

SwinIR consists of three modules, namely, shallow feature

extraction, deep feature extraction, and high-quality image

reconstruction modules. The shallow feature extraction module

uses a convolution layer to extract shallow features directly

transmitted to the reconstruction module to preserve low-

frequency information.

The deep feature extraction module mainly comprises residual

Swin Transformer blocks, each utilizing several Swin Transformer

layers for local attention and cross-window interaction. In addition,

Liang et al. (31) added a convolution layer at the end of the block for

feature enhancement and used a residual connection. In the end,

shallow and deep features are fused in the reconstruction module

for high-quality image reconstruction. The patch size of SwinIR in

our training is 32; the window size is 8.

2.3.2 GANs
Pix2Pix and CycleGAN models use PatchGAN (22) with

2.8 million parameters. ResNet, Unet, and CycleGAN models

predict the difference between noised and denoised images. The

SwinIR model has this difference built into its architecture, like in

(38). The Pix2Pix GAN discriminator also used image difference

to distinguish between noised and denoised PET. This simple

approach applied for the PET denoising improved the results

significantly but was used before only in the transformer-based

model for CT denoising.

L1 loss is used in all models (except for unsupervised

CycleGAN and SwinIR) to optimize the similarity between

3 https://github.com/JingyunLiang/SwinIR

denoised LT and FT images. SwinIR uses Charbonnier loss (6).

Pix2pix GAN also uses Euclidean adversarial loss. In the original

CycleGAN paper (67), identity mapping loss

ident =

n
∑

i=0

||denoised(FTi)− FTi||L1 + ||noised(LTi)− LTi||L1

(3)

helps preserve the color of the input painting. The loss

prevents the network from denoise the FT image and vice

versa. Park et al. (47) claims that more weights for the

cycle consistency loss and identity loss made the CycleGAN

model translate the blood-pool image close to the actual bone

image. We will investigate the influence of identity loss on

PET denoising.

CycleGAN is an unsupervised method. Therefore, its usage

is beneficial if there is a lot of unpaired data in both domains.

However, getting paired data with different PET acquisition times

is an ordinary task that could be done automatically without

any additional action on a patient. The study (62) showed that

the use of the additional supervised reconstruction loss (4) in

CycleGAN makes the training stable and considerably improves

PSNR and SSIM

rec_loss =
1

n

n
∑

i=0

||denoised(LTi)− FTi||L1. (4)

We used supervised CycleGAN as an upper boundary

for ISSIM and RMSE metrics that unsupervised CycleGAN

could achieve with the image prior loss. We also studied

its effect on SUVmax error. We trained CycleGAN with
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TABLE 3 Model parameters.

Method Parameters
m

Epoch
number

Time Max Lr
(×10-3)

Lr schedule Batch
size

GPU model

SwinIR 1 channel, 30 s 11.5 91 1.5d 0.071 Reduce on Plateau 32 NVidia Tesla A100

SwinIR 3 channels, 30 s 11.5 187 2.1d 0.009 Reduce on Plateau 32 NVidia Tesla A100

SwinIR 5 channels, 30 s 11.5 129 1.5d 0.018 Reduce on Plateau 32 NVidia Tesla A100

SwinIR 1 channel, 60 s 11.5 110 1.8d 0.069 Reduce on Plateau 32 NVidia Tesla A100

SwinIR 3 channels, 60 s 11.5 200 2.3d 0.108 Reduce on Plateau 32 NVidia Tesla A100

SwinIR 5 channels, 60 s 11.5 180 2.9d 0.062 Reduce on Plateau 32 NVidia Tesla A100

ResNet 1 channel, 30 s 11.36 89 7.9h 2.178 Reduce on Plateau 32 NVidia Tesla A100

ResNet 3 channels, 30 s 11.4 81 16.0h 1.814 Reduce on Plateau 32 NVidia Tesla V100

ResNet 5 channels, 30 s 11.4 93 19.2h 1.272 Reduce on Plateau 32 NVidia Tesla V100

ResNet 1 channel, 60 s 11.36 45 3.8h 3.314 Reduce on Plateau 32 NVidia Tesla A100

ResNet 3 channels, 60 s 11.4 53 10.9h 2.922 Reduce on Plateau 32 NVidia Tesla V100

ResNet 5 channels, 60 s 11.4 81 16.5h 0.311 Reduce on Plateau 32 NVidia Tesla V100

UNet 1 channel, 30 s 54.4 83 2.4h 1.978 Reduce on Plateau 32 NVidia Tesla A100

UNet 3 channels, 30 s 54.4 72 4.5h 0.927 Reduce on Plateau 32 NVidia Tesla V100

UNet 5 channels, 30 s 54.4 54 3.5h 0.525 Reduce on Plateau 32 NVidia Tesla V100

UNet 1 channel, 60 s 54.4 83 2.4h 2.540 Reduce on Plateau 32 NVidia Tesla A100

UNet 3 channels, 60 s 54.4 63 3.9h 10.664 Reduce on Plateau 32 NVidia Tesla V100

UNet 5 channels, 60 s 54.4 132 8.7h 0.381 Reduce on Plateau 32 NVidia Tesla V100

3D UX-Net, 30 s 53.0 1.3d 9 0.120 Reduce on Plateau 4 NVidia Tesla A100

3D UX-Net, 60 s 53.0 76 9.8d 0.001 Reduce on Plateau 4 NVidia Tesla A100

MedNeXt small, 30 s 5.6 54 6.5d 0.224 Reduce on Plateau 4 NVidia Tesla A100

MedNeXt small, 60 s 5.6 92 11.0d 0.246 Reduce on Plateau 4 NVidia Tesla A100

Pix2pix GAN ResNet 28.25 35 9h 0.2 Cos 32 NVidia Tesla V100

CycleGAN ResNet 114.3 50 46.5h 0.1 Linear 16 NVidia Tesla V100

identity. Zhu et al. (67) and image prior (60) losses in

addition to adversarial and cycle consistency losses. Image

prior loss

img_prior =

n
∑

i=0

||denoised(LTi)− LTi||L1. (5)

is based on the assumption of similarity between LT noised and

FT original PET slices. It performs a regularization over CycleGAN

generators, preventing them from generating denoised PET images

that are very different from the original one.

2.3.3 2.5D and 3D methods
The 2.5D models have a similar architecture as their 2D

counterparts. The difference is in the number of input channels

(2, 44). To predict the ith slice denoising, we used k adjacent slices—

2k+1 slices in total. These slices were fed into our models as 2k+1

channel images. The increase in input channel number slightly

raised GPU memory and time consumption. We trained the 2.5D

model in the same manner as we trained the 2D model. The only

difference is that we used only the central channel of SwinIR output

as the result.

We employed novel 3D ConvNeXt-like architectures, namely,

MedNeXt (49) small (5.6 million parameters), and 3DUX-Net (27).

These models draw inspiration from the transformer architecture,

but it is a pure convolutional model. The authors of MedNeXt

adopted the general design of ConvNeXt block for 3D-UNet-

like architecture. The MedNext architercture utilizes depthwise

convolution, GroupNorm, and Expansion and Compression layers.

The novelty of the model is the usage of residiual inverted

bottlenecks in place of regular up and downsampling blocks as well

as the technique of iteratively increasing kernel size. We fed a 32

PET slices chunk into the input of the network.

2.3.4 Training details
The training parameters are in Table 3. The hyperparameter

tuning is done on the validation data set by maximizing SSIM with

optuna library. SSIM is preferrable over L1 and RMSE as it, more

than other metrics, coincides with human perception and makes

denoised PET look similar to the original (48).
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FIGURE 4

Comparison of denoising methods applied on low-time (30 s) PET reconstruction. (A) Low-time PET (30 s). (B) Full-time PET (90 s).

(C) Reconstructed PET (by SwinIR 5 channels). (D) Reconstructed PET (by MedNeXt small). (E) Reconstructed PET (by Gaussian filter).

We considered identity and image prior loss coefficients

between 0 and 30 and weight decay for Unet in the 0.001–0.2.

The ISSIM dependence of image prior loss coefficient looks the

same as in (60). The quality of denoising is stable to the identity

loss coefficient but could deteriorate up to 20% of its value when

choosing a coefficient higher than 18.

The augmentations used in training are horizontal and vertical

flips. The augmentations did not significantly improve metrics for

ResNet, but theymade the training process more stable. In contrast,

CycleGAN with ResNet backbone metrics slightly dropped when

trained with augmented images. The Unet performance improved

significantly after applying augmentations but still lagged behind

ResNet; this could be partly due to overfitting as Unet has more

parameters than ResNet.

Adam is an optimizer for the training process. Unet was trained

with weight decay = 0.002 to prevent overfitting improving relative

ISSIM from 27.8% to 29.0%. The usage of dropout has a similar

effect. The learning rate was chosen individually to achieve the

best performance for each model. We trained supervised methods

and pix2pix GANs with ResNet backbones using a cos learning

rate schedule, max lr = 0.0002 for 35 epochs. CycleGAN training

includes 30 epochs with a constant learning rate of 0.0001, which

is linearly reduced to zero for the following 15 epochs. The Optuna

library helped to fit the optimal learning rate schedule for SwinIR.

We trained models with batch size 32 except CycleGAN.The

original CycleGAN (67) used batch size 1. Unlike the original work

in the recent study (37), the batch size that generates the best

PSNR value is 64, using the initial learning rate. The experiments

demonstrated that the batch size does not have to be 1 or 4, but

it depends on the data set size and the problem type. Therefore,

CycleGAN was trained with batch size 16.

3 Results

For 7 MBq/kg injected activity and 90-s FT, the 3D

methods have shown exceptional results in enhancing

SSIM and MSE metrics, surpassing 2D methods. The 2.5D

approach showed superiority over 2D counterparts for SwinIR

only. For 60-s PET, SwinIR 2.5D has slightly surpassed 3D

methods. When evaluating the SUV error, 3D methods

demonstrated comparable results to the 2D methods. Unlike

in the study (65), adding CT information as a second

channel, along with PET, did not improve the quality of

denoising process. The examples of denoised images are in

Figures 4, 5.

The ISSIM and RMSE metrics for 30 sec and 60 sec PET are in

Tables 4, 5, respectively. If the value in a Table has ±, it means that

the network we trained independently five times to estimate the

confidence intervals (95% confidence level). Tables 6, 7 represent

discrepancy [Median bias and Interquartile Range (IQR) values

for the Bland–Altman plot, Figure 6] in SUVpeak and SUVmax

estimation. We preferred median and IQR over mean and STD like

(61) did as these metrics are more robust to the outliers.
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FIGURE 5

Comparison of denoising methods applied on low-time (60 s) PET reconstruction. (A) Low-time PET (60 s). (B) Full-time PET (90 s). (C)

Reconstructed PET (by SwinIR 5 channels). (D) Reconstructed PET (by MedNeXt small). (E) Reconstructed PET (by Gaussian filter).

The prediction of the difference between noised and denoised

images rather than the prediction of the denoised image itself

significantly (twice as much for ISSIMmetric) improved the quality

of denoising as it is easy for the network to produce noise rather

than images (7).

3.1 Comparison of 2D and 2.5D methods

ResNet has the best image similarity metrics among 2D

methods for both weakly noised (60 s) and strongly noised

(30 s) PET. SwinIR and Unet follow it. The quality of SwinIR

PET restoration is better than that of Unet. At the same

time, Jang et al. (23) demonstrates better Swin performance

over Unet on 25% low-count data. This fact indicates that

convolutional layers of SwinIR for shallow feature extraction

improve reconstruction quality compared to the pure Swin

transformer architecture.

The 2.5D approach did not improve the denoising quality for

ResNet but significantly improved it for SwinIR with five layers

(±2 slices around the slice of interest). This could have happened

due to differences in Transformer and convolution architectures.

Transformers are better at mixing information between channels.

SwinIR with five layers have a similar performance as 3D MedNext

for 60-s PET in SSIM and MSE but lagged significantly behind in

SUVmax estimation.

3.2 Comparison of GAN performance

ResNet backbone with convolutional decoder without skip

connection outperformed Unet and SwinIR in all cases, that

is why in Table 4 and the following tables, we presented the

results for CycleGAN and Pix2pix GAN for the ResNet backbone

only. Pix2Pix GAN (ResNet + PatchGAN discriminator) without

distance loss produces realistic denoised images with low metrics.

The SSIM steadily improves while the distance loss coefficient

increases and reaches its plateau when the GAN degrades to a

simple supervised model, as distance loss outweighs adversarial

losses. Our Pix2Pix GAN did not show a higher quality over other

methods as 3D CVT-GAN in (64), or BiC-GAN (13) for the brain’s

PET synthesis.

As the original Pix2Pix paper (22) mentioned, the random

input z does not change the GAN results, and the model is

indeed deterministic. We concluded that the Pix2Pix GAN model

is inappropriate for the denoising problem as adversarial loss

improves image appearance instead of SSIM. So, it produces

realistic images that are far from the original images. For that

reason, we have not included pix2pix GAN metrics in Tables 4–7.

We trained PixPix GAN with the coefficient by distance loss of 10.0

as it does not outweigh the adversarial loss.

Unsupervised CycleGAN provides weaker image similarity

metrics than supervised. The optimal coefficient for the identity

loss is 2.2, and the image prior loss is 9.2. For the distance loss in
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TABLE 4 Similarity of 2D PET images—original 90 s and reconstructed

from 30 s.

Model Absolute
values

Relative values

(1 - SSIM)
(×10-2)

RMSE 1 - SSIM

30 vs. 90 8.58 0% 0%

Gauss conv 7.17 12.6% 15.3%

SwinIR 1 channel 6.06±0.04 22.9±0.28% 29.7±0.50%

ResNet 1 channel 5.77±0.06 24.4±0.59% 32.9±0.82%

UNet 1 channel 6.09±0.04 22.0±0.46% 29.1±0.32%

Cycle GAN sup 6.14±0.12 20.1±1.0% 28.1±1.0%

CycleGAN 6.29±0.12 19.2±1.2% 26.6±1.3%

CycleGAN identity 6.22±0.17 20.4±1.5% 27.3±2.2%

CycleGAN image prior 6.24±0.07 19.1±0.6% 27.1±0.78%

SwinIR 3 channels 6.07 23.99% 29.4%

SwinIR 5 channels 5.56 27.1% 35.9%

ResNet 3 channels 5.92 23.5% 31.3%

ResNet 5 channels 5.84 24.03% 32.3%

UNet 3 channel 5.96 22.7% 30.4%

UNet 5 channel 5.94 22.6% 30.7%

MedNeXt small 5.36 28.07% 38.2%

3D UX-Net 5.37 28.15% 38.0%

Bold values are the best values.

supervised CycleGAN, we used the same coefficient as for image

prior loss was 9.2. For the reduced 30% data set, the impact of the

image prior loss is the same as in (60). However for the full-size

data set, the image prior loss effect is less pronounced. The reason

is that for the small-size data set, the image prior loss works as

regularization and prevents overfitting. For example, the size of the

data set in (60) is only 906 CT images with 512× 512 resolution.

The image prior loss improves the quality and stability of

the reconstruction. The identity loss has a more profound effect

on the SSIM and RMSE metrics than the image prior loss for

the weakly noised PET (Table 5). We used the same coefficient

for image prior loss as for the distance loss in supervised

CycleGAN - 9.2. Supervised CycleGAN image similarity metrics

lie between supervised and unsupervised methods but have the

advantage of CycleGAN estimating SUVmax with lower bias

and dispersion. Our results contradict (28) where CycleGAN

outperformed supervised Unet and Unet GAN. That could stem

from the small size of the data set used in (28), or the reason is the

usage in CycleGAN backbone other than Unet.

4 Discussion

The results of experiments showed 3D MedNext is the best

model for PET denoising, though 2.5D SwinIR slightly outperforms

it in MSE for 60-s PET. The supervised methods produce

reconstructed PET with positive SUVmax bias (Figure 6) because

TABLE 5 Similarity of 2D PET images—original 90 s and reconstructed

from 60 s.

Model Absolute
values

Relative values

(1 - SSIM)
(×10-2)

RMSE 1-SSIM

60 vs. 90 2.61 0% 0%

Gauss conv 2.44 3.21% 5.3%

SwinIR 1 channel 2.27±0.011 9.0±0.27% 12.7±0.5%

ResNet 1 channel 2.24±0.016 9.3±0.42% 13.8±0.65%

UNet 1 channel 2.29±0.015 8.4±0.28% 12.4±0.53%

SwinIR 3 channels 2.20 11.2% 16.2%

SwinIR 5 channels 2.172 11.7% 17.1%

ResNet 3 channels 2.28 8.6% 12.6%

ResNet 5 channels 2.27 9.1% 13.2%

UNet 3 channels 2.29 8.47% 11.96%

UNet 5 channels 2.27 8.74% 12.9%

CycleGAN 2.33±0.011 6.6±0.27% 10.3±0.23%

Cycle GAN sup 2.32±0.018 6.8±0.44% 10.8±0.84 %

CycleGAN identity 2.32±0.011 7.1±0.54% 11.0±0.27%

CycleGAN image prior 2.33±0.013 6.8±0.51% 10.7±0.49%

MedNeXt small 2.174 11.4% 16.9%

3D UX-Net 2.22 10.2% 14.6%

ResNet backbone. Bold values are the best values.

they flatten the signals too much. On the other hand, CycleGAN

family methods have predominantly negative or around zero bias

such as SubtlePET algorithm (61), which is an advantage of

unsupervised methods.

The SSIM metric was an optimization goal for the network,

so the model having the lowest ISSIM and RMSE results does not

necessarily produce the best SUV reconstruction for tumors. In

(52), the SUVmean bias was not improved by HighResNet (LD

contains only 6% of the FD) even though the PSNR and SSIM of

the reconstructed image were better than the LD. There is also a

high variation in SUVs for the same model trained several times.

Due to biological or technological factors, SUV may

significantly differ from one measurement to another (1, 11, 32).

For example, technological factors include inter-scanner variability,

image reconstruction, processing parameter changes, and

calibration error between a scanner and a dose calibrator. An

example of biological factors are respiratory motion (18) like

cardiac motion, and body motion. The LT denoising is acceptable

if its error on SUV values is smaller than SUV variations from

different FT measurements.

We did use SUVmax and SUVpeak measurements as these

are metrics commonly used by clinicians for follow-up FDG-

PET/CT scans and therapy response evaluation (40). The studies

(4, 35, 56) reported high1SUVmax between two FDG acquisitions.

One should consider the details of these experiments to compare

them with the results of our study. The uncertainty estimation
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TABLE 6 SUVpeak and SUVmax characteristics original.

Model SUVpeak SUVmax

Method (1 - R2)

(×10-3)

Median bias
(×10-2)

IQR (×10-2) (1 - R2)

(×10-2)

Median bias
(×10-2)

IQR (×10-1)

30 vs. 90 8.48 1.52 12.62 3.061 -21.78 5.031

Gauss convol 9.53 0.85 11.12 8.282 9.71 4.667

SwinIR 1 channel 7.8 2.6 9.07 1.8 16.2 3.5

ResNet 1 channel 8.8±1.9 1.7±1.1 10.7±0.6 2.1±0.5 11.0±12.0 3.5±0.9

Unet 1 channel 9.0±1.6 2.0±2.4 10.3±0.9 19.6±4.4 13.1±1.9 3.8±0.7

SwinIR 5 channels 10.93 2.65 10.37 2.933 19.92 3.845

Cycle GAN sup 8.0±0.5 1.8±0.5 10.6±0.3 2.1±0.21 6.2±4.0 3.4±0.28

CycleGAN 7.6±0.25 1.3±1.2 10.9±0.6 2.1±0.37 2.4±1.6 3.8±0.5

CycleGAN identity 7.5±0.23 0.9±0.8 10.7±0.9 1.96±0.12 5.4±4.9 3.6±0.4

CycleGAN

image prior

8.0±0.25 2.1±0.7 11.3±0.3 2.12±0.27 1.4±2.9 3.9±0.6

MedNeXt small 9.51 2.55 9.83 2.22 19.97 3.5

PET reconstructed from 30 s with respect to the original 90-s PET. Bold values are the best values.

TABLE 7 SUVpeak and SUVmax characteristics original.

Model SUVpeak SUVmax

Method (1 - R2)

(×10-3)

Median bias
(×10-3)

IQR (×10-2) (1 - R 2)

(×10-3)

Median bias
(×10-2)

IQR (×10-1)

60 vs. 90 2.19 -0.2 5.92 5.93 -5.95 2.489

Gauss convol 2.2 1.3 6.46 16.4 3.01 2.545

SwinIR 1 channel 2.4±0.11 6.6±2.5 5.6±0.27 3.8±0.47 6.6±1.3 2.47±0.48

UNet 1 channel 2.0±0.15 3.0±9.0 5.4±0.7 5.4±0.4 2.9±1.5 2.41±0.32

ResNet 1 channel 2.1±0.021 5.36±4.9 5.6±0.6 5.3±0.25 2.9±2.7 2.16±0.29

SwinIR 5 channels 2.28 10.1 5.65 4.36 8.62 2.317

Cycle GAN sup 2.1±0.05 −0.06±3.4 5.6±0.4 5.5±0.3 -1.3±0.9 2.41±0.08

CycleGAN 2.07±0.04 0.3±2.3 5.4±0.4 5.7±0.4 -1.0±1.2 2.49±0.21

CycleGAN identity 2.07±0.018 -2.8±2.1 5.46±0.18 5.6±0.4 −0.3±1.0 2.45±0.09

CycleGAN

image prior

2.09±0.018 -1.2±3.3 5.81±0.24 5.3±0.13 -0.7±1.1 2.42±0.17

MedNeXt small 2.5 4.9 5.7 4.5 8.29 2.5

PET reconstructed from 60 s with respect to the original 90 s PET. ResNet backbone. Median values. Bold values are the best values.

of the PET reconstruction (10) is also an important topic for the

future research.

The recent work (11) conducted the following experiment. The

six phantom spheres of 10–37 mm diameters were filled with the

concentration 20.04 MBq/ml. The FT 150-s mode was divided into

subsets of shorter frames varying from 4 to 30 s. The SUVmax

monotonically increases with sphere’s diameter. The ratio of the

standard SUVmax deviation to its average value for 30-s PET is

approximately 15% for a 10 mm sphere and the confidence interval

length achieves up to 0.5 kBq/ml. The experiment (11) does not

take into account biological and most of technical factors (1), so the

final SUVmax discrepancy between two PET could achieve higher

values. The aforementioned estimation of SUVmax discrepancy for

the same tumor between two PET acquisitions shows that SUVmax

denoising error for the 30- and 60-s PET achieved in our study lies

in the acceptable range.

It is a matter of discussion on which metric—SUVmax error

or visual similarity should be given priority. Image similarity

metrics provide visual information that can help doctors determine

whether a tumor is malignant or benign. Image comparison

also helps clinicians assess treatment efficacy by comparing pre-

treatment images with post-treatment ones to measure any changes

due to therapy intervention. On the other hand, SUVmax error

provides quantitative data regarding how much a tumor has

reduced in size after treatment interventions have been applied;

this allows physicians an objective way of evaluating treatments’
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FIGURE 6

Bland–Altman plot for 30 s PET before and after denoising.

effectiveness without relying solely on subjective visual assessments

from image comparisons alone.

5 Conclusion

PET denoising may allow for reducing an injected dose or

increasing the scanner’s throughput. We reconstructed PET with

a reduced acquisition time of 30 and 60 s and compared it with

the original full-time 90-s PET for 7MBq/kg injected activity. The

AI models reduced PET denoising for 38% (100%–restoration to

original image) in the SSIMmetric for 30-s PET and for 17% for 60-

s PET. The SUVmax discrepancy for the 30- and 60-s PET achieved

in our study lies in the acceptable range.

We trained and tested MedNeXt, 3D UX-Net, SwinIR, Unet,

ResNet, and CycleGAN with ResNet backbone and different

auxiliary losses. The 3D MedNeXt approach has shown the best

results in enhancing SSIM and MSE metrics. The supervised

denoising methods have significantly better RMSE and ISSIM

than unsupervised ones. This result differs from previous studies

claiming that CycleGAN surpasses Unet and ResNet. The ResNet

reconstructs PET images with the lowest RMSE and ISSIM,

outperforming 2D SwinIR and Unet, but lags significantly behind

2.5 SwinIR with five channels. Supervised CycleGAN achieved the

lowest SUVmax error after PET denoising. The SUVmax error of

the reconstructed PET is comparable with the reproducibility error

due to biological or technological factors. Adding CT information

to PET does not improve denoising quality.
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