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Background: COVID-19 disease has infected more than 772 million people,

leading to 7 million deaths. Although the severe course of COVID-19 can

be prevented using appropriate treatments, e�ective interventions require a

thorough research of the genetic factors involved in its pathogenesis.

Methods: We conducted a genome-wide association study (GWAS) on 7,124

individuals (comprising 6,400 controls who hadmild to moderate COVID-19 and

724 cases with severe COVID-19). The inclusion criteria were acute respiratory

distress syndrome (ARDS), acute respiratory failure (ARF) requiring respiratory

support, or CT scans indicative of severe COVID-19 infection without any

competing diseases. We also developed a polygenic risk score (PRS) model to

identify individuals at high risk.

Results: We identified two genome-wide significant loci (P-value <5 × 10−8)

and one locus with approximately genome-wide significance (P-value = 5.92

× 10−8-6.15 × 10−8). The most genome-wide significant variants were located

in the leucine zipper transcription factor like 1 (LZTFL1) gene, which has been

highlighted in several previous GWAS studies. Our PRS model results indicated

that individuals in the top 10% group of the PRS had twice the risk of severe

course of the disease compared to those at median risk [odds ratio = 2.18 (1.66,

2.86), P-value = 8.9 × 10−9].

Conclusion: We conducted one of the largest studies to date on the genetics of

severe COVID-19 in an Eastern European cohort. Our results are consistent with

previous research and will guide further epidemiologic studies on host genetics,

as well as for the development of targeted treatments.
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Background

Coronavirus infection, or COVID-19, caused by the SARS-

CoV-2 virus, has resulted in one of the largest pandemics in human

history (1). Epidemiological data on this disease emphasizes the

remarkable heterogeneity in the course of the disease, ranging

from completely asymptomatic cases to ICU hospitalizations with

ventilator support and even fatal outcomes (2–5).

COVID-19 is associated with several comorbidities and non-

genetic risk factors that increase the likelihood of developing

the disease and experiencing severe progression, including

respiratory failure. These risk factors include older age, male

gender, and certain medical conditions such as cardiovascular

disease, diabetes, obesity, chronic respiratory and kidney diseases,

immunodeficiency, and neurological disorders (6–10).

The observed variability in susceptibility to and course of

coronavirus infection suggests that both nongenetic risk factors

and genetic variants may contribute to the clinical heterogeneity

of COVID-19 in the population. Therefore, the COVID-19

Host Genetic Initiative (HGI) conducted a large study on a

multiethnic sample of more than 49,500 COVID-19 patients

from 46 studies in 19 countries (11). The study identified 13

genome-wide significant loci that are associated with SARS-

CoV-2 infection or severe manifestations of COVID-19. Along

with other genome-wide association studies (GWAS), several

key genetic variants associated with severe COVID-19 outcomes

were identified, which included those related to the function

of the SARS-CoV-2 receptor (ACE2, ABO, TMPRSS2, and

SLC6A20) (12–15) and immune response to the virus (HLA-

region) (16, 17).

As epidemiological data and associated genetic variants

for COVID-19 disease continue to accumulate, the combined

assessment of disease severity for clinical implications remains an

area of ongoing research. It is hypothesized that a combination

of different gene variants may determine the severity of

COVID-19 disease course. In other words, the complex

polymorphic pathogenesis of coronavirus infection suggests a

polygenic architecture.

Horowitz et al. (13) used the data from the COVID-19

HGI to establish a polygenic risk score (PRS) model. They

demonstrated that individuals in the top 10% of the COVID-19

PRS among Europeans (n = 44.958) had a 1.38-fold increased risk

of hospitalization and 1.58-fold increased risk of severe disease.

Similarly, Farooqi et al. (18) reported a 1.57-fold higher risk

of severe COVID-19 in high-risk patients compared to low-risk

individuals. Another study by Crossfield et al. (19) involving 9,560

UK Biobank participants showed an adjusted odds ratio (OR) of

1.32, [95% confidence interval (CI): 1.11–1.58] for the highest PRS

quintile compared with the lowest one. Nostaeva et al. (20) applied

the same HGI statistics to a small cohort of Russian patients (1,085

participants, 347 individuals with severe COVID-19, and 738 with

moderate or without disease) low-pass whole genome sequencing

(LP-WGS). They found that more than one million genetic variants

can be included in calculating polygenic scores to stratify patients

by the risk of severe COVID-19. Individuals in the top 10% of

the PRS distribution had over a two-fold increased risk of severe

COVID-19 (odds ratio, OR: 2.2; 95%CI: 1.3–3.3, P-value= 0.0001).

Since coronavirus infection can develop rapidly in just over a

week, identifying individuals at risk of developing severe COVID-

19 through genetic variants may help identify targeting agents for

investigating appropriate therapeutic interventions. Despite large-

scale vaccination programs, optimal treatment selection remains a

topical challenge. Therefore, the generation of a PRS model and

patient profiling based on the risk of severe COVID-19 course can

serve as a valuable tool for the healthcare industry.

In this research, we investigate the genetic factors that

contribute to the severity of COVID-19 within the Eastern

European population, which is underrepresented in many studies.

By utilizing GWAS, we aim to identify genetic variants associated

with COVID-19 and explore how these variants differ from those

found in other populations. Additionally, we develop a PRS model

to identify individuals at a high risk of experiencing severe COVID-

19 outcomes.

Materials and methods

Study cohort

We analyzed the genetic data of 787 individuals, with 691 from

the N.V. Sklifosovsky Research Institute for Emergency Medicine

and 96 from the Ufa Federal Research Center of the Russian

Academy of Sciences (UFRC RAS). Biomaterials, specifically blood

or saliva, were collected from individuals who had a history of

severe COVID-19.

Patients were classified as having an extremely severe course

of COVID-19 if they met at least one of the following inclusion

criteria: acute respiratory distress syndrome (ARDS); acute

respiratory failure (ARF) requiring respiratory support, which

could include high-flow non-invasive or invasive ventilation; lung

changes on CT scans indicative of viral damage, such as significant

or subtotal lesion volume (CT grade 4); or a clinical presentation

consistent with ARDS. In addition, two mandatory criteria had to

be met: a confirmed COVID-19 infection with the virus identified

(ICD-10 code U07.1) and the absence of other diseases that

could potentially worsen the patient’s condition, such as acute

myocardial infarction, exacerbation of bronchial asthma or chronic

obstructive pulmonary disease (COPD), or decompensation of

chronic heart failure.

This research was approved by the Genotek Ethics Committee

(protocol No15 “GWAS of severe COVID-19 in the Russian

population”) and performed in accordance with the Declaration

of Helsinki. The individuals who were included in our analysis

provided informed consent for their data to be used for research

purposes and responded to an online questionnaire.

Genotek customer data were added to the study cohort for

further analysis as controls (N = 6,400). The participants of the

study were selected based on responses to a questionnaire, adhering

to the following criteria: consent was provided for the use of

anonymized data in scientific research and individuals aged 40

years or above should self-report a COVID-19 diagnosis, confirmed

by antibody tests, PCR tests, CT scans, or a physician’s diagnosis.

These individuals may have experienced mild symptoms such as
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general fatigue, cough, and loss of smell or taste, along with other

non-severe symptoms, without requiring hospitalization.

The number of cases was predetermined as we have obtained

their data from hospitals. Although we had the option to adjust

the number of cases by modifying the age threshold, we decided to

maintain a ratio of ∼10 controls per case to enhance the statistical

power of our study. The rationale for selecting this sample size has

been discussed in a study by Katki et al. (21).

Genotyping

DNA extraction and genotyping were performed on saliva

samples that were genotyped on Illumina Infinium Global

Screening Array v.3 microarrays [∼650,000 single nucleotide

polymorphisms (SNPs)]. All samples in the cohort were processed

in batches with 192–768 samples per batch using the Genotek

microarray data processing pipeline. The pipeline involves variant

detection based on iaap-cli 1.1.0 and bcftools +gtc2vcf plugin

1.11, followed by subsequent filtering and analysis. GenomeStudio

software (Illumina, San Diego, CA) and manually created cluster

files were used to cluster the raw signals and call the genotypes.

SNPs with a call rate of <0.9 within the batch were removed.

Quality control and data preparation

Two-stage sequential filtering was performed based on the

number of variants with undetermined genotypes. First, we filtered

out the genetic variants with undetermined genotypes in more than

20% of the samples because the quality of detection of these variants

was likely to be low, potentially leading to inaccurate conclusions

in subsequent stages of the analysis. Subsequently, samples with

undetermined genotypes in more than 20% of positions were

excluded because the quality of collection, preparation, or analysis

of these samples was likely to be low, which may lead to inaccurate

conclusions in subsequent stages of the analysis. Following this

step, filtering was repeated for positions and samples with a

threshold of 2%.

After filtering for variant and sample quality, heterozygosity

analysis was performed. The samples with abnormal heterozygosity

were filtered using PLINK 1.9. We excluded the samples in

which the observed heterozygosity deviated by more than 3

standard deviations from the mean. Heterozygosity estimation was

performed on the cohort after filtering for genetic variants in

linkage disequilibrium, using a search window of 50 SNPs, with five

SNPs to shift the window at the end of each step, and an r2 value of

SNPs <0.2.

Subsequently, the human genotype was determined at

positions not represented on the microarray by applying linkage

disequilibrium (LD). This procedure was performed using the

Beagle 5.1 program (22) using two reference panels: 1000 Genomes

(23) and the Haplotype Reference Consortium (23, 24). Only

those positions that achieved a high-quality metric for defining

human genotypes with DR2 <0.7 were used in further analysis.

Multi-allelic substitutions were excluded from further analysis.

In the following step, the positions on sex chromosomes

and mitochondrial DNA (mtDNA) were excluded. In addition,

positions that violated the Hardy–Weinberg equilibrium were

filtered out; specifically, we removed the positions with a significant

difference between the observed genotype frequencies and the

expected frequencies according to the Hardy–Weinberg test (P-

value < 1 × 10−5). Finally, the positions with a low minor allele

frequency (MAF < 0.05) were excluded from further analysis.

Identification of close relatives within the study cohort was

performed using the PRIMUS (Rapid Reconstruction of Pedigrees

from Genome-wide Estimates of Identity by Descent) program

(25). Pairs with a PI_HAT score of >0.15 were considered as

related. The cohort was filtered to ensure that it contained no pairs

of relatives.

Genome-wide association study (GWAS)
and heritability

We performed population stratification and filtered outliers

before conducting the GWAS analysis. Initially, the principal

component analysis (PCA) algorithm (MultiDimensional Scaling)

was applied for dimensionality reduction. Positions filtered by

non-equilibrium coupling were used, considering a search window

of 50 SNPs, with five SNPs to shift the window at the end of

each step and an r2 value of SNPs <0.2). Based on the values of

the first and second components, clustering was performed using

the DBSCAN algorithm (26). The final PCA plot is shown in

Supplementary Figure S1. After selecting the largest cluster, outliers

and samples not from this cluster were excluded. The top 20

components were subsequently used as covariates to account for

population stratification.

The GWAS analysis was performed using the PLINK 2

program. A logistic regression model was used, and 20 components

of PCA and gender were included as covariates.

The statistical package ldsc (https://github.com/bulik/ldsc) was

used to estimate SNP heritability.

Polygenic risk score

To construct the PRS model, summary statistics from the

International Consortium COVID-19 Host Genetics Initiative

(27) were employed (A2 phenotype, ALL_leave_23andme cohort,

release 7). Variants with complementary alleles and variants with

repeated rs_id were removed during data preprocessing. The PRS

was trained using the LDPred2 tool (28) on the data from the entire

cohort of 7,124 individuals. The scores were adjusted for sex and

the first 20 components of PCA coordinates.

Results

To account for population stratification, we constructed a PCA

plot with two principal components (Supplementary Figure S1)

and performed clustering to detect minor populations and outliers.

The largest cluster (number 1) was selected for further analysis and

all other samples were considered outliers.
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TABLE 1 Characteristics of the study population.

Type Trait Cohort (N = 7,124)

Cases 724

Age, years (SD) 64.774 (± 15.516)

Sex

Female 381 (52.6%)

Male 343 (47.4%)

Controls 6,400

Age, years (SD) 49.528 (± 8.443)

Sex

Female 3,398 (53.1%)

Male 3,002 (46.9%)

Weperformed aGWAS analysis on 7,124 individuals (with 53%

being female individuals) from the selected cluster. Among them,

6,400 individuals were controls (i.e., they were aged over 40 years

and had recovered from COVID-19 without experiencing a severe

outcome), and the remaining 724 patients were cases (i.e., they

experienced a severe course of COVID-19). Themean age was 64.77

years for cases and 49.53 years for controls. The characteristics of

the final cohort are summarized in Table 1.

The GWAS analysis revealed several genome-significant loci

(P-value< 5× 10−8), (Table 2). Figure 1 shows theManhattan plot

with the GWAS results.

Particularly, the most genome-wide significant loci were

identified in the leucine zipper transcription factor like 1

(LZTFL1) gene: rs35624553 (OR = 1.58, 95% CI: 1.34–1.85,

P-value = 3.26 × 10−8) and rs10490770 (OR = 1.57, 95%

CI: 0.082–1.34, P-value = 3.51 × 10−8). These findings were

previously mentioned in the summary statistics of the COVID-

19 HGI relevant to our phenotype. Three intergenic variants on

chromosome 3 (rs17713054, rs13078854, and rs71325088) had the

same association with severe forms of COVID-19 as observed

with rs10490770.

Furthermore, we compared the effects of SNPs identified by

the COVID-19 HGI (11), which are associated with critical illness

(similar to our phenotype) and the current GWAS results. We

could not compare the effect of rs912805253 as it is absent in

hg19. The remaining SNPs exhibited poor approximation with HGI

results; however, the intergenic variants highlighted in the HGI

summary statistics (rs1819040 and rs74956615) demonstrated the

effects that were comparable to our results (rs1819040: ORhgi =

0.906, ORgenotek = 0.920, rs74956615: ORhgi = 1.434, ORgenotek =

1.461). Figure 2 illustrates these results.

The heritability h2 coefficient was found to be 0.05± 0.0432.

Furthermore, we generated the PRSmodel to identify the group

of individuals with a high risk of severe COVID-19 (Figure 3). In

this group, the risk of experiencing a severe course of the disease

is approximately twice that of the median risk [with OR = 2.25

(1.7, 2.95), P-value = 3.1 × 10−9]. The area under the curve

(AUC) for the developed PRS is equal to 0.6 (0.58–0.62). The PRS

was constructed using the grid model in LDPred2 and included

955,503 SNPs.

Discussion

In this study, we identified several genome-wide significant loci

associated with the severe forms of COVID-19. The loci include

LZTFL1 and PRKCH-AS1/PRKCH genes, intergenic variants on

chromosome 3, and a novel loci with intergenic variants on

chromosome 6 with genome-wide significance (P-value = 5.92 ×

10−8 to 6.15 × 10−8). In addition, several genetic variants in the

LZTFL1 gene showed genome-wide significance.

The intron variant rs1989566, located within the PRKCH-

AS1/PRKCH gene, was newly associated with the susceptibility

and severity of COVID-19. The PKC family serves as a mediator

for diverse signaling pathways and governs numerous crucial

cellular functions, including proliferation, differentiation, and

apoptosis. One of the PKC family members, protein kinase C

eta protein (PKCη), which is encoded by the PRKCH gene,

is a serine-threonine kinase. It is predominantly expressed in

vascular endothelial cells and plays a role in the progression

and exacerbation of atherosclerosis and subsequently stroke, as

indicated by previous studies (29, 30).

Furthermore, the identified variant may potentially impact

the expression of the PRKCH-AS1/PRKCH gene and subsequently

disrupt endothelial function, which can cause an imbalance in

hemostasis favoring a procoagulant state. This is characterized by

impaired vasodilator release, increased release of vasoconstrictors,

heightened microvasculature spastic reactions, increased leukocyte

migration across the endothelium, and the initiation of localized

inflammation. Prolonged exposure to factors that induce

endothelial dysfunction can contribute to a pro-inflammatory and

prothrombotic phenotype in endothelial cells (31). This exposure

also results in a depletion of the pool of progenitor endothelial cells

(32), ultimately limiting the capacity for restoring their normal

phenotype and function.

In addition to regulating cell proliferation, differentiation, and

cell death, PKCη is also expressed in the lung tissue, immune

system, and proliferation pathways, for instance, in activating

nuclear factor κB (NF-κB) signaling, which leads to anti-cancer

drug resistance (33–35).

We confirmed the effect of rs10490770 on severe course of

COVID-19 (OR = 1.57, P-value = 3.51 × 10−8) in the LZTFL1

gene. Previous studies (11, 36) have shown that rs10490770

increases the risks of all-cause mortality (HR = 1.4), severe

respiratory failure (OR, 2.1), venous thromboembolism (OR= 1.7),

and hepatic injury (OR = 1.5). For elderly people, it significantly

increases the risk of mortality or severe respiratory failure by more

than a double (OR, 2.7).

The LZTFL1 gene, expressed in the normal lung epithelium, is

involved in protein transport to the cilia of the ciliated epithelium

respiratory cells (37). The transcriptome analysis of lung biopsies

from patients with COVID-19 showed the presence of signals

associated with epithelial-mesenchymal transition of lung cells

(EMT) or pulmonary fibrosis, which is regulated by LZTFL1,

suggesting that this locus may serve as a potential therapeutic target

(38). Other studies have also linked the LZTFL1 gene at the 3p21.31

locus to COVID-19 infection (39, 40).

Several limitations could affect our GWAS results, including

relatively small number of controls, low trait heritability (h2
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TABLE 2 Top GWAS results (P-value <10−8).

Gene rsid chr pos_hg19 ref.
allele

alt.
allele

e�. allele EAF OR lower
_CI

upper
_CI

P

LZTFL1 rs35624553 3 45867440 A G G 0.102 1.575 1.341 1.850 3.26E-08

intergenic rs17713054 3 45859651 G A A 0.102 1.573 1.339 1.848 3.51E-08

intergenic rs13078854 3 45861932 G A A 0.102 1.573 1.339 1.848 3.51E-08

intergenic rs71325088 3 45862952 T C C 0.102 1.573 1.339 1.848 3.51E-08

LZTFL1 rs10490770 3 45864732 T C C 0.102 1.573 1.339 1.848 3.51E-08

LZTFL1 rs67959919 3 45871908 G A A 0.102 1.570 1.336 1.844 4.11E-08

intergenic rs13071258 3 45843242 G A A 0.104 1.563 1.332 1.833 4.17E-08

intergenic rs34668658 3 45844198 A C C 0.104 1.563 1.332 1.833 4.17E-08

intergenic rs17763742 3 45846769 A G G 0.104 1.561 1.331 1.831 4.51E-08

PRKCH- AS1/

PRKCH

rs1989566 14 61777603 C A A 0.038 1.928 1.524 2.440 4.59E-08

LZTFL1 rs35652899 3 45908514 C G G 0.100 1.574 1.337 1.853 4.85E-08

LZTFL1 rs13081482 3 45908116 A T T 0.100 1.571 1.334 1.849 5.66E-08

intergenic rs447073 6 95228012 T C C 0.346 0.715 0.634 0.807 5.92E-08

intergenic rs222542 6 95231062 A G G 0.346 0.715 0.634 0.808 6.15E-08

intergenic rs222541 6 95231163 G C C 0.346 0.715 0.634 0.808 6.15E-08

LZTFL1 rs35508621 3 45880481 T C C 0.102 1.563 1.329 1.837 6.48E-08

LZTFL1 rs34288077 3 45888690 A G G 0.102 1.563 1.329 1.837 6.48E-08

LZTFL1 rs35044562 3 45909024 A G G 0.101 1.567 1.331 1.845 6.59E-08

intergenic rs17763537 3 45843315 C T T 0.103 1.557 1.326 1.828 6.67E-08

LZTFL1 rs35081325 3 45889921 A T T 0.101 1.565 1.330 1.843 7.12E-08

LZTFL1 rs35731912 3 45889949 C T T 0.101 1.565 1.330 1.843 7.12E-08

LZTFL1 rs34326463 3 45899651 A G G 0.101 1.565 1.330 1.843 7.12E-08

LZTFL1 rs73064425 3 45901089 C T T 0.101 1.565 1.330 1.843 7.12E-08

CRTAC1 rs3793697 10 99638216 T G G 0.158 1.447 1.264 1.657 8.36E-08

Genome-wide significant results are indicated in bold.

FIGURE 1

Manhattan plot with the GWAS results for the severe COVID-19 phenotype (P-value < 5 × 10−8).
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FIGURE 2

Scatter plot of comparison of odds ratios (OR) from the top associated SNPs from the COVID-19 Host Genetics Initiative with our results (OR_hgi
indicates results from COVID-19 HGI GWAS and OR_gwas indicates results from the current study). Horizontal and vertical bars represent 95%
confidence intervals.

FIGURE 3

Quantile plot of the severe course of COVID-19 PRS developed by LDPred2. The odds ratio represents comparison of PRS odds from di�erent
quantiles with the reference quantile (40%−60%). The bars represent the standard deviation (SD).
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coefficient), and high polygenicity. Previous research has

established that age is a significant risk factor for severe COVID-

19, with older individuals being at a higher risk. In our study, the

patient cases were sourced from hospitals with an average age of

64.77 years, while controls were selected from the database of a

genetic testing company, Genotek, with an average age of ∼35

years. We did not use a population control, as is commonly done

in many studies. Instead, we defined controls as individuals aged

40 years or above who reported having COVID-19 but did not

experience a severe course of the disease. The age threshold was set

at 40 years to balance the age distribution and the sizes of our case

and control cohorts.

Our primary aim was to evaluate the predictive ability of

the PRS of COVID-19 severity in the Eastern European cohort.

Therefore, we performed the GWAS analysis on a cohort of 7,124

individuals and constructed a polygenic risk model. Stratification

of individuals based on PRS quantiles revealed that the high-risk

category (top 10%) had twice the risk of severe course of COVID-19

compared to the median risk group. These results support findings

from previous European cohort studies demonstrating similar

associations of the PRS with severe COVID-19 (13, 18–20). Before

implementation, the PRSmust be validated in independent cohorts.

Additional prospective studies can be beneficial to assess the clinical

utility of the PRS in a practical setting. The potential application of

the PRS could involve stratifying all tested individuals into high-

and low-risk groups. In our study, we demonstrated the predictive

power of the developed PRS. The selection of a threshold for the

PRS that delineates the high-risk group should be determined based

on factors such as the anticipated increase in hospitalization risk,

mortality rates, and economic considerations.
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