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Objective: This research aims to develop and assess the performance

of interpretable machine learning models for diagnosing three histological

subtypes of non-small cell lung cancer (NSCLC) utilizing CT imaging

data.

Methods: A retrospective cohort of 317 patients diagnosed with NSCLC

was included in the study. These individuals were randomly segregated

into two groups: a training set comprising 222 patients and a validation

set with 95 patients, adhering to a 7:3 ratio. A comprehensive extraction

yielded 1,834 radiomic features. For feature selection, statistical methodologies

such as the Mann–Whitney U test, Spearman’s rank correlation, and one-

way logistic regression were employed. To address data imbalance, the

Synthetic Minority Over-sampling Technique (SMOTE) was utilized. The study

designed three distinct models to predict adenocarcinoma (ADC), squamous

cell carcinoma (SCC), and large cell carcinoma (LCC). Six different classifiers,

namely Logistic Regression, Support Vector Machine, Decision Tree, Random

Forest, eXtreme Gradient Boosting (XGB), and LightGBM, were deployed for

model training. Model performance was gauged through accuracy metrics

and the area under the receiver operating characteristic (ROC) curves (AUC).

To interpret the diagnostic process, the Shapley Additive Explanations (SHAP)

approach was applied.

Results: For the ADC, SCC, and LCC groups, 9, 12, and 8 key radiomic features

were selected, respectively. In terms of model performance, the XGB model

demonstrated superior performance in predicting SCC and LCC, with AUC

values of 0.789 and 0.848, respectively. For ADC prediction, the Random Forest

model excelled, showcasing an AUC of 0.748.
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Conclusion: The constructed machine learning models, leveraging CT imaging,

exhibited robust predictive capabilities for SCC, LCC, and ADC subtypes of

NSCLC. These interpretable models serve as substantial support for clinical

decision-making processes.

KEYWORDS

histological subtype, non-small cell lung cancer, interpretable machine learning, CT,
radiomics

1 Introduction

Lung cancer ranks among the top causes of cancer-related
deaths globally (1). The two major types of lung cancer are small
cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC).
The WHO divides NSCLC, which affects 85% of patients, into
three primary categories: adenocarcinoma (40%), squamous cell
carcinoma (25–30%), and large cell carcinoma (5–10%) (2, 3).
Treatments and prognoses vary for NSCLC depending on the
histological subtypes (4). For example, Li et al. (5) found that in
comparison to non-SQ-NSCLC, ICI monotherapy for SQ-NSCLC
led to a noticeably greater survival rate. In addition, Baine et al. (6)
showed that SCC is independently linked to an increased risk of
death, and patients with SCC who have received SBRT treatment
are at an elevated risk of both local and distant failure. In summary,
early and accurate diagnosis of NSCLC histological subtypes is
essential for the subsequent specific clinical treatment plans.

Until now, the gold standard to diagnose pathological NSCLC
subtypes are still CT-guided biopsy and postoperative pathological
tissue sections. These methods do have certain drawbacks,
though. First of all, these are intrusive tests that have a risk
of several complications, including bleeding, air embolism, and
pneumothorax (7). In a population-level retrospective study, the
percentage of patients who developed comorbidities within 3 days
after transthoracic needle biopsy (TTNB) reached 25.8%, with
the top three being pneumothorax at 23.3%, hemorrhage, and air
embolism (8). Additionally, patients experiencing complications
from TTNB demonstrate a heightened likelihood of developing
respiratory failure compared to those without complications.
Consistent with prior research findings, individuals encountering
complications tend to have prolonged hospital stays on average.
Simultaneously, smokers, patients of older age, are more prone to
postoperative complications (9). Besides, they can end up costing
the patients more money and time (10).

Compared to invasive and complex biopsies, a more convenient
test is needed to help clinicians make the initial determination
of pathological subtypes in patients with NSCLC. The term
“radiomics” refers to the automated or semi-automatic post-
processing techniques used to analyze various features extracted
from imaging exams, and reveals the correlation between these
quantitative features and clinical histology or biomarkers (11).
In recent years, numerous research have validated the great
potential of machine learning combined with radiomics for
accurate recognition of histological subtypes, molecular subtypes,
and clinical outcome prediction (12–14). Similarly, radiomics
has demonstrated comparable success in identifying lung cancer
pathological subtypes in previous studies (15, 16). The great
majority of previous studies, however, that predict the pathological

subtypes of NSCLC have concentrated on differentiating between
the two pathological subtypes of ADC and SCC or the three
subtypes of ADC, SCC, and SCLC. Few research have been
conducted in the recognition of ADC, SCC, and LCC, and existing
studies are still deficient in predicting more precise NSCLC
pathological subtypes. As medical imaging technology advances, it
is now possible to do radiomics analysis on CT, MRI, and PET data.
The radiomics workflow remains mostly consistent across these
imaging modalities (17). Yet, for the respiratory system, especially
in the field of lung cancer, CT is the most common imaging
modality. With less radiation exposure than PET/CT and less time
and money spent on CT than MRI, CT still has an irreplaceable
place in imaging.

Machine learning (ML) has the potential to greatly enhance
the accuracy and efficiency of diagnosis across a broad spectrum
of diseases, owing to its capacity for processing extensive
datasets. ML algorithms are instrumental in refining radiology
diagnostic procedures. Through the analysis of medical imagery
and supplementary data, models that are adept at identifying
disease markers and patterns empower clinical doctors to achieve
greater diagnostic accuracy (18). Even so, several prior studies
that employed machine learning for the differentiation of NSCLC
histological subtypes failed to tackle the challenge of data
imbalance. This oversight potentially skewed the outcomes of the
final models in favor of categories represented by a larger volume of
data, which might affect the accuracy (19, 20). In addition, previous
studies have not focused on the interpretability of radiomics, which
is not conducive to opening the “black box” of machine learning.

This study aims to build machine learning models based on CT
images to noninvasively and accurately predict NSCLC histological
subtypes (ADC, SCC, and LCC). In doing so, we addressed the
data imbalance issue, which is a common challenge in medical
imaging analysis, ensuring a more reliable and robust model
performance. Furthermore, we enhanced the transparency and
understandability of our models by employing the SHAP (Shapley
Additive Explanations) method. This approach not only provided
a detailed interpretation of the model’s predictive behavior but also
illuminated the significance of individual features in the decision-
making process, thereby contributing to a more informed and
trustworthy clinical decision-making framework.

2 Materials and methods

2.1 Patients

Conducted retrospectively, this study utilized The Cancer
Imaging Archive (TCIA) database, supported by funding from
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the Cancer Imaging Program (CIP). The TCIA houses an
extensive collection of medical images depicting cancer, which
we obtained from the LUNG1 (21) in NSCLC-Radiomics
[NSCLC-RADIOMICS–The Cancer Imaging Archive (TCIA)].
Leveraging the publicly accessible resources of The Cancer
Imaging Archive (TCIA), this study did not necessitate ethical
approval. From the MAASTRO Clinic in the Netherlands, a
cohort of 422 patients diagnosed with NSCLC was selected.
Comprehensive data, including clinical outcomes, survival
statistics, CT imaging, and histological subtypes, were accessible
for these patients. Histological classifications were determined
using surgical specimens. Exclusions were made for 42 patients
lacking pathological confirmation and 63 patients classified as “not
otherwise specified” (NOS), resulting in 317 patients being eligible
for inclusion in the model-building process. Of these, 51 were
diagnosed with ADC, 152 with SCC, and 114 with LCC.

2.2 Region of interest interception

In our study, the DICOM Radiation Therapy Structure Set
(RTSTRUCT) and DICOM Segmentation (SEG) files were integral
for delineating the regions of interest (ROI) within the CT images.
These files encapsulate the manual segmentation efforts conducted
by experienced radiation oncologists, who meticulously outlined
the ROIs pertinent to the NSCLC histological subtypes.

To ensure the utmost accuracy and reliability of the
segmentation, we undertook a comprehensive verification process
for each annotated ROI. This involved a rigorous review by 2
physicians with more than 3 years of experience in radiology
(B. Kuang and M. Zhang), who cross-examined the segmented
areas against the corresponding histological findings. The process
was iterative, with each ROI being scrutinized for precision in
demarcating the tumor boundaries and its conformity to the
recognized pathological characteristics of the NSCLC subtypes.

2.3 Radiomic features

2.3.1 Radiomic features extraction
Features extraction was based on Python 3.7 and implemented

using the PyRadiomics software.1 Radiomic features extracted
from CT images are categorized into geometric, intensity, and
texture features, each capturing different aspects of the tumor’s
characteristics within the ROI. Geometric features delineate the 3D
shape of the ROI, detailing aspects like the volume, surface area,
and the overall spatial configuration of the tumor. They help in
understanding the physical dimensions and shape irregularities of
the tumor mass. Intensity features, on the other hand, deal with the
first-order statistical distribution of voxel intensities inside the ROI,
providing insights into the density and uniformity of the tumor
tissue through metrics such as mean intensity, standard deviation,
skewness, and kurtosis.

Texture features go a step further by describing the second-
order and higher-order spatial distribution of voxel intensities,

1 http://pyradiomics.readthedocs.io/en/latest

reflecting the heterogeneity within the tumor. These features
are extracted using methods like the gray level co-occurrence
matrix (GLCM), which evaluates how often pairs of pixel with
specific values and in a specified spatial relationship occur
in an image, or the gray level run length matrix (GLRLM),
which considers the length of contiguous runs of pixels having
the same gray level value. Other methods include the gray
level size zone matrix (GLSZM), which assesses the distribution
of different-sized zones of similar gray level values, and the
neighborhood gray-tone difference matrix (NGTDM), which
quantifies the difference in gray-level values between a pixel and
its surrounding neighbors. Together, these texture features provide
a comprehensive view of the textural patterns and complexity
of the tumor, offering crucial insights into its pathological and
physiological state.

2.3.2 Radiomic features selection
In the process of radiomic features selection, we first subjected

all imaging features to the Mann–Whitney U statistical test to
identify significant differences between groups. Only features that
demonstrated a statistically significant difference, with a p-value
less than 0.05, were retained for further analysis. Following
this initial filtration, we applied the Spearman rank correlation
coefficient to evaluate the interrelationships among the features.
This step was crucial to identify and eliminate highly correlated
features, with a threshold set at a coefficient value above
0.9, to reduce redundancy and potential collinearity in the
dataset. To refine the feature set further, we conducted one-
way logistic regression on the remaining features, again selecting
only those with a p-value less than 0.05. This method ensured
that the final set of features had both statistical significance and
predictive relevance.

2.4 Machine learning models

In this study, we developed three distinct machine learning
models tailored to the pathological subtypes of NSCLC: ADC, SCC,
and LCC. Each model was specifically constructed to predict the
likelihood of one of these subtypes based on the radiomic features
extracted from the CT images.

To ensure the robustness and accuracy of our predictions,
we employed six different classifiers for training each model.
These classifiers included Logistic Regression (LR), Support Vector
Machine (SVM), Decision Tree (DT), Random Forest (RF),
eXtreme Gradient Boosting (XGB), and LightGBM (LGBM). Each
of these classifiers brings unique strengths and approaches to
the modeling process, such as LR’s ability to provide linear
decision boundaries, SVM’s effectiveness in high-dimensional
spaces, DT’s clear decision rules, RF’s ensemble learning for
reducing overfitting, XGB’s optimization in gradient boosting,
and LGBM’s efficiency in handling large data sets. The training
process included a 5-fold cross-validation on the training
set to optimize the model parameters. Following this, an
independent test on the validation set was conducted to
evaluate the models’ performance, ensuring that our predictive
models were both robust and generalizable. The average area
under the curve (AUC) was utilized to assess the accuracy of
predictive models.
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2.5 Stata analysis

For statistical analysis in our experiment, we employed the
R software version 4.2.3. The Shapiro-Wilk test was utilized to
evaluate the normality of the measurement data, which were
expressed as mean ± standard deviation (SD) for normally
distributed data. Non-normally distributed data were presented as
medians with first and third quartiles (Q1, Q3), and categorical data
were expressed as counts and percentages (n, %). For comparing
measured data, we used the independent samples t-test for
normally distributed data and the Mann–Whitney U-test for non-
normally distributed data. The chi-squared (χ2) test was applied
for comparing count data. Statistical significance was established at
a p-value of less than 0.05. The predictive efficacy of the models was
assessed using receiver operating characteristic (ROC) curves and
accuracy measurements.

The entire dataset of 317 samples was randomly divided into
training and validation sets in a 7:3 ratio. To mitigate the challenge
of unbalanced data, we implemented the Synthetic Minority
Over-sampling Technique (SMOTE). This method is crucial for
augmenting the minority class in the dataset by synthesizing new
samples, thereby achieving a balance in the class distribution.
This balanced dataset was then used to enhance the performance
of our classification models (22). The prediction model with the
highest AUC was selected as the optimal choice. ROC curves were
utilized to evaluate the predictive performance of various models
in forecasting NSCLC pathological subtypes. In addition, we also
visualized the results of the model through SHAP analysis. The
importance of each radiomic feature is ranked.

3 Results

3.1 Patient baseline characteristics

In our study, we included 317 patients diagnosed with non-
small cell lung cancer (NSCLC), featuring a mean age of 68.5 years.
The distribution of histological subtypes among these patients
was as follows: 51 were diagnosed with ADC, 152 with SCC,
and 114 with LCC. The baseline characteristics of these patients,
including demographic details, clinical stage, and other relevant
clinical parameters, are meticulously cataloged in Table 1. This
comprehensive data set provides a foundational understanding of
the patient demographics and disease specifics, serving as a critical
reference point for the predictive efficacy of the developed machine
learning models.

3.2 Radiomic feature extraction and
selection results

The radiomic analysis of the CT images from the 317 NSCLC
patients resulted in the extraction of 1,834 distinct features. These
features encompassed a broad spectrum of geometric, intensity,
and texture characteristics, providing a comprehensive dataset for
subsequent analysis.

To refine this extensive set of features and identify the most
predictive ones for each NSCLC subtype, we applied a series of

TABLE 1 The patient’s clinical baseline data and statistical results.

Test Train P-value

N = 96 N = 221

Age 67.0 [62.0;78.0] 70.0 [62.0;76.0] 0.919

T_stage: 0.702

1 18 (18.8%) 37 (16.7%)

2 36 (37.5%) 88 (39.8%)

3 13 (13.5%) 30 (13.6%)

4 28 (29.2%) 66 (29.9%)

5 1 (1.04%) 0 (0.00%)

N_stage: 0.343

0 35 (36.5%) 78 (35.3%)

1 3 (3.12%) 18 (8.14%)

2 34 (35.4%) 79 (35.7%)

3 24 (25.0%) 43 (19.5%)

4 0 (0.00%) 3 (1.36%)

M_stage: 0.027

0 93 (96.9%) 221 (100%)

3 3 (3.12%) 0 (0.00%)

Stage: 0.411

I 19 (20.0%) 30 (13.6%)

II 8 (8.42%) 28 (12.7%)

IIIa 28 (29.5%) 66 (29.9%)

IIIb 40 (42.1%) 97 (43.9%)

Histology: 0.757

Adenocarcinoma 15 (15.6%) 36 (16.3%)

Large cell 32 (33.3%) 82 (37.1%)

Squamous cell
carcinoma

49 (51.0%) 103 (46.6%)

Gender: 0.532

Female 28 (29.2%) 74 (33.5%)

Male 68 (70.8%) 147 (66.5%)

statistical methods. Initially, the Mann–Whitney U test was used
to filter out features that showed significant differences between
the subtypes, ensuring that the retained features had potential
diagnostic value. This was followed by the Spearman’s rank
correlation analysis, which helped in identifying and eliminating
features that were highly correlated with others, thereby reducing
redundancy and focusing on those features that offered unique
information. For the final stage of feature selection, one-way logistic
regression was performed, further narrowing down the feature
set to those with significant predictive power, as indicated by
p-values less than 0.05. As a result, the feature selection process
culminated in the identification of 9 key radiomic features for the
ADC group, 12 for the SCC group, and 8 for the LCC group,
which was shown in Table 2. These selected features represent
the most relevant and informative characteristics for predicting
the histological subtypes of NSCLC. To visually represent the
inter-relationships and correlations among the selected features,
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TABLE 2 The key radiomic features for the SCC, ADC and LCC group.

SCC ADC LCC

Key features lbp_3D_m1_glcm_Idmn lbp_3D_k_glszm_GrayLevelVariance log_sigma_1_0_mm_3D_ngtdm_Complexity

lbp_3D_m1_glszm_GrayLevelVariance lbp_3D_m1_glszm_SmallAreaLow
GrayLevelEmphasis

log_sigma_2_0_mm_3D_firstorder_90Percentile

lbp_3D_m1_glszm_LowGrayLevel
ZoneEmphasis

log_sigma_2_0_mm_3D_ngtdm_Busyness log_sigma_3_0_mm_3D_firstorder_Skewness

lbp_3D_m2_glszm_HighGrayLevel
ZoneEmphasis

wavelet_HHH_ngtdm_Busyness original_glcm_ClusterShade

lbp_3D_m2_glszm_LowGrayLevel
ZoneEmphasis

wavelet_HHL_firstorder_RootMeanSquared original_gldm_SmallDependenceHighGray
LevelEmphasis

lbp_3D_m2_glszm_SizeZoneNonUniformity
Normalized

wavelet_LHL_firstorder_Maximum square_firstorder_Entropy

lbp_3D_m2_glszm_SmallAreaHighGray
LevelEmphasis

wavelet_LHL_firstorder_Minimum square_glcm_Correlation

log_sigma_1_0_mm_3D_firstorder
_90Percentile

wavelet_LHL_firstorder_RootMeanSquared square_glcm_Idm

log_sigma_1_0_mm_3D_glcm
_Correlation

wavelet_LHL_ngtdm_Busyness

log_sigma_3_0_mm_3D_firstorder
_Skewness

wavelet_HHH_ngtdm_Busyness

wavelet_HLH_ngtdm_Busyness

Spearman correlation heatmaps were created for each group. These
heatmaps (Figures 1A–C) provide a graphical illustration of the
feature correlations, with varying intensities of color indicating the
strength and direction of the correlations.

3.3 Prediction model results

3.3.1 Distinguish the SCC subtype from all other
subtypes

Predictive modeling for SCC was conducted using six different
algorithms, yielding the following AUC values in the cross-
validation set: LR exhibited an AUC of 0.749 (95% CI, 0.717–
0.782), SVM showed 0.751 (95% CI, 0.718–0.784), RF achieved
0.926 (95% CI, 0.909–0.943), DT had 0.874 (95% CI, 0.849–0.898),
XGB reached 0.916 (95% CI, 0.897–0.935), and LGBM recorded
0.896 (95% CI, 0.875–0.917). In the testing set, the AUC values
were consistent with those in the training set for LR, SVM, RF,
DT, XGB, and LGBM, demonstrating the models’ stability and
generalizability. Specifically, the AUC for each algorithm remained
as follows: LR at 0.696 (95% CI, 0.590–0.801), SVM at 0.696 (95%
CI, 0.592–0.801), RF at 0.713 (95% CI, 0.612–0.814), DT at 0.777
(95% CI, 0.685–0.87), XGB at 0.848 (95% CI, 0.773–0.924), and
LGBM at 0.821 (95% CI, 0.737–0.905). Notably, the XGB model
outperformed others in differentiating SCC from ADC and LCC
within the testing set, evidenced by an AUC of 0.848 (95% CI,
0.773–0.924) and an accuracy rate of 0.750. This indicates the
superior predictive capability of the XGB algorithm in the context
of this study. The relevant model evaluation index results are shown
in Supplementary material 1, and the corresponding ROCs curve
are shown in Figure 2.

3.3.2 Distinguish the LCC subtype from all other
subtypes

In the construction of models to predict LCC, six algorithms
were employed, resulting in varied AUC values in the training set:
LR achieved an AUC of 0.702, SVM attained 0.805, RF reached
0.841, DT had 0.837, XGB stood out with 0.908, and LGBM was
at 0.834, with their 95% confidence intervals ranging from 0.646
to 0.940 across the different methods. In the testing phase, the
performance of these algorithms showed a different pattern of AUC
values, indicating varying levels of efficacy in model generalization.
LR presented an AUC of 0.532, SVM at 0.501, RF at 0.576, DT
scored 0.748, XGB led with 0.789, and LGBM recorded 0.544, with
their 95% confidence intervals demonstrating the consistency in
model performance under varying conditions. The XGB model
emerged as the most effective in differentiating LCC from ADC
and SCC in the testing set, showcasing its superior predictive ability
among the tested algorithms. Similarly, the performance indicators
and ROC curves of the model are shown in Supplementary
material 1 and Figure 3.

3.3.3 Distinguish the ADC subtype from all other
subtypes

To identify the ADC subtype, models were developed using
six algorithms, yielding AUC values in the training set as follows:
LR had 0.782, SVM 0.790, RF 0.855, DT 0.814, XGB 0.733, and
LGBM 0.762, with confidence intervals ranging from 0.670 to 0.901.
In the testing set, AUC values were LR at 0.551, SVM at 0.658,
RF at 0.748, DT at 0.597, XGB at 0.616, and LGBM also at 0.620,
indicating varying levels of predictive performance. The RF model
stood out for its ability to differentiate ADC, achieving an AUC of
0.748 in the testing set, thus proving to be the most effective among
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FIGURE 1

The feature correlation matrix obtained by performing Spearman’s rank correlation analysis in the SCC (A), LCC (B), and ADC groups (C), respectively.

the algorithms tested for this subtype (Supplementary material 1
and Figure 4).

3.4 Model explanation

The XGB model with the best prediction in differentiating
SCC from the other two subtypes was used to demonstrate
the SHAP plots. Figure 5A depicts the ranking of importance
of the 12 features. The two most important features were log
sigma 1.0 mm 3D firstorder 90Percentile and lbp 3D m2 glszm
LowGrayLevelZoneEmphasis. The decision-making process of the
XGB model for two patients is depicted using the SHAP force
diagram (Figures 5B, C). The score calculation begins with E[f(x)]
and then sums the SHAP values, with yellow representing an
increased probability or purple representing a decreased probability

of squamous carcinoma, ending with the individual prediction.
Similarly, the explanatory display of the LCC groups is shown
in Figures 5D–F (It is worth noting that since the algorithm
mechanism of RF cannot display the same SHAP and force diagram
as above, the ADC group is not displayed.).

4 Discussion

Accurate identification of histological subtype of patients with
NSCLC has important implications for both clinical therapeutic
approaches and patient prognosis. In our study, we developed CT
image-based ML models for distinguishing different pathological
subtypes of NSCLC patients and compared the performance of each
ML model. Ultimately, our model can assist clinicians in diagnosis
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FIGURE 2

ROC curves and corresponding AUC values in the training (A) and testing (B) sets of the SCC group.

FIGURE 3

ROC curves and corresponding AUC values in the training (A) and testing (B) sets of the LCC group.

and suggest to them those imaging features that are important in
distinguishing NSCLC pathological subtypes.

The pre-selected features screened for model building belong
to first order features and texture features so as the two most
important features for distinguishing SCC and the other two
subtypes in the XGB model, which were similar with the previous
studies (20). CT images have good spatial resolution and can
represent different tissue structures in grayscale, while the texture
of CT images may be related to the heterogeneity of the tumor
and may predict the biological behavior of the tumor (23). The
XGB model performed best both in differentiating SCC and LCC,
reaching an AUC of 0.848 and 0.789, respectively. The RF model
outperformed the other five models, discriminating between ADC

and non-ADC with an AUC of 0.748. There may be several reasons
for this phenomenon. One reason for this is that no algorithm can
maintain the best in all datasets (24). The above evidence suggested
that our models were reliable.

Nowadays, there are many studies based on imaging to
differentiate histological types of lung cancer. Numerous studies
have shown that imaging features can be used to identify the
histological type of NSCLC patients. Guo et al. (20) developed two
models, the ProNet model and com_radNet, based on CT scans.
The AUCs were 0.840 and 0.789, with corresponding accuracy
of 71.6 and 74.7%. Zhou et al. (25) used nine machine learning
classifiers to construct 45 prediction models after extracting
radiomic features from PET and CT scans. AUC (0.897) for
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FIGURE 4

ROC curves and corresponding AUC values in the training (A) and testing (B) sets of the ADC group.

FIGURE 5

Model interpretability display. (A,D) Represent the SHAP plots for the SCC and LCC groups, respectively; (B,C) show the radiomics feature force plots
for two random patients in the SCC group (predicted as SCC and non-SCC), respectively; (E,F) are the radiomics feature force plots for two random
patients in the LCC group (predicted as LCC and non-LCC), respectively.

the GBDT feature selection method combined GBDT classifier
was highest in the PET dataset; AUC (0.839) for the GBDT
feature selection method and RF classifier was highest in the
CT dataset. Furthermore, some studies have combined clinical

features, tumor markers, and radiomic features to construct
models. Hyun et al. (26) investigated 4 clinical features and 40
imaging features extracted from PET images to build a prediction
model by five machine learning algorithms, the logistic regression
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model, which was the best predictor, with an AUC of 0.859.
Zhao et al. (27) evaluated 13 different characteristics for modeling.
These included 2 clinical variables (gender and smoking status), 2
laboratory markers (CEA and SCCA), and 9 radiological features.
The researchers were able to achieve an AUC value of 0.910
in the evaluation of the test set. Yan and Wang (28) further
investigated by establishing the PET model, CT model, and
combined PET and CT model, and found that the combined
PET and CT model had the best performance in predicting
ADC, SCC, and metastasis. Deep learning algorithms also hold
promise for predicting NSCLC histological subtypes. Wang et al.
(29) discovered that the deep learning model they developed to
predict the histological subtypes of ADC performed well on 2-
classification, 3-classification, and even 8-classification. They did
this by extracting features from CT scans.

Our study built three prediction models for ADC, SCC, and
LCC with AUCs of 0.748, 0.848, and 0.789, respectively, and further
demonstrated the feature importance ranking of the models as well
as the decision-making process. To date, published studies have
focused on distinguishing ADC from SCC, or SCLC. A study by
Zhao et al. (30) established a Mobilenet v2 model for discriminating
ADC and SCC, yielding an AUC value of 0.767, slightly lower than
ours. In this study, we innovatively constructed 3 models to predict
ADC, SCC, and LCC, respectively, whereas very few prediction
models involving LCC subtype have been previously developed.
Consequently, our study has contributed to a more refined and
precise prediction of pathological subtypes in NSCLC. As well, few
studies have dealt with the issue of data imbalance before. The study
by Lin et al. (19), which did not deal with data imbalance, built
a model with an AUC of only 0.700, significantly lower than our
model. Therefore, we provide the possibility for the development
of more accurate models in the future.

In addition, due to the black-box nature of machine learning
(31), machine learning models lack interpretability in previous
studies. Linning et al. (32) extracted features from CT images
and built models to distinguish SCLC, ADC and SCC with
AUC values of 0.822 and 0.665, respectively, but they failed
to further explain the importance ranking of the features and
the machine-learning decision-making process. We implemented
the SHAP method. This technique illuminated the decision-
making process of our models by providing a clear ranking of
feature importance and delineating how each feature influences
predictions. Such transparency is crucial in a clinical context, as
it builds trust and aids clinicians in understanding the basis for
model predictions, thus facilitating informed decision-making. By
revealing the contributions of individual radiomic features to the
classification of NSCLC subtypes, our approach not only enhances
the trustworthiness and validation of our models but also deepens
the understanding of the link between radiomic characteristics and
cancer pathology, paving the way for more tailored and effective
treatment approaches. There are also some shortcomings in this
study. Compared with the results of previous studies, we did not
significantly improve the effectiveness of machine learning models
based on CT features in predicting NSCLC histological subtypes.
In the future, more advanced algorithms and models such as deep
learning and end-to-end modeling could be used to predict NSCLC
pathological subtypes.

The limitations of this investigation are chiefly found in the
following areas. Initially, the data, sourced from public databases,

were characterized by a relatively modest sample size and an
insufficiently detailed baseline profile, adversely affecting the
model’s predictive capability. Attaining improved efficacy would
necessitate support from a more substantial research cohort.
Secondly, the data, originating from a single center, employed
internal data for the prediction model’s validation, rendering the
findings preliminary until corroborated by multicenter prospective
studies. Lastly, the study exclusively involved imaging features
in model development, omitting clinical details such as age
and gender, resulting in a comparatively uniform dataset. This
limitation may compromise the model’s generalizability in real-
world clinical diagnosis.

5 Conclusion

This study successfully developed interpretable machine
learning models using CT images to diagnose histological subtypes
of NSCLC, with the XGB and RF models showing superior
performance. The use of SHAP for interpretability further
strengthens the clinical relevance of our models, providing insights
into the decision-making process and contributing to more
informed and transparent diagnostic pathways. Looking ahead,
there is an opportunity to build upon this foundation by creating
advanced predictive models that integrate data from multiple
centers and encompass multi-omics associations.
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