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Background: Heart failure is a cardiovascular disorder, while sepsis is a common 
non-cardiac cause of mortality. Patients with combined heart failure and 
sepsis have a significantly higher mortality rate and poor prognosis, making 
early identification of high-risk patients and appropriate allocation of medical 
resources critically important.

Methods: We constructed a survival prediction model for patients with heart 
failure and sepsis using the eICU-CRD database and externally validated it 
using the MIMIC-IV database. Our primary outcome is the 28-day all-cause 
mortality rate. The Boruta method is used for initial feature selection, followed 
by feature ranking using the XGBoost algorithm. Four machine learning 
models were compared, including Logistic Regression (LR), eXtreme Gradient 
Boosting (XGBoost), Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes 
(GNB). Model performance was assessed using metrics such as area under the 
curve (AUC), accuracy, sensitivity, and specificity, and the SHAP method was 
utilized to visualize feature importance and interpret model results. Additionally, 
we conducted external validation using the MIMIC-IV database.

Results: We developed a survival prediction model for heart failure complicated 
by sepsis using data from 3891 patients in the eICU-CRD and validated it externally 
with 2928 patients from the MIMIC-IV database. The LR model outperformed all 
other machine learning algorithms with a validation set AUC of 0.746 (XGBoost: 
0.726, AdaBoost: 0.744, GNB: 0.722), alongside accuracy (0.685), sensitivity 
(0.666), and specificity (0.712). The final model incorporates 10 features: age, 
ventilation, norepinephrine, white blood cell count, total bilirubin, temperature, 
phenylephrine, respiratory rate, neutrophil count, and systolic blood pressure. 
We employed the SHAP method to enhance the interpretability of the model 
based on the LR algorithm. Additionally, external validation was conducted 
using the MIMIC-IV database, with an external validation AUC of 0.699.

Conclusion: Based on the LR algorithm, a model was constructed to effectively 
predict the 28-day all-cause mortality rate in patients with heart failure 
complicated by sepsis. Utilizing our model predictions, clinicians can promptly 
identify high-risk patients and receive guidance for clinical practice.
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1 Introduction

The 2018 medical insurance data reveals that sepsis and heart 
failure, respectively, ranked first and second in 30-day readmission 
rates among patients (1). Sepsis is defined as a dysregulated host 
response to infection, leading to organ failure (2). In 2017, an 
estimated 48.9 million cases of sepsis were recorded globally, 
resulting in 11 million sepsis-related deaths, which accounted for 
19.7% of all global deaths (3). The mortality rates of sepsis in 
intensive care units and hospitals are reported to be  25.8 and 
35.3%, respectively (4), with annual losses exceeding $24 billion 
(5, 6). Heart failure is a cardiovascular disorder characterized by 
high incidence and mortality rates, representing an escalating 
global epidemic (7). Over 64 million individuals worldwide are 
afflicted with heart failure, severely compromising their quality of 
life (8). Chronic heart failure is the leading complication in septic 
patients, with two-thirds of critically ill cases having prior heart 
failure (9, 10). Heart failure patients may exhibit underlying 
circulatory dysfunction and impaired cardiac reserve, placing 
them at increased risk if they develop sepsis. Alon et al. discovered 
that heart failure patients admitted for sepsis had a higher 
mortality rate compared to those without heart failure (51% vs. 
41%; p = 0.015) (11). Walker et al. studied the effect of sepsis on 
heart failure patient mortality and found it caused one-fourth of 
deaths (12). The high incidence and mortality rates stress the 
importance of early identification, assessment, and management 
of heart failure patients with sepsis.

Currently, there are no identified predictive models for survival 
in patients with heart failure complicated by sepsis. The Sequential 
Organ Failure Assessment (SOFA), Simplified Acute Physiology 
Score II (SAPS II), and Acute Physiology Score III (APS III) are 
frequently utilized assessment tools for predicting disease prognosis 
(13, 14). Despite their extensive utilization, they exhibit limitations 
such as the complexity of assessment, insufficient specificity, and 
potential suitability restricted to specific disease types or clinical 
contexts. The current research trend is to integrate novel biomarkers 
(15, 16) into established scoring systems or to revamp these systems 
(17) to improve their predictive accuracy for disease prognosis. In 
clinical practice, machine learning is widely applied for result 
prediction, diagnosis, medical image interpretation, disease risk 
assessment, and treatment planning (18, 19). Compared to 
traditional statistical methods, machine learning excels in handling 
complex data, exhibiting higher accuracy and efficiency (20). In the 
past, the application of machine learning was constrained by limited 
interpretability. However, with the emergence of techniques like 
SHAP, users can now professionally understand model predictions 
with greater clarity (21).

Our research aims to build survival prediction models using 
various machine learning algorithms to assess the overall in-hospital 
mortality rate among patients with heart failure complicated by 
sepsis. We utilize the eICU-CRD database to build machine learning 
models, selecting the one with optimal predictive performance. 
Subsequently, we conduct external validation using the MIMIC-IV 
database. Additionally, the SHAP method is used to explain model 
predictions and assess the importance of features. The objective of 
this study is to identify critically ill patients and offer guidance for 
clinical practice.

2 Materials and methods

2.1 Data sources and study population

This study draws data from two primary sources: the eICU 
Collaborative Research Database (eICU-CRD) and The Medical 
Information Mart for Intensive Care IV database (MIMIC-IV). The 
eICU-CRD database encompasses various ICU units across the 
United  States, offering a comprehensive array of clinical data, 
physiological parameters, and medical events. Spanning from 2014 to 
2015, it meticulously documents information for over 200,000 
patients, facilitating medical research endeavors and data-informed 
clinical decision-making (22). On the other hand, MIMIC-IV (version 
2.2) represents an extensive repository of intensive care data, featuring 
detailed records of more than 190,000 ICU patients from 2008 to 2019 
(23). This database is characterized by its exhaustive collection of 
clinical details, including demographic profiles, laboratory findings, 
and medication histories, serving as invaluable resources for rigorous 
clinical investigations.

We identified patients with heart failure complicated by sepsis 
from both the eICU-CRD and MIMIC-IV databases using ICD-9 and 
ICD-10 codes. The exclusion criteria for the study population are: (1) 
age under 18 years, (2) ICU stay duration less than 24 h, and (3) 
clinical information missing rate exceeding 30% at data collection. For 
patients with multiple hospital admissions or ICU visits, only the first 
ICU experience during the initial hospital admission is considered. 
Heart failure was defined as a syndrome resulting from structural or 
functional cardiac abnormalities that lead to inadequate cardiac 
output and congestion in the systemic or pulmonary circulation, 
encompassing all types of heart failure with different ejection 
fractions. Sepsis was diagnosed based on the Sepsis-3.0 guidelines, 
which define it as life-threatening organ dysfunction caused by a 
dysregulated host response to infection. A SOFA score ≥ 2 (or a 
qSOFA score ≥ 2 for suspected infection in non-ICU settings) was 
used to diagnose sepsis.

2.2 Data extraction and preprocessing

In this study, we  included ICU patients diagnosed with heart 
failure and sepsis, and extracted the following data: (1) Demographics: 
age, gender, height, and weight; (2) Vital Signs: temperature (T), heart 
rate (HR), respiratory rate (R), systolic blood pressure (SBP), diastolic 
blood pressure (DBP), mean blood pressure (MBP), and peripheral 
oxygen saturation (SpO2); (3) Laboratory parameters: complete blood 
count, liver and kidney function tests, electrolytes, lipid profile, blood 
gas analysis, coagulation function, cardiac enzymes, and BNP; (4) 
Comorbidities: hypertension, diabetes mellitus, hyperlipidemia, 
chronic obstructive pulmonary disease (COPD), pneumonia, chronic 
kidney disease (CKD), and atrial fibrillation (AF); (5) Medication data: 
angiotensin-converting enzyme inhibitors/angiotensin II receptor 
blockers (ACEI/ARB), beta Blockers, furosemide, spironolactone, 
dobutamine, dopamine, epinephrine, milrinone, norepinephrine, and 
phenylephrine; and (6) Other Indicators: Ventilation and 24-h fluid 
balance. The primary outcome is the 28-day all-cause mortality rate.

Initially, we transformed certain indicators, such as computing 
BMI from height and weight and determining 28-day in-hospital 
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mortality using hospitalization duration and survival status. Variables 
with over 30% missing data were removed, and missing values in the 
remaining features were imputed using KNN. Outliers were identified 
using the 1.5 times interquartile range method, particularly focusing 
on BMI, mechanical ventilation time, and 24-h fluid balance, and were 
subsequently removed. Additionally, Spearman correlation coefficients 
were calculated to evaluate variable relationships, while VIF values 
assessed multicollinearity. Variables with high correlation or VIF 
exceeding 5 underwent pre-screening. Continuous variables were 
standardized for model stability, and categorical variables were 
transformed into dummy variables via one-hot encoding. Despite 
minor sample imbalances in the outcome variable, we chose not to 
employ sample balancing techniques.

2.3 Model construction and evaluation

The Boruta method is used for initial feature screening, 
determining feature importance by comparing them with randomly 
generated “shadow features” (24). The XGBoost method is employed 
for importance ranking of the preliminarily selected features. Model 
construction and validation are conducted using the EICU dataset, 
with 10-fold cross-validation to generate training and validation sets, 
and Logistic Regression (LR), eXtreme Gradient Boosting (XGBoost), 
Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes (GNB) 
models are established and validated. Model performance is evaluated 
on the validation set using metrics such as the area under the curve 
(AUC) for discrimination, calibration curve for accuracy, and DCA 
curve for clinical utility, as well as metrics including accuracy, 
sensitivity, specificity, positive predictive value, negative predictive 
value, and F1 score. The final predictive model is optimized using 
hyperparameter tuning and grid search. Additionally, the MIMIC 
dataset is utilized as external validation data, following the same data 
processing methods as the EICU dataset, with evaluation based on 
metrics including AUC, accuracy, sensitivity, and specificity to assess 
model generalization performance.

2.4 Model interpretation

SHAP (SHapley Additive exPlanations) is a technique based on 
game theory’s Shapley values (25). It’s used to interpret machine 
learning predictions by dissecting the contribution of each feature. 
This enhances model transparency and ensures fair decision-making. 
We employ SHAP to analyze the outcomes of our top-performing 
machine learning model. This method not only identifies crucial 
features for optimizing model performance but also provides detailed 
insights through feature contribution charts, summary plots, and 
explanations for individual predictions. These tools help us understand 
the extent of each feature’s influence, whether it’s positive or negative, 
and how they collectively impact model outcomes.

2.5 Statistical analysis

For continuous variables, we display using mean and standard 
deviation, and comparison is done using t-tests (or Wilcoxon 
rank-sum tests); for categorical variables, presentation is in 

percentages, and comparison is conducted using chi-square tests (or 
Fisher’s exact tests). A p-value <0.05 is deemed statistically significant. 
All statistical analyses were performed using R version 4.2.3 and 
Python version 3.11.4.

3 Results

3.1 Baseline characteristics

According to the inclusion and exclusion criteria, our study 
cohort comprised a total of 6819 patients with heart failure and sepsis. 
Among these, 3891 cases from the eICU-CRD were used for model 
construction, while 2928 cases from the MIMIC-IV database were 
used for external validation. As shown in Figure  1, the screening 
process is illustrated. During the selection process, patients with ICU 
stays less than 1 day or under 18 years old were excluded. Subsequently, 
data processing involved removing outliers and handling missing 
values. In the eICU-CRD database, 560 patients (14.4%) died within 
28 days, compared to 660 patients (22.5%) in the MIMIC-IV database. 
Differences in baseline characteristics are summarized in Table 1. In 
the eICU-CRD database, compared to the survival group, patients in 
the death group exhibited higher age, white blood cell count, 
neutrophil count, TBIL (total bilirubin), ALT (alanine 
aminotransferase), BUN (blood urea nitrogen), respiratory rate, fluid 
balance, and mechanical ventilation time, and lower BMI (body mass 
index), calcium, blood pressure, and peripheral oxygen pressure. 
Differences in comorbidities, such as atrial fibrillation, hypertension, 
and pneumonia, were also observed between the two groups. 
Additionally, there were differences in medication usage between the 
two groups, including the use of ACEI/ARB (ACE inhibitors/
angiotensin receptor blockers), beta-blockers, furosemide, 
spironolactone, dobutamine, dopamine, epinephrine, norepinephrine, 
and phenylephrine.

3.2 Feature selection

We eliminated features with a missing rate exceeding 30%, as 
demonstrated in Appendix Figure  1. Features with notably high 
missing rates are primarily found in laboratory tests such as cardiac 
enzymes, blood gas analysis, lipid profile, and coagulation function. 
Additionally, guided by the correlation heatmap showing features with 
correlation coefficients greater than 0.5 and features with VIF 
exceeding 5, as illustrated in Appendix Figure 2, we conducted further 
screening. Prior to model construction, we excluded features with 
high correlation and VIF, including hemoglobin, lymphocyte count, 
chloride, aspartate aminotransferase, blood urea nitrogen, mean blood 
pressure, and diastolic blood pressure.

The Boruta method, based on random forests, assesses feature 
importance by comparing original features with randomly generated 
“shadow features.” We applied Boruta for initial feature selection, as 
depicted in Figure 2. Green denotes important features included in the 
model to enhance predictive capability; red represents unimportant 
features excluded from consideration; yellow indicates features with 
uncertain importance requiring further investigation. Blue represents 
shadow features for comparison but not used in model training. 
Boruta identified 22 initial features, including age, WBC (white blood 
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cell count), NE (neutrophil count), MONO (monocyte count), PLT 
(platelet count), sodium, calcium, TBIL (total bilirubin), alanine 
aminotransferase, creatinine, T (temperature), R (respiratory rate), 
SBP (systolic blood pressure), oxygen saturation, ventilation time, 
BMI, atrial fibrillation, dopamine, epinephrine, norepinephrine, 
phenylephrine, and ventilation.

The XGBoost algorithm ranks feature importance based on split 
frequency and gain in decision trees. Appendix Figure 3 shows our 
feature importance ranking using XGBoost. The top 10 variables, in 
descending order of importance, are: age, ventilation, norepinephrine, 
WBC, TBIL, T, phenylephrine, R, NE, SBP.

3.3 Model construction

This study utilized four binary classification machine learning 
algorithms, Logistic Regression (LR), eXtreme Gradient Boosting 
(XGBoost), Adaptive Boosting (AdaBoost), and Gaussian Naive Bayes 
(GNB), to construct predictive models. Employing the eICU database, 
we  implemented a 10-fold cross-validation technique to establish 
training and validation sets, followed by evaluation on a separate test 
cohort. Figure  3 and Table  2 illustrate the performance of these 
models. The ROC curve (Figure  4A) highlights LR’s superior 
performance, achieving an AUC of 0.746 in the test cohort, compared 
to XGBoost (0.726), AdaBoost (0.744), and GNB (0.722). Furthermore, 
LR’s calibration curve (Figure 4B) closely aligns with the ideal line, 
indicating excellent calibration. Decision curve analysis (DCA) 
(Figure  4C) indicates LR’s highest net benefit within the 0–80% 
threshold range. The precision-recall (PR) curve (Figure 4D) illustrates 
LR’s higher recall at sustained high precision. Additionally, LR 

demonstrates robust performance across various metrics, including 
accuracy (0.685), sensitivity (0.666), specificity (0.712), positive 
predictive value (0.285), negative predictive value (0.914), and F1 
score (0.397). Consequently, we selected the LR algorithm for model 
construction, incorporating 10 variables: age, ventilation, 
norepinephrine, WBC, TBIL, T, phenylephrine, R, NE, and 
SBP. Through hyperparameter tuning and grid search optimization, 
we  established the model parameters as follows: tol (convergence 
measure): 1e-06, penalty (regularization type): l2, max_iter (number 
of iterations): 100, C (regularization factor): 1.0.

3.4 Model interpretation

This study employs the SHAP method to interpret model results, 
presenting both SHAP summary plots and SHAP force plots. In the 
SHAP summary plot, the Y-axis represents features, while the X-axis 
indicates the impact of features on outcomes. Each point represents a 
sample, with red indicating high-risk values and blue indicating low-risk 
values. As shown in Figure 3A, the LR model’s feature importance from 
top to bottom is: age, ventilation, norepinephrine, T, R, TBIL, SBP, WBC, 
NE, phenylephrine. Older age (red points) correlates with higher SHAP 
estimated values, predicting an increased risk of mortality. Additionally, 
higher white blood cell count, total bilirubin, and respiratory rate are 
associated with increased mortality risk. Patients using ventilation, 
norepinephrine, and phenylephrine also show increased mortality risk. 
Furthermore, lower temperature and lower systolic blood pressure are 
associated with increased mortality risk. In the SHAP force plot, each 
Shapley value is represented by an arrow, indicating whether it positively 
(increases) or negatively (decreases) affects the prediction. As illustrated 

FIGURE 1

Flowchart of patient selection and research methodology.
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TABLE 1 Baseline characteristics of the eICU-CRD and MIMIC-IV databases, categorized by survival and death groups.

eICU-CRD MIMIC-IV

Survival Death
p

Survival Death

(N =  3331) (N =  560) (N =  2268) (N =  660)

Age 69.5 (13.9) 74.5 (12.2) <0.001 71.3 (13.4) 76.7 (11.2)

Gender 0.737

  0 1516 (45.5%) 250 (44.6%) 929 (41.0%) 283 (42.9%)

  1 1815 (54.5%) 310 (55.4%) 1339 (59.0%) 377 (57.1%)

BMI 29.9 (7.63) 28.5 (7.12) <0.001 29.2 (6.32) 28.0 (6.16)

WBC 11.5 (6.79) 15.5 (20.7) <0.001 13.6 (8.91) 15.2 (10.3)

RBC 3.73 (0.77) 3.69 (0.76) 0.263 3.44 (0.77) 3.54 (0.79)

NE 77.7 (12.5) 81.1 (12.3) <0.001 79.2 (10.6) 81.6 (12.0)

LYM 11.6 (8.84) 8.65 (8.24) <0.001 12.1 (8.76) 8.44 (7.73)

MONO 7.36 (3.94) 6.70 (4.20) 0.001 5.03 (3.27) 5.35 (3.24)

PLT 202 (88.5) 200 (104) 0.649 196 (99.9) 212 (121)

Hb 10.9 (2.28) 10.9 (2.21) 0.941 10.2 (2.26) 10.4 (2.26)

Na 138 (5.27) 138 (6.19) 0.047 139 (4.94) 138 (6.21)

K 4.23 (0.78) 4.29 (0.81) 0.077 4.29 (0.73) 4.47 (0.88)

Cl 102 (6.68) 102 (7.60) 0.122 104 (6.66) 102 (7.61)

Ca 8.49 (0.74) 8.33 (0.89) <0.001 8.29 (0.79) 8.25 (0.94)

GLU 151 (76.1) 155 (88.4) 0.341 151 (74.3) 169 (86.4)

TBIL 0.93 (0.91) 1.21 (1.35) <0.001 1.01 (1.55) 1.57 (3.70)

ALT 90.1 (403) 179 (480) <0.001 100 (466) 160 (509)

AST 124 (644) 266 (783) <0.001 155 (698) 279 (1258)

BUN 36.0 (23.6) 42.3 (26.0) <0.001 32.9 (25.1) 43.3 (28.6)

Cr 2.11 (2.09) 2.07 (1.49) 0.58 1.69 (1.63) 2.09 (1.75)

T 36.7 (0.79) 36.5 (1.02) <0.001 36.7 (2.04) 36.5 (2.42)

HR 89.3 (21.0) 90.6 (21.9) 0.169 88.2 (19.6) 91.2 (21.2)

R 21.7 (6.71) 22.8 (7.09) 0.001 19.0 (6.42) 20.9 (6.55)

SBP 125 (28.4) 115 (26.2) <0.001 118 (24.0) 116 (25.1)

DBP 69.4 (18.5) 64.9 (17.7) <0.001 67.7 (144) 65.6 (19.2)

MBP 87.7 (19.7) 81.5 (18.3) <0.001 77.5 (18.0) 79.4 (38.5)

SPO2 96.6 (4.80) 95.5 (7.82) 0.001 97.3 (18.7) 95.8 (5.93)

AF <0.001

  0 2585 (77.6%) 382 (68.2%) 550 (24.3%) 162 (24.5%)

  1 746 (22.4%) 178 (31.8%) 1718 (75.7%) 498 (75.5%)

CKD 0.137

  0 2749 (82.5%) 447 (79.8%) 1355 (59.7%) 385 (58.3%)

  1 582 (17.5%) 113 (20.2%) 913 (40.3%) 275 (41.7%)

COPD 0.468

  0 2726 (81.8%) 466 (83.2%) 1121 (49.4%) 368 (55.8%)

  1 605 (18.2%) 94 (16.8%) 1147 (50.6%) 292 (44.2%)

Diabetes 0.689

 0 3253 (97.7%) 549 (98.0%) 2061 (90.9%) 577 (87.4%)

 1 78 (2.34%) 11 (1.96%) 207 (9.13%) 83 (12.6%)

Hyperlipidemia 0.687

(Continued)
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TABLE 1 (Continued)

eICU-CRD MIMIC-IV

Survival Death
p

Survival Death

(N =  3331) (N =  560) (N =  2268) (N =  660)

  0 3104 (93.2%) 525 (93.8%) 1670 (73.6%) 415 (62.9%)

  1 227 (6.81%) 35 (6.25%) 598 (26.4%) 245 (37.1%)

Hypertension 0.002

  0 2435 (73.1%) 445 (79.5%) 1464 (64.6%) 367 (55.6%)

  1 896 (26.9%) 115 (20.5%) 804 (35.4%) 293 (44.4%)

Pneumonia <0.001

  0 2676 (80.3%) 396 (70.7%) 1055 (46.5%) 287 (43.5%)

  1 655 (19.7%) 164 (29.3%) 1213 (53.5%) 373 (56.5%)

ACEI/ARB <0.001

  0 2839 (85.2%) 537 (95.9%) 1393 (61.4%) 574 (87.0%)

  1 492 (14.8%) 23 (4.11%) 875 (38.6%) 86 (13.0%)

Betablockers <0.001

  0 2132 (64.0%) 409 (73.0%) 341 (15.0%) 236 (35.8%)

  1 1199 (36.0%) 151 (27.0%) 1927 (85.0%) 424 (64.2%)

Furosemide <0.001

  0 1782 (53.5%) 346 (61.8%) 252 (11.1%) 142 (21.5%)

  1 1549 (46.5%) 214 (38.2%) 2016 (88.9%) 518 (78.5%)

Spironolactone 0.001

  0 3177 (95.4%) 552 (98.6%) 2082 (91.8%) 624 (94.5%)

  1 154 (4.62%) 8 (1.43%) 186 (8.20%) 36 (5.45%)

Dobutamine <0.001

  0 3180 (95.5%) 505 (90.2%) 2100 (92.6%) 559 (84.7%)

  1 151 (4.53%) 55 (9.82%) 168 (7.41%) 101 (15.3%)

Dopamine 0.001

  0 3186 (95.6%) 517 (92.3%) 2128 (93.8%) 554 (83.9%)

  1 145 (4.35%) 43 (7.68%) 140 (6.17%) 106 (16.1%)

Epinephrine <0.001

  0 3240 (97.3%) 520 (92.9%) 1814 (80.0%) 559 (84.7%)

  1 91 (2.73%) 40 (7.14%) 454 (20.0%) 101 (15.3%)

Milrinone 0.86

  0 3232 (97.0%) 542 (96.8%) 1351 (59.6%) 214 (32.4%)

  1 99 (2.97%) 18 (3.21%) 917 (40.4%) 446 (67.6%)

Norepinephrine <0.001

  0 2871 (86.2%) 362 (64.6%) 1344 (59.3%) 370 (56.1%)

  1 460 (13.8%) 198 (35.4%) 924 (40.7%) 290 (43.9%)

Phenylephrine <0.001

  0 3215 (96.5%) 495 (88.4%) 2024 (89.2%) 612 (92.7%)

  1 116 (3.48%) 65 (11.6%) 244 (10.8%) 48 (7.27%)

Ventilation <0.001 111 (145) 119 (110)

  0 2338 (70.2%) 272 (48.6%)

  1 993 (29.8%) 288 (51.4%) 88 (3.88%) 50 (7.58%)

(Continued)
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in Figure  3B, increases in white blood cell count, decreases in 
temperature, and increases in total bilirubin push the predicted mortality 
risk higher, while younger age and lower neutrophil count push the 
predicted mortality risk lower. It’s important to note that due to 
standardization of numerical variables to a mean of 0 and a variance of 
1, the data in the plots are not in their original scale.

3.5 External validation

We selected 2928 cases of patients with heart failure and sepsis 
from the MIMIC-IV database for external validation. In the MIMIC 
database, these patients had a 28-day in-hospital mortality rate of 
22.5%, slightly lower than that of the eICU-CRD database (14.4%). 
Prior to external validation, we  applied the same data processing 
methods to the MIMIC data as we did to the eICU-CRD data. The 
validation results revealed an AUC of 0.699 and a Brier score of 0.169. 
Additionally, the accuracy, sensitivity, specificity, positive predictive 
value, negative predictive value, and F1 score were 0.699, 0.156, 0.403, 
0.673, 0.648, and 0.261, respectively. With the AUC difference between 
the external validation and validation/test sets being less than 0.1, 
we conclude that the LR model demonstrates favorable stability.

4 Discussion

This study represents the pioneering application of machine 
learning algorithms to forecast in-hospital mortality among patients 

with heart failure and sepsis. Our model can be applied to heart failure 
patients with sepsis upon ICU admission. Our model exhibits 
exceptional performance in distinguishing between survival and 
mortality outcomes, coupled with robust calibration and clinical 
relevance. The utilization of external validation bolsters the model’s 
reliability and generalizability, validating its efficacy across diverse 
datasets and fortifying the study’s scientific robustness and credibility. 
Leveraging SHAP for visual interpretation of model outcomes 
enhances the interpretability of predictive results. Furthermore, the 
model’s reliance on a concise and readily accessible set of predictive 
variables underscores its suitability for clinical deployment. Our 
model could be  integrated into clinical decision support systems 
within hospitals, especially in ICU. The model would automatically 
calculate the mortality risk for patients with heart failure complicated 
by sepsis using routinely collected clinical data, with outputs presented 
to clinicians via the electronic health record system. This would 
provide real-time risk assessments to help prioritize care and optimize 
resource allocation.

Our research findings suggest that the Logistic Regression (LR) 
model exhibits superior performance in predicting the survival rate 
of patients with heart failure complicated by sepsis. Moreover, 
studies indicate that the LR algorithm performs effectively in 
forecasting various clinical binary outcomes (26, 27). LR offers 
several advantages, including its simplicity, broad applicability, and 
straightforward result interpretation, establishing it as a pivotal and 
dependable modeling technique for binary classification problems 
(28). However, LR has its limitations; it is sensitive to the quality of 
feature engineering, vulnerable to outliers, and unable to handle 

TABLE 1 (Continued)

eICU-CRD MIMIC-IV

Survival Death
p

Survival Death

(N =  3331) (N =  560) (N =  2268) (N =  660)

Ventilation hour 357 (1664) 819 (2425) <0.001 2180 (96.1%) 610 (92.4%)

Balance −520.14 (4968) 1272 (7270) <0.001 1991 (4988) 2771 (3971)

BMI, Body mass index; WBC, White blood cell; RBC, Red blood cell; NE, Neutrophil; LYM, Lymphocyte; MONO, Monocyte; PLT, Platelet; Hb, Hemoglobin; Na, Sodium; K, Potassium; Cl, 
Chloride; Ca, Calcium; GLU, Glucose; TBIL, Total bilirubin; ALT, Alanine aminotransferase; AST, Aspartate aminotransferase; BUN, Blood urea nitrogen; Cr, Creatinine; T, Temperature; HR, 
Heart rate; R, Respiratory rate; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; MBP, Mean blood pressure; SPO2, Oxygen saturation; AF, Atrial fibrillation; CKD, Chronic kidney 
disease; COPD, Chronic obstructive pulmonary disease; ACEI/ARB, Angiotensin-converting enzyme inhibitor/angiotensin receptor blocker; betablockers, Beta-blockers; balance: fluid 
balance in the previous 24 h.

FIGURE 2

Feature selection analyzed by Boruta algorithm.
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complex non-linear relationships. Moreover, in situations with large 
feature spaces and predominantly sparse features, LR’s performance 
may be  limited, potentially resulting in overfitting (29). Before 
model construction, we  conducted comprehensive data 
preprocessing, encompassing correlation and multicollinearity 
assessments, outlier and missing value handling, and data 
standardization, aiming to enhance the LR model’s efficacy. 
Additionally, external validation has confirmed that the LR model 
we  constructed avoids overfitting and demonstrates reliable 
generalization ability.

Sepsis and heart failure are common complications in critically ill 
patients, characterized by complex pathological conditions. Cardiac 
dysfunction in sepsis, indicated by reduced EF, may accelerate the 
progression to septic shock by lowering cardiac output and metabolic 
demand (30). Treatment strategies for sepsis and heart failure often 
conflict, influenced by varying severity and patient conditions (31). 
Fluid resuscitation, recommended in sepsis management guidelines, 
addresses tissue perfusion deficits but may exacerbate congestive 
symptoms and worsen prognosis in heart failure (32, 33). Our study 
indicates that higher fluid balance predicts increased mortality in 

FIGURE 3

(A) SHAP summary plot and (B) SHAP force plot.

TABLE 2 Model performance comparison: AUC, accuracy, sensitivity, specificity, PPV, NPV, F1 score, and Brier score.

Models AUC Accuracy Sensitivity Specificity PPV NPV F1 Score Brierscore

Validation set

  LR 0.746 0.685 0.666 0.712 0.285 0.914 0.397 0.119

  XGBoost 0.726 0.718 0.710 0.637 0.268 0.910 0.388 0.116

  AdaBoost 0.744 0.672 0.724 0.645 0.265 0.922 0.387 0.221

  GNB 0.722 0.683 0.644 0.702 0.269 0.914 0.377 0.160

External validation

  LR 0.699 0.403 0.673 0.648 0.261 0.896 0.376 0.169

LR, Logistic regression; XGBoost, eXtreme gradient boosting; AdaBoost, Adaptive boosting; GNB, Gaussian Naive Bayes; AUC, Area under the curve; PPV, Positive predictive value; NPV, 
Negative predictive value.
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heart failure and sepsis. Singh et al. found that septic patients receiving 
>3L of fluid experienced reduced EF and higher in-hospital mortality 
(34). Additionally, other studies have shown that higher fluid balance 
during hospitalization is associated with increased mortality in 
patients with heart failure combined with sepsis (35–37). Zhang et al. 
discovered that higher fluid balance within 24 h of admission is 
strongly associated with in-hospital mortality in patients with heart 
failure and sepsis (OR 2.53, 95% CI 1.60–3.99, p < 0.001) (31). Due to 
myocardial edema and oxidative stress, excessive fluid intake is a 
factor contributing to myocardial injury. For patients with high fluid 
balance, increased atrial and venous pressures can lead to fluid shift 
into the interstitium, exacerbating tissue edema, causing tissue 
distortion and microcirculatory disturbances, thereby resulting in 
cellular metabolic dysregulation (38, 39). There remains controversy 

surrounding fluid resuscitation. Duttuluri et  al. retrospectively 
evaluated heart failure patients with severe sepsis, finding increased 
in-hospital mortality and intubation rates in the hypotensive subgroup 
receiving inadequate fluid (<30 mL/kg) (40).

Our research reveals that patients with elevated respiratory rates, 
hypotension, and those necessitating interventions such as 
norepinephrine, phenylephrine, or ventilation, exhibit a heightened 
risk of mortality prediction. Norepinephrine and phenylephrine are 
typically employed to augment cardiac contractility and blood 
pressure for organ perfusion maintenance, while ventilation is 
essential for respiratory support. This elevated predictive risk likely 
reflects the severity of patients’ conditions and the associated potential 
hazards they face. Moreover, it underscores the necessity for prompt 
and assertive therapeutic interventions tailored to these patients, 

FIGURE 4

Summary plot of machine learning performance evaluation. (A) ROC curve, (B) calibration plot, (C) DCA curve, (D) PR curve.
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alongside vigilant monitoring and comprehensive support measures. 
Sepsis guidelines recommend norepinephrine as the first-line 
vasopressor for sepsis and septic shock (33). De Backer et al. found in 
their study that among 280 cases of cardiogenic shock patients, 
norepinephrine was more effective than dopamine, significantly 
reducing the 28-day mortality rate (p = 0.03) (41). Additionally, a 
meta-analysis from 2015 also indicated that in the treatment of septic 
shock, norepinephrine, compared to dopamine, could lower the 
mortality rate (RR: 0.89; 95% CI: 0.81–0.98) (42). Additionally, there 
are studies indicating that compared to adrenaline, norepinephrine 
carries a lower risk of tachycardia [29] and is associated with reduced 
mortality risk (43, 44).

With the exacerbation of an aging society, the incidence of sepsis 
among the elderly is gradually increasing, making it one of the leading 
causes of mortality in this demographic (45). Age has been 
demonstrated as an independent risk factor for mortality in sepsis 
patients, with mortality rates showing a linear increase with advancing 
age (46). Our research findings indicate that advanced age is associated 
with a higher predictive risk of mortality in patients with sepsis 
complicated by heart failure. Elderly patients commonly exhibit 
compromised immune function, diminished organ reserve, and a 
higher prevalence of comorbidities such as diabetes and coronary 
artery disease compared to younger counterparts (47). Sepsis in this 
demographic frequently presents and swiftly evolves into multi-organ 
failure. De Matteis et al. studied 6930 elderly patients with heart failure 
and found that in-hospital mortality increased with advancing age, 
with infection correlating with an elevated risk of in-hospital death 
(48). We  also found that elevated levels of white blood cells and 
norepinephrine were associated with poor outcomes. In bacterial and 
fungal infections, elevated blood neutrophil levels serve as early and 
sensitive indicators of inflammation (49). Elevated white blood cell or 
neutrophil counts in sepsis patients suggest immune system activation 
and intensified inflammatory response, potentially indicating an 
excessively activated inflammatory state associated with increased 
mortality risk. Heightened vigilance and proactive therapeutic 
interventions are warranted to mitigate inflammation and prevent 
further deterioration in such cases. Additionally, low body temperature 
and elevated total bilirubin increase the risk of mortality assessment. 
Observing low body temperature or elevated total bilirubin (TBIL) in 
sepsis patients may suggest a severe condition and poor prognosis. 
Low body temperature could indicate suppressed inflammatory 
response or impaired metabolic function, compromising the body’s 
resistance to infection. Elevated TBIL may signify impaired liver 
function, possibly due to infection or inflammation.

This study has several limitations. Firstly, we acknowledge that the 
quality and completeness of the data in the MIMIC-IV and eICU-CRD 
databases may have certain limitations, especially with the potential 
absence of key clinical variables (such as ejection fraction or 
NT-proBNP), which could affect the accuracy of the model’s 
predictions. Future studies will need to incorporate more 
comprehensive data to improve the model and conduct further 
validation to enhance its accuracy. Secondly, as this is a retrospective 
study, the data primarily comes from ICU patients, which may 
introduce selection bias, limiting the model’s broader applicability to 
other clinical settings. Therefore, we  suggest that future research 
validate the model using multi-center data to reduce selection bias and 
improve its generalizability. Additionally, the imbalance between 
survival and death in the dataset may affect the model’s performance 

in predicting mortality. Lastly, the data were collected at different time 
points, leading to potential temporal discrepancies, which may cause 
data drift and result in inconsistent model performance across 
different periods. Thus, future research should validate and adjust the 
model using data from various timeframes to address these challenges 
and ensure the model’s robustness in different temporal and 
clinical settings.

5 Conclusion

In this study, we constructed a machine learning model to predict 
28-day all-cause mortality in ICU patients with heart failure 
complicated by sepsis. The final Logistic Regression model 
incorporates commonly used clinical indicators such as age, 
mechanical ventilation, respiratory rate, blood pressure, white blood 
cell count, and vasopressor use. This combination of variables enables 
the model to predict short-term mortality risk early, upon ICU 
admission, providing a clinical alert for high-risk patients and 
assisting clinicians in more effectively allocating medical and nursing 
resources. Furthermore, the model’s generalizability and potential 
clinical utility were validated across two large ICU databases (eICU-
CRD and MIMIC-IV). Despite its strong predictive performance, 
further updates and validations with larger, multicenter patient 
cohorts are required to enhance the model’s generalizability and 
practical application in broader clinical settings.
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