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Introduction: This paper addresses the dilemmas of accessibility,

comprehensiveness, and ownership related to health data. To resolve

these dilemmas, we propose and justify a novel, globally scalable reference

architecture for a Personal Health Data Space (PHDS). This architecture leverages

decentralized content-addressable storage (DCAS) networks, ensuring that the

data subject retains complete control and ownership of their personal health

data. In today’s globalized world, where people are increasingly mobile for work

and leisure, healthcare is transitioning from episodic symptom-based treatment

toward continuity of care. The main aims of this are patient engagement, illness

prevention, and active and healthy longevity. This shift, along with the secondary

use of health data for societal benefit, has intensified the challenges associated

with health data accessibility, comprehensiveness, and ownership.

Method: The study is structured around four health data use case scenarios from

the Estonian National Health Information System (EHIS): primary medical use,

medical emergency use, secondary use, and personal use. We analyze these use

cases from the perspectives of accessibility, comprehensiveness, and ownership.

Additionally, we examine the security, privacy, and interoperability aspects of

health data.

Results: The proposed architectural solution allows individuals to consolidate

all their health data into a unified Personal Health Record (PHR). This data can

come from various healthcare institutions, mobile applications, medical devices

for home use, and personal health notes.

Discussions: The comprehensive PHR can then be shared with healthcare

providers in a semantically interoperable manner, regardless of their location

or the information systems they use. Furthermore, individuals maintain the

autonomy to share, sell, or donate their anonymous or pseudonymous health

data for secondary use with di�erent systems worldwide. The proposed

reference architecture aligns with the principles of the European Health Data

Space (EHDS) initiative, enhancing health data management by providing a

secure, cost-e�ective, and sustainable solution.
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1 Introduction

Health data encompasses information about an individual’s or

a population’s health conditions, health outcomes, and quality of

life (1). They include clinical, environmental, socioeconomic, and

behavioral data relevant to health and wellness (2). Healthcare

digitalization, when combined with accurate and high-quality

health data, presents opportunities for delivering enhanced health

and wellness-related services at reduced costs (3). However, health

data introduces significant risks, as alone or combined with

other data, it can reveal personal health status (4). The risk of

revealing health status may reduce the willingness of individuals

to participate in certain care processes, e.g., in mental health (5, 6)

or drug abuse treatment. Health data leakage can also lead to

discrimination against individuals by employers, insurers, or banks

(7, 8).

The primary use of health data for diagnosis, treatment, and

rehabilitation expects that pertinent information about a person’s

health is shared accurately and promptly with relevant parties,

facilitating coordinated decision-making across all care settings

(9). Beyond primary use, health data is utilized for secondary

purposes (10) by various stakeholders, including policymakers,

public health officials, researchers, physicians, the public, and

industry (11). Routine clinical data is considered highly valuable

(12) for advancing healthcare objectives and improving overall

health outcomes.

Despite the value of routine clinical data collected during

healthcare provision, significant portions of health data remain

underutilized (13) due to the unstructured nature of the data and

privacy and interoperability concerns. Moreover, the integration of

medical data from various health data sources—Electronic Health

Records (EHRs), medical devices for home use, innovative health

and welfare applications, and health notes by patients—is beneficial

in both primary and secondary use (14). However, the challenges

related to data security, privacy, accessibility, comprehensiveness,

and interoperability (15) result in the underutilization of data

integration. We formulate these challenges as the following

three dilemmas.

The dilemma of accessibility: The conflict between the desire for

the accessibility of health data and the need to safeguard sensitive

personal information.

This dilemma encapsulates the contradiction between ensuring

data FAIR accessibility (16) and protecting sensitive personal

information (17). A vast dataset with valuable routine health data is

available worldwide, and broad and open access to this information

is essential to maximize its benefits for society and citizens (18).

However, given the delicate nature of personal data, there’s an

increasingly pressing need to fortify access controls. This presents

a notable contradiction, as the pursuit of widespread health data

FAIR accessibility clashes with the imperative to protect personal

information (19).

The dilemma of comprehensiveness: The challenge to reconcile

the need for the comprehensiveness of health data with their

current fragmented nature (20).

Currently, a person’s health data are preserved in different

service providers’ data repositories in provider-specific formats,

preventing the gathering of a holistic representation of the

individual’s health record (21). Using the complete personal health

records of a person, modern machine learning and AI methods

can be used to gain a comprehensive picture of their health status

(22). This would enable a transition from episodic, symptom-based

treatment to continuous health monitoring and personal integrated

care pathways, aiming to prevent diseases or diagnose them as

early as possible. However, various factors prevent consolidating an

individual’s health data into a single, unified repository, including

challenges related to semantic interoperability, diverse legal and

ethical hurdles, and elevated risks of data leakage. As stated

in research from 2018 (23), we still do not have a unified

interoperability approach to cope with the semantic heterogeneity

of health data. A review from 2019 concludes that no big-data

analytics will happen without optimized data sharing and reuse,

which we still lack despite different interoperability standards in

the medical domain (24). Similar semantic interoperability-related

challenges will be highlighted in the papers published in 2024

(25, 26).

The dilemma of ownership: The discrepancy between the data

owner’s rights to ownership and the practical inability to exercise

those rights.

The presented statement highlights a dual dilemma. First,

whether data and information can be considered property remains

unresolved (27, 28). Second, the significant challenges associated

with data ownership need to be addressed.While this paper refrains

from definitively answering the first question, the authors generally

favor an affirmative stance. Regardless of the stance on data

ownership, prevailing legislation (29) ensures specific rights for

the data subject concerning the information collected about them.

Generally, in the EU, the processing of health data is prohibited

unless there is a lawful basis under Article 6 of the GDPR and one of

the exceptionsmentioned in Article 9 is met (e.g., consent, contract,

legal obligation, vital interests, public tasks, and legitimate interest).

This legal framework ensures that individuals maintain control

over their health data, emphasizing the importance of informed

consent and transparency in processing such data (30). In reality,

however, the practical exercise of these rights faces challenges, as

data is preserved in third-party servers beyond the physical control

of the data subject. In most countries, laws governing medical

records place responsibility for storing health data on healthcare

providers. These regulations are based on the healthcare provision

legislation and do not need to be discussed in the context of

this article.

Even the contemporary regional or national digital health

platforms (DHPs) like the Estonian National Health Information

System (EHIS) cannot resolve these dilemmas. First, as such

systems are data processors according to the GDPR, they must

process, protect, and secure data accordingly. Therefore, accessing

data for secondary purposes is difficult due to complex content

management and the need for de-identification (anonymization

and pseudonymization) (31). Second, in such systems, the dilemma

of data comprehensiveness has not been solved because of the

international mobility of citizens. To solve this, the DHP must

be pan-European or worldwide, or there is a need for an

interoperability solution for the federation of national health

systems. This is likely impossible and impractical as such systems

are too complex to develop and operate. The third challenge
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involves the data ownership dilemma. Within the intricate

infrastructure of national or regional DHPs where data may be

stored either in the cloud or on local servers, individuals do not

know the whereabouts of their data. More critically, they might be

unaware of who has access to their data and for what purposes it is

being used. This situation further complicates individuals’ ability to

exercise their legal rights, leaving them powerless and disconnected

from their health data.

In addition, the solution used in Estonia, which has 1.3 million

citizens, may not be scalable in larger countries or, for instance,

on a pan-European scale due to development and operation costs

and data security and privacy challenges. One of the issues in such

extensive DHP systems is health data concentration (32), which

may be tempting for attackers because, in the event of a successful

attack, it is possible to obtain the health data of many people.

Between 2009 and 2022, there were 5,150 healthcare data breaches,

resulting in the impermissible disclosure of 382,262,109 healthcare

records in total (33). In 2021 alone, there were 686 HIPAA rule

breaches affecting 500 or more health records, and the Accellion

FTA Hack alone exposed the health information of at least 3.51

million individuals, making it the worst year for healthcare data

breaches (34).

The more concentrated the data, the higher the costs

for security; any breach could have severe consequences for

individuals’ privacy and well-being. Moreover, the dominance of

a few entities in controlling health data raises questions about

data ownership and control and the risks for data monopoly.

Additionally, there are worries about the impact on healthcare

innovation. A concentrated health data environment may hinder

the development of diverse and competitive solutions, limiting

the ability of small players to enter the market. Striking a

balance between centralized and decentralized approaches, and

prioritizing privacy and competition, is crucial in addressing

the health data concentration issue. Policymakers, healthcare

providers, and technology companies must collaborate on patient

privacy, promote fair competition, and foster innovation in the

health data ecosystem.

We propose and evaluate a reference architecture for a Personal

Health Data Space based on DCAS networks (Figure 1). The

focus of this paper is twofold. The first objective is to outline

the typical use cases of health data for primary and secondary

use based on existing health information systems (AS-IS) and

to explain these systems’ inability to resolve the three dilemmas.

The second objective is to envisage an innovative DCAS network-

based reference architecture for health data management (TO-BE),

analyze its properties from the accessibility, comprehensiveness,

and ownership dilemma perspectives, and evaluate security, data

protection, scalability, and other aspects of the proposed solution

under the typical primary and secondary use case scenarios.

The EHIS covers all Estonian residents and is one of the best

digital health platforms (35). The Estonianmodel, operational since

2008 (36), provides valuable experiences that can be extrapolated

for broader application. Our research utilizes four common health

data use cases from the EHIS. Through this exploration, we shed

light on issues and challenges associated with preserving health

data within analogous unified national health data repositories.

Our analysis underscores the need for cohesive solutions at the

EU level, facilitating the seamless exchange of health data across

institutional and national borders. Our discussion operates within

the framework outlined by the GDPR (29) and the EHDS (37).

This involves managing citizens’ health data responsibly, ensuring

data privacy, and enabling the reusability of health data for societal

benefit. We posit that such a system establishes the groundwork

for a fair data economy (38), wherein enterprises, especially small

and medium-sized enterprises (SMEs), can engage in an innovative

business landscape for intelligent health solutions. Simultaneously,

citizens gain control over the utilization of their health data and

actively participate in a just compensation mechanism, ensuring

the equitable distribution of profits generated from innovative

solutions based on their data.

The suggested reference architecture is in harmony with

the fundamental principles of the European Health Data Space

(EHDS) regulation proposal (Figure 2), significantly improving

health data management by ensuring security, cost-efficiency, and

sustainability. This architecture guarantees individuals’ ownership

and complete control over their health information while enabling

semantic interoperability with existing hospital, regional, and

national systems and respecting privacy and data protection laws.

Through this solution, people have the opportunity to amalgamate

their health information from diverse sources—various healthcare

institutions, mobile applications, medical devices for home use, and

personal health notes—into a single, integrated Personal Health

Record [PHR; (39)]. This all-encompassing PHR can be shared with

healthcare professionals, independent of the healthcare provider’s

location or the type of information system in use. Moreover,

this solution empowers individuals to share their de-identified

(anonymous or pseudonymous) health data for secondary use for

the benefit of society according to explicit legal consent.

The rest of the paper is organized as follows: Section 2 delves

into four health data use case scenarios based on the EHIS—

primary medical use, medical emergency use, secondary use, and

personal use. These EHIS scenarios are then examined through

accessibility, comprehensiveness, and ownership to advocate the

need for health data management based on DCAS network

technology. Section 3 proposes the reference architecture to resolve

health data accessibility, comprehensiveness, and ownership

dilemmas through preserving semantically interoperable PHRs

in DCAS networks. Section 4 evaluates and assesses the critical

attributes of the proposed architecture. Section 5 compares the

solutions with similar existing ones and examines their integration

with existing health information systems and alignment with the

EHDS initiative (37).

2 Methods

We adhere to the Design Science (DS) methodology (40),

Figure 3, encompassing three steps: (1) investigating a problem,

(2) designing a solution (treatment design), and (3) evaluating

the solution’s effectiveness in addressing the problem (treatment

validation). While treatment implementation is not part of DS

but is part of the engineering cycle, the figure shows treatment

implementation to demonstrate the place and role of the prototype

solution in our study.
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FIGURE 1

Overview of the reference architecture for storing personal health records in a decentralized content-addressable storage network and sharing

health data for primary and secondary purposes.

FIGURE 2

The personal data space in the decentralized content-addressable storage network is valuable for existing hospital, regional, and national health

information systems for secure and sustainable retention of personal health data and to support semantic interoperability in data exchange.
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FIGURE 3

The design science methodology used in the development of the proposed reference architecture.

We articulate the problem through three dilemmas: data

accessibility, data comprehensiveness, and data ownership (Section

1). Our analysis is based on a literature review and experiences

in EHIS operation and handling. We first describe four use cases

(this section, Section 2) based on EHIS operation and explain,

based on these use cases, why even national systems like the EHIS

fail to address the three dilemmas. As a solution (Section 3), we

propose keeping the master copy of the PHR of each person’s health

record on the DCAS network under the complete control and

ownership of the data subject. We will then show (Section 4) how

the proposed solution will effectively address the three formulated

dilemmas when utilizing the same four use case scenarios and

explain how the proposed system supports seamless and coherent

interoperability with the existing hospital, regional, and national

information systems and data registers.

The Estonian Health Information System (EHIS, Figure 4) is a

central national DHP through which health service providers, such

as doctors, nurses, midwives, physiotherapists, and other healthcare

professionals, can exchange data and see health data entered by

other healthcare professionals about a patient. The EHIS consists

of (1) central national databases, e.g., EHR, Prescription Centre,

and Picture Archiving and Communication System (PACS);

(2) digital health services built on the existing e-government

infrastructure, e.g., digital prescription, e-referral, e-consultation,

and e-ambulance; and (3) digital decision support systems and

cross-sectoral services exploiting nationwide databases, e.g., drug-

drug interaction database, clinical decision support system (DSS)

for primary care, patient summary. The EHIS provides secure,

robust, and reliable internet-based data exchange services for

healthcare providers and natural persons. Healthcare service

providers must, according to law, transfer specific, defined,

structured, and standardized data to the EHIS. Data exchange

between healthcare providers and the EHIS is ensured by

implementing international standards, such as HL7 CDA and

LOINC. Persons can access the EHIS through theHealth Portal (41)

(available in Estonian, English, and Russian).

In the case of the EHIS and the Health Portal, it is important to

note their inseparable connection to other e-government services

and tools in Estonia. The EHIS relies on a comprehensive

information technology base infrastructure developed at the

national level and is a central electronic database where residents’

health history is recorded from birth to death. Technically, the

health information system has been implemented on top of the state

infrastructure solutions [ID card and mobile ID, (42), X-tee, (43),

etc.] that most Estonians use extensively. The system is successfully

connected to other information technology solutions offered to

Estonian citizens, making it convenient for all users. According

to the United Nation’s E-Government survey, Estonia ranks very

high in the E-Government Development Index (44), which might

explain peoples’ positive attitude toward the Health Portal.

2.1 Medical primary use case

A healthcare institution’s internal and external information

systems and databases are used in the daily work of doctors, nurses,

and other healthcare professionals. Electronic Medical Records

(EMR) and other Clinical Information Systems are the central

in-house clinical information systems. For patient management,

healthcare professionals primarily use the EMR. In Estonia, most

clinical processes in healthcare institutions have been digitized.
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FIGURE 4

The Estonian National Health Information System architecture. The coloring schema is as follows: orange—central government infrastructure

services; blue—national registers; yellow—integrated health service providers; gray—services that either use or provide services to EHIS; green—the

central services of EHIS. The year shown in brackets indicates the year of deployment.

Still, paper-based documents have not disappeared entirely, e.g.,

intensive care spreadsheets, hospital internal orders, nurses’ notes.

The integrated EMR seamlessly communicates with external

information systems if the person has been treated in another

healthcare institution in Estonia, a healthcare worker wants to see

previous data, or a doctor needs some central services, such as

clinical DSS or e-consultation. If the person has been imaged or

lab tests have been performed in other institutions, the EMR can

query and retrieve relevant images from the nationwide PACS or

receive lab test results from another EMR or EHR system. One

very convenient service is a digital prescription: the doctor issues

a prescription in the EMR, which uploads the digital prescription

to the central prescription center after making several queries

from national databases, e.g., to find out the reimbursement rate

given to the specific patient. Since all digital documents used in

healthcare in Estonia are linked to a person’s unique personal

code, the patient can go to any pharmacy and show their ID

code. The pharmacist will immediately see all prescriptions issued

for the patient and dispense the appropriate medicine to the

patient. E-referral, e-consultation, and other digital health services

follow similar principles. Documents completed in the healthcare

institution, examination reports, or test results are converted by the

EMR into a standard data exchange form and sent to the EHIS,

where they are parsed and kept in different repositories. This allows

clinical systems to compose either a time series based on data

collected in the EHIS from various healthcare institutions, e.g.,

the dynamics of lab test results over time, or a standard Patient

Summary (45). The benefits of a centrally developed, integrated,

secure, internet-based, standard-following DHP such as the EHIS

are related to data availability, sharing, and security. The medical

professional gets a complete overview of the patient’s contacts in

the healthcare system and their content.

2.2 Medical emergency use case

The work of ambulance and emergency medicine departments

has been digitalized in Estonia. Paramedics use tablet devices

with specially designed e-ambulance software to enter data. E-

ambulance and emergency medicine software are integrated with

the EHIS (Figure 4). This way, the paramedic can see the patient’s

previous health data at the scene. The data available to paramedics

is not limited to the text or diagnoses; previous medical imaging

reports and electrocardiograms (ECG) can also be viewed. The

ambulance can use the software to transmit critical information

about the patient to the hospital before the patient arrives.

2.3 Secondary use case

Unfortunately, health data secondary use for public

health, clinical research, medical claims management, or the

pharmaceutical industry does not yet benefit significantly from the
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EHIS. In the EHIS, secure data exchange between various clinical

parties is resolved well, but ensuring data quality still has issues

and challenges. Although various international classifications and

terminologies are in use, their use is insufficient, and medical

records still contain a lot of free text. This forces the National

Institute for Health Development (NIHD), responsible for

public health in Estonia, to collect data separately through the

information systems they developed. This causes data duplication

and discrepancies.

Firstly, the NIHD collects most of its data through its internet

portal, a legally mandated data entry system for healthcare

providers to report to the NIHD. This portal, in combination with

other government data collection systems, e.g., the EHIS, can be

seen as a redundant system and duplicate data entry. The data

NIHD collects is often available in other systems, but due to the

gaps in data quality and interoperability, it cannot be automatically

transferred to the NIHD databases. Secondly, data entered directly

into NIHD systems and cleansed for better quality is not shared

back in an interoperable way to clinical/administrative healthcare

systems. This limits the value of the NIHD’s data and analytics, as

it cannot contribute to the general quality enhancement of clinical

and administrative decision-making processes in hospitals.

The same trend of data being collected in separate information

systems can be observed in the case of randomized clinical trials

conducted by pharmaceutical companies. However, new registries,

such as the Breast Cancer Screening Registry, have been started,

which query data directly from the EHIS. Still, systemic weaknesses

in cross-sectoral and cross-institutional regulation, coordination,

and clinical data standardization limit the secondary use of health

data. This creates a need formanual data processing and culminates

in inefficient information handling and systems development.

Hospitals often use several software applications for

administrative data when automated integration with medical

systems is not in place. Frequently, manual data entry is needed for

reporting and statistics. In most hospitals, the raw data is electronic

but manually transferred for reporting and statistics. Additionally,

regulations on the health information system, prescription system,

reimbursement system, public health reporting system, or vertical

registries (cancer, HIV, tuberculosis, myocardial infarction, etc.)

are not always harmonized, or the clinical information classes

are defined too generally to be usable practically. Therefore, each

responsible agency, specialty, or sector develops its terminologies

and data structures independently. This leads to point-to-point

solutions, lessens system interoperability, and ultimately increases

manual data processing and complicates software development.

2.4 Personal primary use case

In the Health Portal (Figure 5) of the EHIS, a person can see

their health and medical data and may perform several activities.

This data has been collected according to how the person’s treating

physician or healthcare institution sent them to the EHIS in a

standardized way. A person can submit declarations of intent,

appoint a representative, perform actions on their behalf and on

behalf of the person represented, and view the medical invoices

submitted by healthcare institutions to the Estonian Health

Insurance Fund about their medical treatment. All prescriptions

in Estonia are in digital form, and a person can see the issued

prescriptions and their status in the portal.

All residents can access their data to determine their consent

for specific health data sections. This means the patient can restrict

access to certain documents, medical records, and all personal data

in health information systems. Access restrictions can be imposed

on one individual document or all information contained in the

EHIS. From the point of view of data security and privacy, it is

essential to note that a person can monitor all activity logs in the

Health Portal, i.e., see which medical professional has requested

their data and when and what document was viewed.

2.5 EHIS from the perspectives of the three
dilemmas

The Estonian National Health Information System (EHIS) is

a pioneer in digitizing healthcare on the national level. However,

the system faces significant challenges related to the dilemmas of

accessibility, comprehensiveness, and ownership.

1. Accessibility: The EHIS fails to resolve the accessibility dilemma

as it lacks features for secondary data usage, as previously

mentioned. Consequently, the initial aspect of the dilemma,

necessitating data access, remains unresolved. Moreover, the

EHIS falls short in ensuring comprehensive protection of

personal data, as its measures aimed at limiting access are

reactive rather than preventive. While data owners can detect

unauthorized access, they cannot preemptively exclude it.

2. Comprehensiveness: The EHIS fails to resolve the dilemma of

comprehensiveness primarily because, at the global level, it

operates as an isolated data silo. Moreover, even at the local

scale, the EHIS does not provide a holistic perspective of an

individual’s health profile. Research suggests that patient data

stored within healthcare facilities tends to be more accurate and

thorough than EHIS data (46). Additionally, the exclusion of

patient-generated data, such as lifestyle information and data

collected from wearable devices, further restricts the system’s

capacity to offer the complete picture. Consequently, the EHIS

merely presents a simplified and partial representation of the

data, contradicting its initial aspirations for comprehensiveness.

3. Ownership: The EHIS fails to resolve the ownership dilemma,

as the institution managing the data retains physical control.

While the data subject possesses certain rights, such as the

ability to restrict access to specific data and monitor the audit

trail of data usage, the managing institution remains the de

facto owner of the data. This scenario resembles feudal land

ownership relations, where the land belongs to the landlord, and

the peasant has limited rights to utilize part of it for personal use.

To surmount these challenges, a different approach is needed—

one that embraces decentralized technology to enhance system

agility, incorporates patient-generated and -entered health data

to ensure data comprehensiveness, and empowers patients with

preemptive and complete control over their health information.

Such a system would facilitate seamless cross-border health

data exchange, support the integration of innovative health
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FIGURE 5

A screenshot from the Health Portal of the Estonian National Health Information System.

technologies, and streamline consent management for secondary

data use.

3 A reference architecture for
personal health records

3.1 An overview of the architecture and
fundamentals

The proposed architectural solution to solve the three dilemmas

is based on the novel decentralized content-addressable storage

(DCAS) network technology (Figure 1). We first analyze data

management risks to grasp the principles by which DCAS

networks operate.

By aggregating all health data in one place and keeping it in

a hospital, regional, or national health information system, the

risk of data management increases due to a single point of failure,

attractiveness to attackers, the complexity of security management,

difficulties in access management, and the complexity of regulatory

requirements. The opposite also applies—splitting a large dataset

into smaller components reduces the risk of managing each

component and the whole. Continuing this iterative data volume-

reducing process leads to a scenario where the risk linked

to an individual tiny data fragment approaches zero, and

the implementation of intricate and costly security measures

becomes superfluous.

DCAS networks operate on a similar principle. They are

peer-to-peer networks wherein nodes run open-source software

designed to store an enormous quantity of tiny data fragments.

When some data, such as a file or a document, is to be stored

in such a network, the data is first split into data fragments of

a few kilobytes each. These fragments are then distributed across

various nodes according to the network protocol. Each fragment

represents an insignificant fraction of the complete dataset, making

it feasible to distribute them between nodes without jeopardizing

the privacy of the entire dataset. As the anonymity of DCAS

network nodes is part of the DCAS protocols, the trustworthiness of

the node operators is not imperative for secure data storage within

the network, as individual data fragments are not informative. In

addition, no node knows to which dataset the fragment belongs, the

location of nodes, or the nodes where the remaining data fractions

are stored.

Conceptually, a DCAS network resembles a paper shredder

(Figure 6), cutting a classified document into tiny strips, none of

which divulge the document’s contents. Unlike a physical shredder,

a software-based implementation can reconstruct the original

document from its shredded components. This reversal process
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FIGURE 6

The decentralized content-addressable storage as an electronic paper shredder.

merely necessitates knowledge of the root hash of the original

document, which a data owner must only keep to themselves. Here

and in the future, a data ownermeans a person who keeps their data

on a DCAS network and, if necessary, shares that data for primary

or secondary use.

In the following, we provide concise overviews of the

fundamental characteristics of a DCAS network. While

Ethereum Swarm (47) has inspired these descriptions, they

are formulated broadly enough to apply to any implementation of

a DCAS network.

Content addressing. In contemporary internet architecture,

location-based addressing is widely employed. The typical structure

of a web URL consists of several components: the server name,

which is substituted by the IP address during the name resolution

process, the name of the sought-after resource, and the path to

the directory where the desired resource is situated. This method

of addressing is called location-based addressing, as the resource’s

address signifies its physical location.

In contrast, content-based addressing is not based on the

location of a resource but highlights its content (48). Content-based

addressing, in many respects, is more intuitive than location-based

addressing. When searching for a specific resource, its content is of

primary importance rather than its physical location. This can be

observed in everyday activities like shopping. In a store, individuals

are not concerned with the product’s precise shelf but are interested

in milk or bread, irrespective of their spatial arrangement.

DCAS networks use content-based addressing. Each network

node has an overlay address, a randomly generated integer. To

avoid duplication of overlay addresses, large, 256-bit integers are

used. The Kademlia distance (49) between two network nodes is

an integer obtained by the exclusive logical addition (XOR) of

overlay addresses of nodes. For instance, the Kademlia distance

between overlay addresses 5 (0101) and 6 (0110) is 3 (0011).

The Kademlia distance has all the fundamental characteristics of

distance, including non-negativity, symmetry, the zero value of a

node’s distance from itself, and triangle inequality. In the DCAS

network, each shard of information is stored on the node whose

Kademlia distance is closest to the shard’s hash value. The hashes

of the shards are arranged into a Merkle tree (50), which is stored

in the DCAS network following the same information-splitting

protocol. The hash value of the Merkle tree’s root serves as the

address of stored data.

When retrieving data from the DCAS network, the process is

reversed. Specifically, the network protocol implemented in the

node software locates the node closest to the given hash value

and finds its underlying address (IP address in the context of

the internet). Subsequently, a request is sent to this identified

node to access the desired data. Content addressability serves as a

supplementary measure to ensure data integrity. This is achieved

by enabling the consumer to verify the content of the downloaded

data by calculating its hash value and comparing it to its address,

thus confirming that the data has not been altered.

Decentralization. Firstly, let’s delve into some terminological

considerations. The term “decentralized” is frequently employed

to convey the idea of a system comprising numerous smaller,

independent entities. To illustrate, a “decentralized data network” is

commonly understood as a federation of diverse data sources, each

independently comprehensive within localized boundaries (51).

This implies that information about a specific subject is internally

cohesive within these local confines. While these data sources

may lack global completeness by not encompassing all available

information about a particular topic, they wield control over the

data within their purview.

However, this paper adopts a more stringent definition

for “decentralized”, signifying a system where data lacks

completeness even locally, information stored on individual

nodes is indecipherable, and no governing body exists locally

or globally. The absence of a governing body within the DCAS
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network means that independent node operators individually

determine all decisions, including joining or leaving the network.

At the same time, the network protocol incentivizes each node to

make decisions that contribute to the network’s objectives.

Redundancy. Network decentralization refers to the absence of

a governing authority body within the network (52). Consequently,

network nodes can disconnect from the network at any given

moment. Upon leaving, these nodes take with them the data shards

they have been storing. This presents a significant challenge, as

restoring the data that these shards were part of is impossible.

Naturally, such a situation is unacceptable, necessitating the

implementation of redundancy to prevent data loss.

One potential approach to address redundancy involves storing

each piece of data not only on the node closest to it based on

Kademlia distance, but also on a set of nodes that belong to a

specific neighborhood of responsibility surrounding the closest

node (53). Since overlay addresses are randomly assigned to

the network nodes, and the Kademlia distance has nothing to

do with geographical dimensions, network nodes belonging to

this neighborhood are typically dispersed worldwide under the

management of different operators. Based on network size and its

rate of churn, a sufficiently large radius of the neighborhood can

be chosen, ensuring that the loss of a single piece of data resulting

from the departure of the node storing it is close to zero (54).

The outlined redundancy method represents just one approach

to guarantee data redundancy. Alternatively, more efficient

techniques like Erasure Coding (55) may be used. Despite distinct

algorithms, the objective remains to ensure data preservation

within the network when nodes exit the network.

Immutability and de-duplication. Content addressability leads

directly to the immutability of the data (56). This is due to using

hash values as addresses, where any change in the content of

the data results in a change in its address. Consequently, the

altered data becomes a new addressable entity for the network,

while the previous version remains accessible at the earlier address.

Therefore, the DCAS networks inherently retain the version history

of any data modifications.

As described, the data is typically fragmented into tiny pieces

stored independently as individual entities within the DCAS

network. Likely, only a particular portion of these pieces will be

modified when changes occur in the data. Those pieces that remain

unaltered continue to exist online at their former addresses. Thus,

DCAS networks efficiently maintain the version history of the

dataset, ensuring that only one copy of the data exists within the

network, excluding the copies required for redundancy.

Mutable address space. Content addressability has numerous

advantages (57). As previously mentioned, content addressability

results in data immutability, as any modification to the data

corresponds to a change in its address. However, there are cases

where it becomes essential to store mutable data at a designated

address. To accommodate this need, each user in a DCAS network

is allocated a personal mutable address space. This dedicated space

allows users to manage and modify data within specific addresses

without conflicting with the immutability constraints associated

with content addressability.

Incentives. Decentralized networks’ successful emergence

and sustainability rely on establishing a precise and robust

incentivization mechanism (58). This mechanism must adequately

motivate network operators to bear the costs associated with

providing services and is typically facilitated through compensation

from the users of the network services. However, the absence of a

central governing authority poses a challenge in orchestrating this

compensation process.

Adopting a compensation mechanism built on blockchain

and smart contracts is imperative to achieve incentives in

complete network decentralization (59). Within such systems,

it is feasible to use crypto tokens for payment. Ethereum

Swarm, which operates on the BZZ crypto tokens (60), is

an example of a decentralized compensation mechanism

implementation. Alternative compensation mechanisms have also

been implemented. However, any method reliant on traditional fiat

currency necessitates the involvement of an intermediary body,

compromising the network’s decentralization.

3.2 Core application

The core application (Figure 7) is open-source software that

operates on the user’s device, serving as a personal portal to

health data. This application primarily aims to present a person’s

health data stored online in a DCAS network in a user-friendly

manner. Additionally, it enables persons to perform various

tasks such as annotating, searching, filtering, and sorting health

information. Furthermore, it establishes data communication with

the DCAS network using an abstraction layer, which ensures

independence from the implementation of a specific DCAS

network. Moreover, the core application employs software layers to

incorporate protocols and standards commonly used in healthcare

to facilitate interoperability. The core application’s functionality

can be expanded by integrating separate downloadable modules.

The following subsections present a detailed description for

each component of the core application.

3.2.1 Root hash management
The root hash granting access to the data should be known

to the data owner exclusively. This hash value plays a crucial

role in granting access to the data; therefore, the data owner

must thoroughly protect it. In the unfortunate event of losing

the hash value, retrieving access to the data becomes impossible.

Consequently, the method employed for storing the hash value

must incorporate safeguards to prevent both unauthorized access

and accidental loss; therefore, safeguarding and securing this hash

value is a primary responsibility of the core application.

Whenever a modification is made to the data, the hash value is

updated to reflect the changes. The new hash value permits access

to the modified data, while the previous hash value represents the

prior version of the data. Preserving the entire version history of the

data within the core application may not be feasible due to practical

limitations. A possible approach is to include the address to the

previous data version within the data itself. This enables the core

application to retain the whole history of data amendments.

In addition, it is essential to consider the possibility of the stored

hash value being unavailable due to, e.g., the data owner’s device
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FIGURE 7

Core application architecture of the proposed reference architecture for personal health record.

being lost. In this case, storage of a constantly changing hash value

in a recoverable manner poses a significant challenge. A plausible

alternative involves storing the changing root hash within the

DCAS network. This is where the personal mutable address space

of the DCAS network proves valuable. By storing the encrypted

hash value within the user’s private mutable address space, the

core application simplifies its task to retaining the constant address

where the current root hash resides.

This constant value facilitates the implementation of secret

sharing algorithms, like Shamir’s Secret Sharing (61), to effectively

mitigate the risk of data loss. This secret-sharing framework

mathematically divides the constant address where the current

root hash resides into multiple shares (Figure 8). Each share is

then stored separately in the main applications of the data owner’s

closest relatives so that only one share is retained by one relative.

This secret-sharing mechanism ensures that the address can be

recovered by gathering a sufficient number of shares that meet or

exceed the predetermined threshold. Conversely, it is impossible

to reveal the secret address if the number of shares is below

that threshold.

The solution above also provides a means to safeguard data

against unauthorized modification. In this approach, recording the

hash value of the modified data is exclusively permitted in the

owner’s mutable address space. Consequently, any alteration to the
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FIGURE 8

A root hash management in the proposed reference architecture for personal health record.

data necessitates the owner’s approval by storing the revised hash

of modified data. This confirmation process can be likened to the

commit operation commonly employed in databases.Without such

confirmation, any changes to the data are lost.

3.2.2 Storage abstraction layer
The Storage Abstraction Layer (SAL) is an intermediary

component, facilitating communication between the core

application and the DCAS network. This intermediary layer

ensures the core application’s independence from the specific

implementation details of the storage network. It aligns with

the principle of dependency inversion commonly employed in

software development. Incorporating an intermediate layer such as

SAL, the core application can remain unaffected if replacement of

the layer becomes necessary. The core application solely requires

functionality related to the reading and writing of data, while SAL

effectively manages all other intricacies.

3.2.3 Content handlers
Numerous standards exist to represent health data, including

various HL7 standards and versions, OpenEHR (62), ISO 13606

(63), and ContSys (64). It is desirable for the core application to

not be restricted solely to clinical data but to offer the capability

of managing diverse information about an individual’s health and

general lifestyle. As this data can be generated by various devices

from different manufacturers, they might exhibit disparate formats

and employ distinct data models. Content handlers in the core

application are to handle this multitude of data models effectively.

These autonomous software modules adhere to the dependency

inversion principle, akin to the Storage Abstraction Layer.
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FIGURE 9

The infrastructure of the practical experiments for storing personal health records in a decentralized content-addressable storage network.

Incorporating these content handlers into the core application does

not necessitate any modifications to the core application itself.

The data should be presented online in a self-descriptive manner,

enabling the bootloader to select the appropriate content handler

for processing.

3.2.4 Interoperability layers
The purpose of the interoperability layers is to facilitate the

integration of the core application with external information

systems. A key objective of these layers is to enable healthcare

providers to access patient data in the context of primary

and secondary use. As previously mentioned, one data-sharing

approach involves disclosing the data address (its root hash).

Nevertheless, a preferable alternative is to grant data access via

an application programming interface (API), such as FHIR, which

preserves the confidentiality of the root hash. It is reasonable to

use federated [on-the-fly adaptation according to the third-party

data exchange protocol; (65–67)] rather than integrated (based

on a standard data format) or unified (based on a common

standard) interoperability (68) to achieve flexible and adaptable

interoperability across hospital, regional, and national health

information systems.

3.2.5 Extension modules
Extension modules are plugins that serve the purpose of

augmenting the existing capabilities of the core application.

These supplementary features encompass various enhancements,

such as integrating diverse wearable devices into the core

application and incorporating various algorithms enabling

individuals to supervise and assess their health-related behaviors.

It is vital to note that these extension modules obtain access

to individuals’ PHR through the core application, while

concurrently enabling other system components to harness the data

they generate.
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4 Evaluation of the proposed
architecture

4.1 Practical experiments

Practical experiments were conducted to validate the viability

of the proposed reference architecture. Due to the sensitivity

surrounding medical data and the constraints imposed by legal

regulations, obtaining medical data for testing poses significant

challenges. Instead, we used the Synthea package (69) to generate

synthetic health data. Synthea is an open-source data generator

renowned for producing realistic medical history data for synthetic

patients, encompassing various healthcare scenarios. It allows

for the creation of datasets of any desired magnitude. For

our experiment, a dataset comprising 1,000 synthetic persons

was generated.

As Synthea generates data in the format of FHIR bundle

resources, we selected this data format for our experiment.

However, it’s important to note that our choice of FHIR format does

not necessarily imply its superiority in DCAS networks. Ultimately,

Resource Description Framework (RDF) and personal knowledge

graphs offer more flexible solutions. Since FHIR is also concerned

with developing RDF (70) and other concentrated and thin data

formats [e.g., FHIR Shorthand (71)], we are likely not far from

the desired and practical results to support federated semantic

interoperability with a third-party hospital, regional and national

healthcare systems, and innovative welfare applications.

We opted for Ethereum Swarm (47) as our DCAS network for

several compelling reasons:

1. Full decentralization: Ethereum Swarm operates without a

central authority, ensuring a decentralized ecosystem.

2. Robust incentivization: The network boasts a robust mechanism

encouraging participation and contribution.

3. Ideal for small data storage: Ethereum Swarm is well-suited for

efficiently storing small data fragments, such as FHIR resources.

4. Open-source nature: Ethereum Swarm is open-source and

fosters transparency and collaborative development.

The Swarm network comprises independent nodes running

the Bee software (72), compatible with both Linux and Windows

systems. For our setup, we have chosen Ubuntu Linux as our

operating environment. Despite its modest resource requirements,

Bee performs optimally with an SSD hard drive and a fast network

connection, handling network traffic efficiently.

The software development environment for this project was

Microsoft Visual Studio 2022. The FHIR bundles generated were

dissected into individual resources and stored in an SQL Server

database to facilitate ease of manipulation. Subsequently, each

resource was uploaded to the Swarm network as a distinct

entity, uniquely addressed with a hash key. A patient’s resource

index was stored separately as an FHIR bundle resource,

incorporating multiple FHIR Reference resources. The .NET task-

based asynchronous pattern (TAP) enhanced query efficiency. A

dedicated program in C# was designed to upload the generated

FHIR resources. This involved strategically alternating queries

between five Bee Docker container nodes and executing 40

simultaneous POST requests in parallel for each, optimizing

the uploading process (Figure 9). Parallel queries were similarly

employed for data downloads. Due to Swarm’s massively parallel

protocol, which sends simultaneous requests to numerous network

nodes for data chunks, the overall user experience was comparable

to, if not better than, traditional web browsing. A screenshot of the

experimental app showing a list of the generated FHIR resources

stored on the Ethereum Swarm live network is shown in Figure 10.

4.2 Medical primary use case

Relying on utilizing DCAS networks to preserve Personal

Health Records, the proposed reference architecture (Figure 1)

integrates with existing hospital, regional, and national health

information systems seamlessly and in a semantically interoperable

manner (Figure 2). This architecture features a person-owned

application (Figure 7) that operates on the person’s device. This

application is responsible for securely storing the root hash of the

person’s health data and facilitating the reading and writing of data

within the DCAS network.

In the primary use scenario, a person (data owner) can share

data with a healthcare provider by disclosing the root hash of their

data (Figure 1). Once the healthcare service provider completes the

necessary edits and saves the additions to PHR, a new data version

and the corresponding new hash value are generated. The service

provider relays the updated value to the data owner, who securely

stores it via their application. The healthcare service provider

should not retain the original or the revised root hash.

Alternatively, data sharing can occur without disclosing the

root hash. One possible method is utilizing a standardized API,

such as HL7 FHIR (73), integrated within the data owner’s

application. However, in such cases, additional measures must be

developed to uphold the integrity and reliability of the shared data

(74–76).

In medical data, the integrity of information holds paramount

importance. A key strategy to ensure data reliability involves the

digital signing of entries by the respective contributors. In this

context, the data’s trustworthiness hinges on the trustworthiness of

data entry. Beyond signing the added or modified part of the data,

an additional layer of security can be established if the healthcare

provider signs the data they enter and the root hash of the entire

dataset as it was presented to the healthcare provider during the

medical treatment or service provided.

The data subject can conceal specific portions of their data

by restricting access for particular healthcare providers. This

concealment involves generating a new version of the data,

accompanied by a corresponding alteration in the root hash, as

elucidated earlier. Significantly, the de-duplication feature outlined

earlier clarifies that creating a partially concealed data set does not

involve duplicating the entire dataset. Instead, it only stores the

modified data fragments in the DCAS network.

When a service provider adds an entry and signs it, they

essentially endorse the data they contributed and the entire dataset

as it was presented to them. This ensures a comprehensive and

signed record of the data collection, offering a transparent snapshot

of the information available to the service provider at the time of

data entry.
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FIGURE 10

A screenshot of the proof-of-concept app shows a list of FHIR observation resources, with one open in the browser.

4.3 Medical emergency use case

The proposed architecture offers a simple solution for

emergency access to an individual’s health data. For this, a

distinct data subset must be created encompassing vitally important

information, such as data about chronic conditions and ailments,

medications, allergies, and other related details. These particular

data entities form a specialized subset within the comprehensive

health data and are endowed with a unique address within a

DCAS network, enabling global accessibility. Individuals should

consistently carry the reference to this subset, either in digital

format stored on a microchip or physically embodied as a QR code

on a wearable tag or implemented through alternative means. In a

medical emergency, medical personnel can retrieve themost critical

health data of the individual by scanning the aforementioned QR

code or reading it from the microchip. This method allows access

only to the depersonalized subset of health data encompassing vital

information during emergencies, while protecting the identity and

other PHR data.

4.4 Secondary use case

For secondary use (Figure 1), the Personal Health Record must

be de-identified (31) to make anonymized or pseudonymized data

versions. This process involves the removal of any information that

could lead to the identification of the subject, while preserving the

reliability of the data. To achieve this, a third party trusted by all

stakeholders plays a crucial role. Whether a national institution or

a purpose-built organization, this entity verifies the data subject’s

identity. Subsequently, it validates and removes all signatures

associated with the data and appends its own signature to the

dataset. This signature proves the reliability of the de-identified

data, now derived from the trustworthiness of the third party that

signed the data. Through this multifaceted approach, data de-

identification not only preserves data subjects’ privacy but also

ensures the integrity and credibility of the de-identified dataset.

This de-identified dataset is stored within the DCAS network

as a separate entity, assigning a new address (hash) to the data.

The person may share (possibly for compensation) this hash

with third parties interested in utilizing the data for secondary

purposes. In real life, the transfer of data from the person to the

end user would probably not take place directly but through a

data intermediary who aggregates the data of multiple persons

and prepares them as a comprehensive data registry for the end-

consumers for data analysis.

4.5 Personal primary use case

In the context of the DCAS network architecture, the

personal primary use case focuses on empowering individuals

with complete control over their health data. By leveraging DCAS

technology, individuals can manage, share, and protect their health

data more effectively, fostering a more personalized and secure

healthcare experience.

The cornerstone of the personal primary use case is the

individual’s ability to consolidate and control their health data

through a unified Personal Health Record (PHR). This PHR

aggregates information from various healthcare providers, mobile

applications, home medical devices, and personal health notes.

As the data owner, the individual retains exclusive access to the
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root hash, ensuring that they control who can access their data

and under what circumstances. This control extends to updating,

annotating, and managing their health data directly through a

user-friendly core application.

One of the critical features of the proposed architecture

is its emphasis on semantic interoperability. The PHR can be

shared with healthcare providers across regions and systems,

ensuring that the data is meaningful and useful regardless of the

recipient’s technology. This particularly benefits individuals who

travel frequently or receive care from multiple providers. Sharing

the root hash or utilizing standardized APIs, individuals can grant

healthcare professionals access to their up-to-date health records,

facilitating informed and timely medical decisions.

The architecture empowers individuals by enhancing

transparency and ownership of their health data. Users can

monitor all access to their health records. This transparency builds

trust in the system and encourages individuals to engage more

actively in their healthcare management. The ownership aspect is

particularly transformative as it shifts the control of health data

from institutions to individuals, enabling them to decide how their

data is used and shared.

In addition to primary use, the architecture supports the

secondary use of health data while maintaining privacy. Individuals

can anonymize or pseudonymize their data and share it for research

or commercial purposes. This contributes to societal health benefits

and opens up opportunities for individuals to receive compensation

for their data. The trusted third-party intermediary ensures that de-

identified data remains credible and secure, facilitating its use in

various secondary applications.

Integrating Artificial Intelligence (AI) and Machine Learning

(ML) algorithms into the DCAS-based reference architecture adds

a significant layer of personalization and precision to healthcare

management. These technologies can analyze the comprehensive

health data stored in the PHR to generate tailored lifestyle and

healthcare recommendations. For instance, AI andML can propose

dietary adjustments, exercise plans, or preventive measures based

on the individual’s health history, genetic information, and real-

time data from wearable devices. However, it is crucial to maintain

a clear distinction between the recommendations provided to

individuals and those given to healthcare professionals. Suggestions

for personal use should focus on lifestyle and preventive care,

empowering individuals to make informed decisions about their

health. In contrast, recommendations for doctors should assist in

clinical decision-making, ensuring they have accurate and relevant

information to provide the best possible care. This separation is

vital to prevent confusion and ensure that clinical advice remains

in the domain of qualified healthcare providers.

4.6 Resolving the three dilemmas

The dilemma of accessibility is resolved by partitioning the

entire personal health data space (Figure 2) in a DCAS network

under the complete control and ownership of a data-owning person

into distinct non-intersecting sub-spaces of identifiable and de-

identified (anonymized or pseudonymized) health data. Identifiable

personal health data stored within the former is exclusively

controlled by their data owners (data subjects). As long as the root

hash of the data remains secret and known solely to the owner, no

other party, except those that the owner has explicitly shared the

root hash with, has even a theoretical chance of accessing this data.

Conversely, the data owner can generate numerous de-identified

health data copies with minimal risk of re-identifying the data

owner. These copies can be freely shared for secondary use.

The dilemma of comprehensiveness is resolved by

consolidating a person’s health data from multiple healthcare

institutions, portable health devices, health-related applications,

and other sources into a complete Personal Health Record (PHR).

Since this comprehensive PHR remains under the exclusive

physical control of the owner (data subject), the concentration of

data does not increase the data leakage risks, as in the event of a

successful attack, only one person’s data can leak. A master copy of

PHR data is used only in cases of initial use of data by sharing this

data only with healthcare professionals from desired healthcare

facilities regardless of region or national affiliation.

In addition, the ownership dilemma is resolved by storing

personal health data within DCAS networks, where access requires

the owner’s root hash. The network’s decentralization ensures that

access is exclusively granted to the owner without intermediaries,

e.g., without system administrators of hospital, regional, or national

information systems. Consequently, the owner can manage their

data much like any other private property, though they must

acknowledge specific distinctive characteristics inherent to data

compared to physical assets.

5 Analysis and discussions

5.1 Related works

The proposed DCAS-based architecture for personal health

data presents an innovative approach to data management,

emphasizing user control and data sharing. It resolves three

critical health data challenges: accessibility, comprehensiveness,

and ownership. In light of these challenges, we outline several

initiatives that tackle similar issues.

MyData global (77) is a community advocating for human-

centric data management, emphasizing data portability,

interoperability, and user empowerment. They declare that

they “help people and organizations to benefit from personal data

in a human-centric way.” MyData aims to transform the data

economy by ensuring individuals have more control over their

data and can share it between services.

The International Data Space (IDS) (78) promotes data

ownership through its data sovereignty principles, ensuring

providers retain control over their data. This framework supports

ownership rights across various industries, including healthcare.

However, implementing ownership principles within IDS depends

on the specific use cases and sectors involved.

Mediceus (79) ensures data ownership by providing a user-

centric platform where individuals control their health data. Users

can manage and share their data securely, maintaining ownership

and control. While similar to DCAS in focusing on health data,

Mediceus uses a more centralized approach to data management.
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MIDATA’s cooperative (80) model ensures that users are co-

owners of their health data. This model prioritizes user interests

and provides ownership rights through consent-based data sharing.

Users have significant control over their data, although the

cooperative model requires active participation and trust in

its management.

Solid project (81) empowers users with ownership of their

data by storing it in Pods (personal data spaces) managed by

pod providers. Users can decide who accesses their data and

revoke access anytime, ensuring solid data ownership. However, the

ownership model is broader and not exclusive.

While these projects address issues related to accessibility,

comprehensiveness, and ownership, they fall short of providing a

holistic solution to all three.

5.2 Interoperability and privacy aspects

As illustrated in Figure 2, according to the proposed reference

architecture, every citizen has a personal data space on the DCAS

network, where health data as a PHR is preserved under the

person’s ownership and complete control. A detailed explanation

of how health data is represented as PHRs on the DCAS

network is beyond the scope of this document. However, we are

working toward a unified clinical data model, formalized as RDF-

based Knowledge Graphs, which supports ContSys ontology and

federated semantic interoperability (66, 67, 82–94).

RDF is the standard data interchange model on the Web

(95). An FHIR observation resource represented as RDF triplets is

illustrated in Figure 11.

Traditionally, the RDF specification employs URIs to represent

resources. However, within the realm of DCAS networks, an

intriguing prospect arises: substituting URIs with hash values. Such

an approach could alleviate numerous issues inherent in URIs,

including collisions (distinct resources have the same URL) and

aliases (multiple URLs refer to the same resource). By comparing

URIs symbol by symbol, a match would unequivocally denote the

same resource, eliminating ambiguity. Thanks to the deduplication

feature of DCAS networks, it is ensured that a resource cannot

possess disparate URIs.

Moreover, the immutable nature of addresses in DCAS

guarantees that the meaning associated with any DCAS address-

based URI remains constant over time. Unlike URLs on the

internet, changes in ownership, and potential unavailability, the

hash values (content addresses) of resources on a DCAS network

remain unchangeable. This could pave the way for a new version of

the internet, aligning closely with Tim Berners-Lee’s vision of the

Giant Global Graph (96).

We wish to underscore some considerations concerning data

de-identification. Firstly, standard FHIR resources conventionally

reference the treating physician and the data owner, typically

the patient. While usually needed in API requests, this reference

becomes redundant when storing data as Personal Health Records

in the Personal Knowledge Graph. A more efficient approach

involves preserving all demographic data in a distinct data

subgraph. An affiliation to the owner is implicitly established by

graph connectivity, obviating the explicit need for references to

the subject within the resources. This omission of direct references

to the data subject streamlines the pseudonymization process,

requiring only the sharing of the address of the subgraph housing

clinical data. Other identifiable data, such as the treating physician’s

name and their working institution, can also be separated by

preserving them in a separate sub-graph, thus further strengthening

the mechanisms for protecting personal data.

Under ordinary circumstances, the root hash of personal

data is known exclusively to the data owner. While the owner

may share it for primary use by medical service providers, it is

conceivable to design protocols facilitating data sharing without

divulging the hash. However, for secondary use, a prerequisite

is the pseudonymization of the data. This involves creating a

pseudonymized copy by expunging all references to individuals,

institutions, locations, etc., retaining only essential clinical data.

Additionally, all dates within the dataset could be rendered relative

to the owner’s birthdate. To fortify re-identification control, the

hash of the pseudonymized dataset may be integrated into the

original dataset, ensuring that only the original owner can reverse

the pseudonymization process.

5.3 Compatibility with the European Health
Data Space

The proposed reference architecture seamlessly aligns with and

fully embraces the core principles of the European Health Data

Space (EHDS) initiative, offering several valuable enhancements.

The following outlines and provides commentary on enhancements

resulting directly from the DCAS network characteristics or the

proposed reference architecture.

Data security. The EHDS advocates for the availability of PHR

data via access points established by member states. However,

such access points entail heightened data leakage risks. In contrast,

the proposed reference architecture employs a DCAS network

for storing personal data, significantly mitigating such risks. By

decentralizing data access, any potential breach would, at worst,

result in the leakage of only one person’s data without any

impact on the security of others. This minimizes the vulnerability

associated with centralized databases, where a breach could

compromise millions of individuals’ data.

The protocol design achieves data security in a DCAS network.

Each network node stores the data locally as a key-value pair. The

value corresponds to a distinct data fragment, while the key signifies

its address (hash value). Individual fragments are encrypted

utilizing distinct keys, rendering the data incomprehensible to the

node. Consequently, the network nodes lack access to meaningful

information regarding the content of the stored data. Moreover,

the network routing protocol ensures that the transmission source

of a particular data fragment holds no implications regarding its

ownership. In other words, the recipient node remains unaware

of whether the sender serves as the original data source or

simply functions as an intermediary forwarder. Collectively, these

measures signify that network nodes possess no discernible

knowledge regarding the content or the rightful owner of the stored

data. Consequently, the risk of data leakage becomes virtually

negligible within such a system.
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FIGURE 11

Visualization of the HL7 FHIR (Fast Healthcare Interoperability Resources) observation resource example using the JSON Crack features.

The inherently distributed nature of the DCAS network renders

it challenging to launch cyber-attacks against it successfully. The

absence of a single point of failure confers a substantial advantage,

as the network remains unaffected even if specific nodes are

compromised due to such attacks. Thus, in theory, the proposed

architecture exhibits exceptional resilience against cyber threats.

Cost efficiency. Retaining personal data within DCAS networks

external to the EHDS infrastructure generates substantial cost

reductions for the entire system. This cost-effectiveness stems

from two key factors: First, the absence of concentrated personal

data in the system eliminates the need for extensive security

measures associated with centralized storage and data-sharing

protocols. Consequently, the security mechanisms implemented

are notably more economical. Second, the utilization of DCAS

networks predominantly leverages existing IT infrastructure.

This strategic approach significantly diminishes the initial

investments required to implement the entire solution and

the ongoing expenses essential for its maintenance. The

result is a streamlined, cost-effective system that aligns with

contemporary economic considerations while ensuring enhanced

data security.

Eliminating single points of failure. Another vulnerability of

storing personal health data in a centralized repository lies in a

single point of failure. In centralized repositories, the imperative

becomes ensuring regular backups, consequently escalating the

overall system cost. In contrast, in DCAS networks, each data

point is dispersed across multiple nodes according to the built-

in redundancy measures, eliminating the data loss risks associated

with a centralized repository. This inherent resilience safeguards

against potential data loss and obviates the need for recurrent and

resource-intensive backup procedures. Opting for DCAS networks

enhances data security and presents a cost-efficient alternative by

eradicating the expenses of mitigating the risks of a single point

of failure.

Simplicity. Eliminating the need to store personal data within

central repositories simplifies the system considerably. Typically,

an escalation in the complexity of information systems correlates

with an augmented security risk, as a more intricate structure

expands the potential attack surface (97). A simplified system

streamlines operational aspects and inherently mitigates security

risks. The logic is straightforward: the less intricate the system, the

more manageable and controllable potential security risks become.

Simplicity, in this context, acts as a strategic ally, making the

system more dependable (98) and security management simpler.

Simplicity enhances the system’s efficiency and bolsters its security.

Reducing ecological impact. Managing health data for

hundreds of millions of individuals in centralized systems demands

substantial resources, encompassing hardware, energy, and labor,

resulting in a notable ecological footprint. A centralized system’s

infrastructure, by its very nature, has enormous environmental

impact. In contrast, DCAS networks utilize resources more

efficiently. Operating predominantly on existing infrastructure,

they demand relatively few additional resources. Consequently, the

ecological footprint of such a decentralized solution is markedly

smaller. Utilizing DCAS networks, we enhance the operational

efficiency of health data management along with environmental

sustainability by making informed choices to minimize the overall

ecological impact of health data management systems.

Empowering data ownership. The core strategic objective of the

EHDS is that of data ownersmaintaining absolute control over their

data. When personal data resides on third-party servers, achieving

data owner control becomes challenging. However, adopting DCAS

networks establishes a paradigm where data owners have complete

and exclusive control over their data. Furthermore, the authority

to decide on data sharing rests solely with the owner, reinforcing

the realization of the stipulated strategic goal. By embracing

DCAS networks, we align with the EU’s vision of robust data

ownership and establish a framework that empowers individuals

with unequivocal access control, ensuring the integrity and privacy

of their data per EU strategic objectives.

Data integrity and version control. In DCAS networks,

utilizing hash values as data addresses guarantees data integrity.

Users can compute and compare the hash value with the

original data address. A congruence between the two assures
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the downloader that the downloaded data has not been altered.

Furthermore, content addressability introduces an automatic

versioning mechanisms’ any alteration to the data results in

assigning a new address reflective of the modified content.

Simultaneously, the prior version of the data persists at its

original address. This inherent version control facilitates the

preservation of the data modification history. Notably, this

characteristic empowers the creation of diverse sub-branches

within the data, a useful feature for scenarios requiring selective

information disclosure. Subsequently, these branches can be

seamlessly amalgamated into a cohesive whole when needed.

Data preservation. Given the absence of a central control

mechanism, the primary concern within a DCAS network is

the preservation of stored data. Volunteers, the main operators

of DCAS network nodes, may depart from the network

independently. To mitigate the risk of data loss, the network

must incorporate effective preservation mechanisms. One such

mechanism involves providing rewards to network node operators,

which incentivizes them to keep their network nodes online.

Additionally, data preservation is facilitated by redundancy,

wherein data is distributed across multiple network nodes.

Consequently, the departure of a single node does not result in data

loss. Ensuring an expansive network size, minimizing the likelihood

of node departure, and maintaining sufficient data redundancy

make it possible to minimize the probability of data loss to nearly

negligible levels.

Re-centralization poses a significant risk to decentralized

data networks, referring to accumulating a significant proportion

of the network nodes under the control of a single operator.

This consolidation empowers the operator to disrupt or halt

the network’s functionality. To avert this potential threat,

the network must attain a substantial scale to render the

concentration of a majority of network nodes under the oversight

of a single operator unfeasible, both from a technical and

financial standpoint. Ensuring a sizable network diminishes the

likelihood of re-centralization, safeguarding the network’s integrity

and resilience.

Data quality enhancement. The reference architecture we

propose substantially improves data quality. By storing PHR

in a single logical location in a unified and coherent manner,

issues arising from incomplete or conflicting information can be

mitigated by the data owner’s validation. Furthermore, the inherent

characteristics of DCAS networks automatically guarantee data

integrity and facilitate the preservation of a full version history.

Comprehensiveness. Storing a PHR in a unified location

under the data owner’s complete control resolves the prevalent

issue of fragmented and incomplete data. Such data completeness

effectively tackles the drawbacks associated with the secondary

use of health data, which often necessitates gathering data from

disparate service providers and increases the data privacy risks

associated with secondary use.

Global scalability. DCAS networks operate using the Kademlia

metric, eliminating the geographical dimension. For redundancy

purposes, each data chunk is stored on all nodes belonging to a

Kademlia neighborhood. It is important to recognize that within

the Kademlia metric, nodes belonging to the same neighborhood

may be widely dispersed geographically. In light of this, since

each node only stores a small portion of the data, the question

of where the data is stored in a geographical sense becomes

meaningless. Ultimately, the data is stored simultaneously nowhere

and everywhere.

Data de-duplication. Within the network, only one logical copy

of identical data exists at any given time. This becomes particularly

evident when dealing with large, immutable data entities (e.g.,

images, videos). Even if these entities are included in multiple data

sets, such as in the pseudonymization process, only a single logical

copy is present within the network. Thus, there is no need for

redundant copies of these large data entities; a mere reference to

them is sufficient.

5.4 Future work

This paper concludes the first part of our research by

proposing the reference architecture for resolving health data

accessibility, comprehensiveness, and ownership dilemmas by

preserving semantically interoperable PHRs in DCAS networks.

We have sketched the ideas (99) and submitted the technical

solution as an EU patent application (100). Still, we have only

proposed a technical solution. The proposed architecture’s social,

organizational, and legal aspects and applicability in real-life

primary and secondary cases are for future study. The same is

related to formal and real-life-based evaluation of the properties

of DCAS networks in medical, medical emergency, secondary,

and private use cases. Therefore, most of the research topics we

proposed in Klementi et al. (99) are still to be studied and analyzed.

Those topics are as follows:

• Data model—currently, we have only preliminary ideas of how

the data in PHR in a DCAS network should be preserved;

therefore, a data model that supports federated semantic

interoperability with the existing and future developed

hospital, regional, and national systems and also supports

various data communication protocols (e.g., HL7 v.2.7, CDA

or FHIR), reference models (e.g., HL7 RIM or openEHR RM),

classifiers (SNOMED, ICD, LOINC or their different versions),

languages (e.g., English, Estonian) as well as structured and

unstructured data must be designed and implemented.

• Data quality—the mechanisms must be implemented for how

the data is validated technically and clinically before being

preserved in PHR in a DCAS network.

• Data interoperability—our research group is related to the

development of TermX,1 a platform for developing healthcare

terminology and interoperability and other federated semantic

interoperability-related development activities (66, 67, 90, 91,

101).

• Primary use—together with physicians, we are designing

primary use-case studies to combine real-world clinical and

patient-entered data in the treatment of selected diseases, e.g.,

cardiovascular and prostate diseases.

1 https://termx.org/
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• Secondary use—we are designing different real-world

secondary use cases related to clinical trials, public health,

medical statistics, care efficiency, quality, etc.

• Data security and privacy—one of the directions here is to

design a technical and organizational solution for health data

de-identification so that the de-identified data is reliable for

secondary use; another direction is to design and conduct

proper real-world evidence-based experiments to justify these

properties in primary and secondary use-cases.

• Data integrity and transparency—although data integrity

and transparency arise from DCAS properties, we have to

justify these in real-world evidence-based experiments during

primary and secondary use.

• Linked data—the potential role of a DCAS network as the

foundation for the Giant Global Graph (by Tim Berners-Lee)

is an interesting related research topic.

6 Conclusion

The reuse of health data presents a significant challenge

that currently lacks an effective solution. This article delves into

the issue through the lenses of accessibility, completeness, and

ownership. To address these challenges, we propose a novel,

globally scalable architecture for a personal health data space

based on decentralized content-addressable networks. It ensures

that data subjects retain complete and exclusive control over their

data, while enabling them to share it with third parties as they

see fit.

To illustrate the problems, we present four use cases from

the Estonian e-health system, demonstrating how the current

methods fail to effectively address the three dilemmas. Following

this, we analyze how the proposed new strategy resolves

these issues.

The proposed architecture presents a notable departure from

previous approaches to health data management and introduces a

paradigm shift in the manner in which data storage is conceived.

Therefore, it is expected that society will require a significant

period of adjustment. Consequently, the feasibility of implementing

the described solution in the immediate future appears remote.

Nonetheless, it remains imperative for societal discourse to

acclimate to emerging technological possibilities and navigate

alongside them.

By providing enhanced control, interoperability, security,

and transparency, the proposed solution has the potential to

fundamentally transform how individuals interact with their health

data. It empowers individuals to take an active role in their

healthcare journey, fostering a more patient-centric and secure

healthcare environment.
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16. Hulsen T, Friedeckỳ D, Renz H, Melis E, Vermeersch P, Fernandez-Calle P.
From big data to better patient outcomes. Clin Chem Lab Med. (2023) 61:580–6.
doi: 10.1515/cclm-2022-1096

17. Clayton EW, Embí PJ, Malin BA. Dobbs and the future of health data privacy
for patients and healthcare organizations. J AmMed Informat Assoc. (2023) 30:155–60.
doi: 10.1093/jamia/ocac155

18. Jamshidi M, Moztarzadeh O, Jamshidi A, Abdelgawad A, El-Baz AS, Hauer L.
Future of drug discovery: the synergy of edge computing, internet of medical things,
and deep learning. Fut Internet. (2023) 15:142. doi: 10.3390/fi15040142

19. Williamson SM, Prybutok V. Balancing privacy and progress: a review of privacy
challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Appl
Sci. (2024) 14:675. doi: 10.3390/app14020675

20. Li H, Li C, Wang J, Yang A, Ma Z, Zhang Z, et al. Review on security of
federated learning and its application in healthcare. Fut. Generat. Comput. Syst. (2023)
144:271–90. doi: 10.1016/j.future.2023.02.021

21. Getzen E, Ungar L, Mowery D, Jiang X, Long Q. Mining for equitable health:
assessing the impact of missing data in electronic health records. J Biomed Informat.
(2023) 139:104269. doi: 10.1016/j.jbi.2022.104269

22. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D. Key challenges
for delivering clinical impact with artificial intelligence. BMC Medicine. (2019) 17:1–9.
doi: 10.1186/s12916-019-1426-2

23. Shickel B, Tighe PJ, Bihorac A, Rashidi P. Deep EHR: a survey of recent advances
in deep learning techniques for electronic health record (EHR) analysis. IEEE J Biomed
Health Informat. (2018) 22:1589–604. doi: 10.1109/JBHI.2017.2767063

24. Gansel X, Mary M, van Belkum A. Semantic data interoperability, digital
medicine, and e-health in infectious diseasemanagement: a review. Eur J ClinMicrobiol
Infect Dis. (2019) 38:1023–34. doi: 10.1007/s10096-019-03501-6

25. Amar F, April A, Abran A. Electronic health record and semantic issues using
fast healthcare interoperability resources: systematic mapping review. J Med Internet
Res. (2024) 26:e45209. doi: 10.2196/45209

26. Fennelly O, Moroney D, Doyle M, Eustace-Cook J, Hughes M. Key
interoperability factors for patient portals and electronic health records: a scoping
review. Int J Med Informat. (2024) 2024:105335. doi: 10.1016/j.ijmedinf.2023.105335

27. Liddell K, Simon DA, Lucassen A. Patient data ownership: who owns your
health? J Law Biosci. (2021) 8:lsab023. doi: 10.1093/jlb/lsab023

28. Martani A, Geneviève LD, Elger B, Wangmo T. “It’s not something you can take
in your hands”. Swiss experts’ perspectives on health data ownership: an interview-
based study. Br Med J Open. (2021) 11:e045717. doi: 10.1136/bmjopen-2020-045717

29. EU. Regulation (EU) 2016/679 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation) (Text with EEA relevance). Off J Eur Un. (2016)
119:1–88.

30. Kahn SD, Terry SF. Who owns (or controls) health data? Sci Data. (2024) 11:156.
doi: 10.1038/s41597-024-02982-1
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