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Purpose: This study aims to explore the value of clinical features, CT imaging 
signs, and radiomics features in differentiating between adults and children with 
Mycoplasma pneumonia and seeking quantitative radiomic representations of 
CT imaging signs.

Materials and methods: In a retrospective analysis of 981 cases of mycoplasmal 
pneumonia patients from November 2021 to December 2023, 590 internal data 
(adults:450, children: 140) randomly divided into a training set and a validation 
set with an 8:2 ratio and 391 external test data (adults:121; children:270) were 
included. Using univariate analysis, CT imaging signs and clinical features with 
significant differences (p  <  0.05) were selected. After segmenting the lesion area 
on the CT image as the region of interest, 1,904 radiomic features were extracted. 
Then, Pearson correlation analysis (PCC) and the least absolute shrinkage and 
selection operator (LASSO) were used to select the radiomic features. Based 
on the selected features, multivariable logistic regression analysis was used to 
establish the clinical model, CT image model, radiomic model, and combined 
model. The predictive performance of each model was evaluated using ROC 
curves, AUC, sensitivity, specificity, accuracy, and precision. The AUC between 
each model was compared using the Delong test. Importantly, the radiomics 
features and quantitative and qualitative CT image features were analyzed using 
Pearson correlation analysis and analysis of variance, respectively.

Results: For the individual model, the radiomics model, which was built using 45 
selected features, achieved the highest AUCs in the training set, validation set, 
and external test set, which were 0.995 (0.992, 0.998), 0.952 (0.921, 0.978), and 
0.969 (0.953, 0.982), respectively. In all models, the combined model achieved 
the highest AUCs, which were 0.996 (0.993, 0.998), 0.972 (0.942, 0.995), and 
0.986 (0.976, 0.993) in the training set, validation set, and test set, respectively. 
In addition, we  selected 11 radiomics features and CT image features with a 
correlation coefficient r greater than 0.35.

Conclusion: The combined model has good diagnostic performance for 
differentiating between adults and children with mycoplasmal pneumonia, and 
different CT imaging signs are quantitatively represented by radiomics.
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1 Introduction

Mycoplasma pneumonia (MP) accounts for 10%–30% of 
community-acquired pneumonia (CAP) and often occurs in autumn, 
especially in children and adolescents (1). In recent years, the adult 
incidence rate has also increased. This disease spreads approximately 
every 3–7 years (2). During the epidemic period, this microbe can cause 
up to 20%–40% of CAP cases in the general population and even up to 
70% in closed populations (3). The diagnosis of mycoplasmal pneumonia 
depends on the detection of specific antibodies. Due to its often negative 
early diagnosis, computed tomography (CT) imaging plays an important 
guiding role in the early diagnosis and treatment of mycoplasmal 
pneumonia. Previous studies have shown that children tend to present 
with large patchy consolidation on CT imaging compared to adults (4), 
but the discovery of this difference often depends on the reading habits 
and clinical experience of the reader. Moreover, as the disease progresses, 
the imaging manifestations at different stages of the same disease are not 
always the same, and there are often overlapping manifestations. In 
recent years, the term radiomics has received increasing attention (5). 
Radiomics has been successfully applied in the identification, staging, 
and evaluation of lung cancer (6, 7). However, radiomics methods are 
relatively less applied in the prediction and diagnosis of non-tumor 
diseases of the lung. Yanling et al. (8) applied radiomics nomograms to 
identify pneumonia and acute paraquat lung injury. Xie et al. (9) applied 
CT radiomics to conduct a comparative analysis of ground-glass density 
shadows in COVID-19 and non-COVID-19 and proposed that the CT 
radiomics model can help to differentiate between COVID-19 and 
non-COVID-19 ground-glass density shadows. At the same time, 
Honglin Li et al. (10) confirmed that radiomics-clinical nomograms 
have good discriminative effects on mycoplasmal pneumonia and 
bacterial pneumonia, which is helpful for clinical decision-making. In 
addition, radiomics also plays an important role in grading severity (11) 
and prognostic evaluation (12) of pneumonia.

The above results provide confidence and reference for our research. 
Considering that there is no research on differentiating the radiomic 
features of adult and child mycoplasmal pneumonia in domestic and 
foreign studies, this article will analyze and compare the clinical 
features, CT imaging signs, and radiomic features of adult and child 
patients and conduct external validation. It will provide a quantitative 
representation of different CT imaging signs using radiomics, thus 
providing evidence for early clinical diagnosis and precise treatment.

2 Materials and methods

2.1 Study population

In a retrospective analysis of clinical and imaging data of patients 
diagnosed with MP in two hospitals from November 2021 to December 
2023, 590 patients (450 adults and 140 children) with internal data, 
which were divided into a training set and a validation set according to 
an 8:2 ratio, and 391 patients (121 adults and 270 children) with external 
data, which were used as an external test set, were included. Based on 
age, patients were divided into adult group (>14 years old) and child 
group (≤14 years old). The inclusion criteria were as follows: (1) patients 
with mycoplasmal pneumonia confirmed by throat swab or fiberoptic 
bronchoscopy with alveolar lavage nucleic acid testing; and (2) patients 
with clear lesions detected by chest CT. Exclusion criteria were as follows: 

(1) poor image quality; and (2) previous bronchial asthma, chronic 
obstructive pulmonary disease, recurrent respiratory tract infections, 
severe pneumonia without a history of cure, congenital or secondary 
immune suppression or immune deficiency, and connective tissue 
disease (Figure 1). This study was approved by the ethics committee of 
the Affiliated Hospital of Hebei University, and because this is a 
retrospective study, written informed consent is waived. This study was 
conducted in accordance with the principles of the Helsinki Declaration.

2.2 CT image acquisition

Philips Brilliance 256-row, GE Discovery HD750 CT, and United 
Imaging uCT550 spiral CT scanner were used. The patient was placed 
in a supine position with both hands raised above his head. The 
scanning range was from the thoracic inlet to the level of the diaphragm, 
and deep breath-holding scanning was performed after deep 
inspiration. Scanning parameters: tube voltage 120 kV, tube current 
automatic milliamp technology, pitch 0.900; 0.984; 1.175, Rotation time 
0.5; 0.6; 0.6 s, matrix 512 × 512, layer thickness 5 mm, interlayer spacing 
5 mm, and field of view 40 cm × 40 cm. Axial reconstruction of lung 
window (window width 1500HU, window level −600 HU) and 
mediastinal window (window width 350HU, window level 40HU).

2.3 CT image analysis

The CT images were independently reviewed by two physicians 
mainly engaged in chest imaging diagnosis. In case of disagreement, 
the two physicians reached a consensus through consultation. The CT 
characteristics of each patient were recorded, including consolidation 
pattern, consolidation with ground-glass opacity (GGO), bronchial 
wall thickening, air bronchogram, atelectasis, interlobular septal 
thickening, number of involved lung lobes, mediastinal enlargement 
of lymph nodes, pleural effusion, and other imaging features, as well 
as quantitative characteristics such as mean lesion density, lesion 
volume, and CTLP.

2.4 Radiomics feature extraction, feature 
selection, and machine learning models 
building

Before radiomics feature extraction, the images were normalized 
by subtracting the window level (WL: 40) and dividing by the window 
width (WW: 300). The auto-segmentation, radiomics feature 
extraction, feature selection, and machine learning models building 
were established on the uAI Research Portal V1.1 (Shanghai United 
Imaging Intelligence, Co., Ltd.) (13–16). The radiomics features were 
automatically extracted from ROIs using an open-source Python 
package, Pyradiomics V3.0 (17). The PCC, LASSO, LR, and other 
methods used the package of Scikit-learn (18). All analyses were 
implemented in Python (Python Software Foundation, http://python.
org). Two physicians modified the ROI of the automatically segmented 
lesions layer-by-layer to avoid non-lesion areas such as blood vessels 
and ribs, confirmed and submitted it, and obtained the volume of 
interest (VOI) of the lesion (Figure 2). The features were divided into 
seven groups, and the shape features were extracted from the original 
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image based on the ROI. The texture features and grayscale statistics 
features were extracted from the original image and 15 filtered images, 
with a total of 1,904 features extracted, which were:

 1. Shape feature: 14;
 2. Grayscale statistics feature: 450;
 3. Gray Level Cooccurence Matrix, GLCM: 525;
 4. Gray Level Run Length Matrix, GLRLM: 350;
 5. Gray Level Size Zone Matrix, GLSZM: 400;
 6. Neighboring Gray Tone Difference Matrix, NGTDM: 400;
 7. Gray Level Dependence Matrix, GLDM: 125.

Using univariate analysis to select CT imaging signs and clinical 
features with significant differences (p < 0.05), we  constructed the 
clinical model. Z-score was used to normalize radiomics features before 
feature selection and model construction. Pearson correlation 
coefficient (PCC) and least absolute shrinkage and selection operator 
(LASSO) were used to screen and reduce the dimensionality of radiomic 
features, and RadScore was calculated by weighting the features based 
on the coefficients obtained by LASSO. In addition, multivariable 
logistic regression analysis is used to construct radiomic models based 
on the features selected. Finally, the combined model was constructed 
using Radscore, CT imaging signs, and clinical features selected.

Importantly, the radiomics features and quantitative and 
qualitative CT imaging signs were analyzed using Pearson correlation 
analysis and analysis of variance, respectively.

2.5 Statistical analysis

All data were analyzed using SPSS 26.0. For quantitative data, 
independent sample t-tests (when normal distribution) or Mann–
Whitney U-tests (when non-normal distribution) were performed. 
For count data, χ2 tests were performed. Logistic regression analysis 
was performed on the clinical features, CT imaging signs, and 
radiomics features that showed statistical differences between the 
groups. Single-phase models and combined models were established, 
and the predictive performance of each model was evaluated using 
AUC, sensitivity, specificity, and accuracy. The Delong test was used 
to compare the AUCs between the models. Pearson correlation 
analysis and variance analysis were used to analyze quantitative and 
qualitative CT imaging signs and radiomics features, respectively, to 
find the quantitative radiomics of CT imaging signs.

3 Results

3.1 Clinical features

Statistical analysis was conducted on the clinical data of the 
training set, validation set, and test set. There were significant 
differences in the type of fever, LC, CK-MB, LDH, D-dimer, and CRP 
between adult and child groups with mycoplasmal pneumonia 
(p < 0.05), but there was no significant difference in PLT. The 

FIGURE 1

Research flowchart.
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proportion of severe cases in the training set was 30.8% in the adult 
group and 36.6% in the child group; in the validation set, it was 32.2% 
in the adult group and 35.7% in the child group; in the test set, it was 
21.5% in the adult group and 36.7% in the child group, with 
statistically significant differences (p < 0.05). The details are shown in 
Table 1.

3.2 CT imaging signs

Statistical analysis was conducted on the CT image features of 
the training set, validation set, and test set. Segmental and Wedge-
shaped consolidation showed significant differences between the 
adult group and the child group, with Segmental and Wedge-shaped 
consolidation in the child group, with statistical significance 
(p < 0.05; Figure 2), consolidation mixed GGO and air bronchogram 
signs were significantly different in children, with statistical 
significance (p < 0.05). In addition, there were statistically significant 
differences between adults and children in interlobular septal 
thickening, number of lobes involved, mean lesion density, and 
CTLP (p < 0.05), while there was no statistical difference in bronchial 
wall thickening (p > 0.05). For details, see Table 1 and Figure 2.

3.3 Models construction

The seven most clinically relevant features extracted from the 
patient’s clinical characteristics are type of fever, LC, CRP, PLT, 
CK-MB, LDH, and D-dimer (p < 0.05); and 10 CT imaging signs, are 
consolidation pattern, consolidation mixed GGO, bronchial wall 
thickening, air bronchogram sign, interlobular septal thickening, 
number of lobes involved, pleural effusion, mediastinal enlargement 

of lymph nodes, mean lesion density, and CTLP, with significant 
differences (p < 0.05). Based on these features, we  constructed the 
clinical model and the CT imaging model. For the radiomics analysis, 
45 features with the highest correlation were obtained after PCC and 
LASSO, and Figure 3 shows the top 20 features with a correlation 
coefficient greater than 0.02 in the LASSO. Based on this, the radiomic 
model was constructed. In addition, we build the combined model 
using the clinical features, CT imaging signs, and the radiomics selected.

For the three models, the AUC for the testing set were 
0.893(0.863,0.921), 0.744(0.698,0.783), and 0.969(0.953,0.982), the 
AUC for training set and validation set is shown in Table 2, and the 
ROC curve and prediction performance results were plotted (Table 2; 
Figure 4). The results showed that the combined model showed higher 
predictive performance in distinguishing adult and child Mycoplasma 
pneumonia than any single model. According to the Delong test, there 
was a statistical difference (p < 0.05) in the AUC between the CT 
imaging model, radiomics model, and combination model in the 
external test set (Table 3).

3.4 Correlation analysis between CT 
imaging signs and radiomics features

Pearson correlation analysis evaluated the correlation between 
CT features and radiomics features; the correlation map is shown in 
Figure 5, and the case presentation is shown in Figure 6. Those with 
a correlation coefficient r greater than 0.35 were included in the 
charts (Table 4). For the quantitative and qualitative CT images, 
we visualized the data distribution using box plots and correlation 
plots, respectively. Mean_lesion_density, Consolidation_pattern, 
Air_bronchogram_sign, and Interlobular_septal_thickening 
demonstrated a high correlation with texture features.

FIGURE 2

(A) Mycoplasmal pneumonia in a child (male, 9  years old), mainly manifested as large patchy consolidation, with air bronchogram sign visible; 
(C) Mycoplasmal pneumonia in an adult (female, 57  years old), characterized by focal and small patchy consolidation; (B–D) Lesion annotation.

https://doi.org/10.3389/fmed.2024.1409477
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


M
en

g
 et al. 

10
.3

3
8

9
/fm

ed
.2

0
24

.14
0

9
4

77

Fro
n

tie
rs in

 M
e

d
icin

e
0

5
fro

n
tie

rsin
.o

rg

TABLE 1 General information of adult and child patients with mycoplasmal pneumonia.

Train N =  472 Validation N =  118 Test N =  391 Overall 
N  =  981

Characteristic 0 1 p-value1 0 1 p-value1 0 1 p-value1 p-value2

N =  360(76%) N =  112(24%) N =  90(76%) N =  28(24%) N =  121(31%) N =  270(69%)

Age 58 (17) 7 (3) <0.001 57 (16) 7 (4) <0.001 46 (19) 7 (3) <0.001 <0.001

Gender 0.48 0.88 0.043 0.033

  Female 200 (55.6%) 58 (51.8%) 40 (44.4%) 12 (42.9%) 48 (39.7%) 137 (50.7%)

  Male 160 (44.4%) 54 (48.2%) 50 (55.6%) 16 (57.1%) 73 (60.3%) 133 (49.3%)

Type_of_fever <0.001 <0.001 <0.001 <0.001

None 276 (76.7%) 19 (17.0%) 69 (76.7%) 8 (28.6%) 26 (21.5%) 4 (1.5%)

Grade 1(37.1–38°C) 24 (6.7%) 6 (5.4%) 6 (6.7%) 0 (0.0%) 24 (19.8%) 8 (3.0%)

Grade 2(38.1–39°C) 35 (9.7%) 38 (33.9%) 11 (12.2%) 8 (28.6%) 50 (41.3%) 103 (38.1%)

Grade 3(39.1–41°C) 25 (6.9%) 48 (42.9%) 4 (4.4%) 12 (42.9%) 21 (17.4%) 153 (56.7%)

Grade 3(>41°C) 0 (0.0%) 1 (0.9%) 0 (0.0%) 2 (0.7%)

LC 1.56 (1.14,2.03) 2.16 (1.61,2.88) <0.001 1.51 (1.14,2.06) 2.43 (1.63,4.05) <0.001 1.50 (1.10,2.01) 2.12 (1.61,2.70) <0.001 <0.001

PLT 247 (192,312) 298 (236,383) <0.001 245 (193,329) 300 (255,368) 0.001 256 (195,309) 284 (228,354) <0.001 0.031

CK-MB 0.70 (0.40,1.10) 1.10 (0.60,2.20) <0.001 0.60 (0.39,0.91) 1.51 (0.60,2.22) 0.001 12.8 (10.7,17.3) 2.3 (1.9,2.9) <0.001 <0.001

LDH 191 (161,231) 261 (222,323) <0.001 188 (155,227) 277 (206,337) <0.001 173 (127,211) 284 (242,336) <0.001 <0.001

D-dimer 178 (137,343) 137 (1,235) <0.001 162 (137,298) 137 (104,234) 0.064 1.31 (0.42,9.77) 0.23 (0.15,0.38) <0.001 <0.001

CRP 6 (2,30) 6 (1,19) 0.13 6 (2,41) 7 (2,18) 0.43 19 (6,48) 7 (2,16) <0.001 0.024

Severe 0.25 0.73 0.003 0.98

No 249(69.2%) 71(63.4%) 61(67.8%) 18(64.3%) 95(78.5%) 171(63.3%)

Yes 111(30.8%) 41(36.6%) 29(32.2%) 10(35.7%) 26(21.5%) 99(36.7%)

Consolidation_pattern 0.001 0.86 <0.001 <0.001

None 134 (37.2%) 26 (23.2%) 33 (36.7%) 9 (32.1%) 28 (23.1%) 41 (15.2%)

Patchy 77 (21.4%) 16 (14.3%) 16 (17.8%) 7 (25.0%) 42 (34.7%) 83 (30.7%)

Segmental 77 (21.4%) 38 (33.9%) 27 (30.0%) 8 (28.6%) 40 (33.1%) 63 (23.3%)

Wedge-shaped 72 (20.0%) 32 (28.6%) 14 (15.6%) 4 (14.3%) 11 (9.1%) 83 (30.7%)

Consolidation_mixed_GGO <0.001 0.026 0.003 <0.001

No 253 (70.3%) 58 (51.8%) 68 (75.6%) 15 (53.6%) 70 (57.9%) 113 (41.9%)

Yes 107 (29.7%) 54 (48.2%) 22 (24.4%) 13 (46.4%) 51 (42.1%) 157 (58.1%)

Pleural_effusion <0.001 0.24 0.005

(Continued)
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Train N =  472 Validation N =  118 Test N =  391 Overall 
N  =  981

Characteristic 0 1 p-value1 0 1 p-value1 0 1 p-value1 p-value2

N =  360(76%) N =  112(24%) N =  90(76%) N =  28(24%) N =  121(31%) N =  270(69%)

None 276 (76.7%) 107 (95.5%) 71 (78.9%) 27 (96.4%) 101 (83.5%) 253 (93.7%)

Minor 58 (16.1%) 4 (3.6%) 8 (8.9%) 1 (3.6%) 15 (12.4%) 11 (4.1%)

Moderate 14 (3.9%) 1 (0.9%) 8 (8.9%) 0 (0.0%) 4 (3.3%) 3 (1.1%)

Massive 12 (3.3%) 0 (0.0%) 3 (3.3%) 0 (0.0%) 1 (0.8%) 3 (1.1%)

Mediastinal_enlargement_of_

lymph_nodes

0.001 0.020 0.002 0.004

No 295 (81.9%) 106 (94.6%) 75 (83.3%) 28 (100.0%) 104 (86.0%) 257 (95.2%)

Yes 65 (18.1%) 6 (5.4%) 15 (16.7%) 0 (0.0%) 17 (14.0%) 13 (4.8%)

Air_bronchogram_sign 0.003 0.25 <0.001 <0.001

No 228 (63.3%) 53 (47.3%) 56 (62.2%) 14 (50.0%) 63 (52.1%) 89 (33.0%)

Yes 132 (36.7%) 59 (52.7%) 34 (37.8%) 14 (50.0%) 58 (47.9%) 181 (67.0%)

bronchial_wall_thickening 0.010 0.29 0.93 0.28

No 247 (68.6%) 91 (81.3%) 70 (77.8%) 19 (67.9%) 83 (68.6%) 184 (68.1%)

Yes 113 (31.4%) 21 (18.8%) 20 (22.2%) 9 (32.1%) 38 (31.4%) 86 (31.9%)

Interlobular_septal_thickening <0.001 0.029 0.019 <0.001

No 244 (67.8%) 102 (91.1%) 66 (73.3%) 26 (92.9%) 94 (77.7%) 235 (87.0%)

Yes 116 (32.2%) 10 (8.9%) 24 (26.7%) 2 (7.1%) 27 (22.3%) 35 (13.0%)

Number_of_lobes_involved 0.40 <0.001

1 133 (36.9%) 60 (53.6%) 28 (31.1%) 14 (50.0%) 29 (24.0%) 97 (35.9%)

2 37 (10.3%) 25 (22.3%) 12 (13.3%) 4 (14.3%) 22 (18.2%) 65 (24.1%)

3 50 (13.9%) 6 (5.4%) 10 (11.1%) 2 (7.1%) 16 (13.2%) 52 (19.3%)

4 42 (11.7%) 7 (6.3%) 9 (10.0%) 2 (7.1%) 17 (14.0%) 20 (7.4%)

5 93 (25.8%) 8 (7.1%) 27 (30.0%) 4 (14.3%) 37 (30.6%) 36 (13.3%)

0 5 (1.4%) 6 (5.4%) 4 (4.4%) 2 (7.1%)

Mean_lesion_density −487 (155) −432 (180) 0.005 −506 (140) −475 (137) 0.33 −488 (141) −400 (207) <0.001 <0.001

CTLP 0.05 (0.08) 0.07 (0.12) 0.050 0.09 (0.15) 0.04 (0.05) 0.28 0.06 (0.11) 0.09 (0.10) <0.001 <0.001

1Pearson’s Chi-squared test; Wilcoxon rank sum test; Fisher’s exact test; 2Pearson’s Chi-squared test; Kruskal–Wallis rank sum test. 0, adult; 1, child.

TABLE 1 (Continued)
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4 Discussion

In this study, we established clinical models, CT imaging models, 
radiomics models, and combined models and confirmed their 
effectiveness in differentiating adult and children mycoplasmal 
pneumonia. For the individual model, the radiomics model achieved 
the highest AUC. In addition, the radiomics features were well 

correlated with CT imaging signs, which could quantitatively 
represent different CT imaging signs to a certain extent.

Through the analysis of the CT imaging signs of the two groups 
of patients, it was found that there was no or patchy consolidation 
in the adult group and segmental or wedge-shaped consolidation in 
the child group, indicating that the condition of adult Mycoplasma 
pneumonia was mild and slow, and children had the characteristics 

FIGURE 3

The correlation ranking of the top 20 radiomic features in the training set.

TABLE 2 Predictive ability of four models for distinguishing adult and childhood mycoplasmal pneumonia.

Model Cohort AUC(95% CI) Sensitivity Specificity Accuracy Precision threshold_
train

Clinical model Training 0.915(0.886,0.941) 0.865 0.839 0.879 0.827 0.315

Validation 0.889(0.802,0.956) 0.825 0.750 0.864 0.810 0.315

Testing 0.893(0.863,0.921) 0.744 0.537 0.665 0.720 0.315

CT image 

model
Training 0.831(0.794,0.863) 0.748 0.768 0.737 0.689 0.291

Validation 0.736(0.660,0.825) 0.714 0.750 0.695 0.659 0.291

Testing 0.744(0.698,0.783) 0.689 0.511 0.621 0.670 0.291

Radiomics 

model
Training 0.995(0.992,0.998) 0.965 0.955 0.970 0.954 0.354

Validation 0.952(0.921,0.978) 0.896 0.893 0.898 0.850 0.354

Testing 0.969(0.953,0.982) 0.764 0.544 0.680 0.739 0.354

Combined 

model
Training 0.996(0.993,0.998) 0.970 0.982 0.964 0.937 0.270

Validation 0.972(0.942,0.995) 0.890 0.857 0.907 0.864 0.270

Testing 0.986(0.976,0.993) 0.824 0.656 0.760 0.779 0.270
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of rapid progress, serious disease, and high incidence of 
complications, which was consistent with previous studies (4). The 
reason for this analysis is that mycoplasma, as the smallest 
microorganism between bacteria and viruses, can induce cellular 
and humoral immune responses after infection. Due to the immature 
and incomplete development of the lungs in children, the number of 
pulmonary alveoli is relatively small compared to adults, and the 
immune system is relatively incomplete. The elastic fibers of the 
bronchial tube are not strong. After mycoplasma infection, the 
disease progresses faster, the function of defending inflammation is 
weaker, and the inflammatory manifestations are more obvious than 
those in adults. If it invades the bronchioles and interstitial lung 
tissue near the lung field, it will cause congestion, edema, infiltration, 
and exudation of inflammatory cells, and the exudate will stimulate 
the pleura, causing pleural reactive effusion, leading to pleural 
effusion (4). Based on the different imaging manifestations and 
progression of adult and children mycoplasmal pneumonia, once 
mycoplasmal pneumonia is diagnosed, especially in children, active 
treatment should be taken to prevent complications or the possibility 
of progression to severe disease. In addition, after feature selection, 
a CT imaging model was established, and a ROC curve was drawn. 
The internal training set AUC value was 0.831 (0.794, 0.863), the 
validation set AUC value was 0.736 (0.660, 0.825), and the external 
test set AUC value was 0.744 (0.698, 0.783). It has good 
discriminative power, indicating that typical CT imaging signs are 
important in distinguishing between adult and pediatric 
mycoplasmal pneumonia. At the same time, Dongdong Wang et al. 
(19) used radiomics to analyze the diagnostic value of distinguishing 
between mycoplasmal pneumonia (MPP) and streptococcus 

pneumoniae pneumonia (SPP) in children under 5 years old and 
divided them into a testing set and a validation set at a ratio of 7:3. 
In the validation cohort, the consolidation + surrounding halo sign 
was used to distinguish between MP and SPP, resulting in an AUC 
value of 0.822 and sensitivity and specificity of 0.81 and 0.81, 
respectively. Through the decision curve, RF was found to 
be superior to other classifiers.

Radiomics is an artificial intelligence technology that extracts 
features such as shape, intensity, texture, and wavelet from images 
based on images and converts them into high-dimensional 
quantifiable quantitative feature data to further reflect the biological 
information of lesions. It can provide relevant information for 
disease diagnosis, prognosis evaluation, and efficacy prediction 
(20–22). To date, few studies have used radiomics to solve the 
problem of pneumonia identification. Mei et al. (23) used artificial 
intelligence algorithms to combine chest CT findings with clinical 
symptoms, exposure history, and laboratory tests to diagnose 
COVID-19. Wang et al. (24) combined deep learning-radiomics 
models to distinguish COVID-19 from non-COVID-19 viral 
pneumonia. Honglin Li (10) confirmed that radiomics-clinical 
nomograms have good discriminative power for mycoplasmal 
pneumonia and bacterial pneumonia. These studies demonstrate 
the feasibility of using radiomics to identify lung inflammation. On 
this basis, we distinguish between adult and children mycoplasmal 
pneumonia. Logistic regression is a multiple regression analysis 
method that studies the relationship between a binary or multi-class 
response variable and multiple influencing factors (25). This study 
used the LASSO logistic regression model to screen and model 
1,904 imaging features and calculated the Radscore for each patient, 

FIGURE 4

The ROC curves of the four models in the training set, validation set, and test set.

TABLE 3 Comparison of AUC between the three individual models and the combined model on the test set.

Group model_
name_1

model_
name_2

auc_1 auc_cov_1 auc_2 auc_cov_2 P-value

Test Clinical model CT image model 0.893 0.000307134 0.744 0.000658474 P > 0.05

Test Clinical model Radiomics model 0.893 0.000307134 0.969 7.25E-05 P > 0.05

Test Clinical model Combined model 0.893 0.000307134 0.986 2.79E-05 P > 0.05

Test CT image model Radiomics Model 0.744 0.000658474 0.969 7.25E-05 P < 0.05

Test CT image model Combined model 0.744 0.000658474 0.986 2.79E-05 P < 0.05

Test Radiomics model Combined model 0.969 7.25E-05 0.986 2.79E-05 P < 0.05
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which can more intuitively reflect the imaging differences between 
adults and children with Mycoplasma pneumonia. The internal 
training set AUC value of the radiomics feature model in this group 
is 0.995 (0.992, 0.998), the validation set AUC value is 0.952 (0.921, 
0.978), and the external test set AUC value is 0.969 (0.953, 0.982), 
indicating good differential diagnostic performance. To explore the 
relationship between radiomics features, CT imaging signs, and 
clinical features, a combined model nomogram was established 
based on radiomics, combining clinical and CT imaging signs. The 

internal training set had an AUC value of 0.996 (0.993, 0.998), the 
validation set had an AUC value of 0.972 (0.942, 0.995), and the 
external test set had an AUC value of 0.986 (0.976, 0.993), which is 
higher than that of the single model. Consistent with the study by 
Honglin Li et  al. (10), a combined nomogram combining 
radiological and clinical features was established and validated for 
distinguishing Mycoplasma pneumonia and bacterial pneumonia 
with similar CT manifestations. In the radiomics model, the AUC 
of the training set was 0.877 and the AUC of the test set was 0.810. 

FIGURE 5

Visualization through scatter plot and box plot analysis of the correlation between quantitative and qualitative imaging features and radiomics features.
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In the radiomics-clinical model, the AUC of the training set is 0.905 
and the AUC of the test set is 0.847. Decision curve analysis shows 
that both models can improve the clinical benefits of patients, and 
the radiomics-clinical combination model achieves higher clinical 
benefits than the radiomics model.

The features of radiomics, including shape, grayscale, and 
texture, help to build radiomics models (26). This study establishes 
the correlation between radiomics features and CT imaging signs, 
and the study reveals that “mean lesion density” is negatively 
correlated with “original glrlm ShortRunLowGrayLevelEmphasis,” 
“wavelet-LHL firstorder Median,” “normalize glrlm 
GrayLevelNonUniformityNormalized,” and “specklenoise glrlm 
ShortRunLowGrayLevelEmphasis”; and is positively correlated with 
“wavelet-HLL firstorder Skewness”; “consolidation pattern” is 
negatively correlated with “original glrlm 
ShortRunLowGrayLevelEmphasis” and “normalize glrlm 

GrayLevelNonUniformityNormalized”; “air bronchogram sign” is 
negatively correlated with “original glrlm 
ShortRunLowGrayLevelEmphasis,” “normalize glrlm 
GrayLevelNonUniformityNormalized,” and “specklenoise glrlm 
ShortRunLowGrayLevelEmphasis”; “Interlobular_septal_
thickening” is negatively correlated with “discretegaussian glszm 
SizeZoneNonUniformity”; and the correlation coefficients were all 
greater than 0.35. Most of these radiomics features are texture 
features and grayscale statistics features, indicating that texture 
features and grayscale statistics features are largely quantitative 
representations of CT image features. Moreover, based on the close 
correlation between radiomics features and traditional CT image 
features, the advantage of radiomics lies in its ability to transform 
images into a large amount of high-throughput imaging information 
that can be  mined. Through selection and comparison of the 
information, optimal features are selected, resulting in more 

FIGURE 6

Correlation analysis between radiomics and CT imaging signs: case presentation. (A) Child (male, 9 years old) with mycoplasmal pneumonia: 
Consolidation pattern:3; original_glrlm_ShortRunLowGrayLevelEmphasis:0.031; normalize_glrlm_GrayLevelNonUniformityNormalized:0.513. (B) Adult 
(female, 57 years old) with mycoplasmal pneumonia: Consolidation pattern:1; original_glrlm_ShortRunLowGrayLevelEmphasis:0.046; normalize_
glrlm_GrayLevelNonUniformityNormalized:0.534.

TABLE 4 Correlation analysis results between CT imaging signs and radiomics features.

CT feature Radiomics feature r P

Mean_lesion_density original_glrlm_ShortRunLowGrayLevelEmphasis −0.561384238 1.51E-82

Mean_lesion_density wavelet-LHL firstorder Median −0.552387518 1.88E-79

Mean_lesion_density normalize_glrlm_GrayLevelNonUniformityNormalized −0.428460907 4.51E-45

Mean_lesion_density specklenoise_glrlm_ShortRunLowGrayLevelEmphasis −0.385539074 4.06E-36

Mean_lesion_density wavelet-HLL firstorder Skewness 0.408192167 1.11E-40

Consolidation_pattern original_glrlm_ShortRunLowGrayLevelEmphasis −0.380854025 3.22E-35

Consolidation_pattern normalize_glrlm_GrayLevelNonUniformityNormalized −0.394684625 6.44E-38

Air_bronchogram_sign original_glrlm_ShortRunLowGrayLevelEmphasis −0.353032225 3.61E-30

Air_bronchogram_sign normalize_glrlm_GrayLevelNonUniformityNormalized −0.353370265 3.16E-30

Air_bronchogram_sign specklenoise_glrlm_ShortRunLowGrayLevelEmphasis −0.352479244 4.50E-30

Interlobular_septal_thickening discretegaussian_glszm_SizeZoneNonUniformity 0.385360317 4.39E-36
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objective and accurate results (27). Radiomics is non-invasive, 
quantitative, easily accessible, and reproducible. When combined 
with CT imaging signs and clinical features, it can provide more 
comprehensive information about the biological characteristics and 
microenvironment changes of diseases and has broad prospects in 
disease diagnosis and prognosis evaluation. This study achieved 
good results in external validation, indicating that multiple centers 
and different scanners are beneficial for universality.

There are certain limitations in this study: (1) There are common 
shortcomings in retrospective studies, such as selection bias; (2) Due 
to the vague outline of pneumonia lesions, it is difficult to accurately 
delineate the ROI, and even some smaller lesions are easily missed; 
(3) Without classifying patients into mild and severe groups before 
extracting features, further research is needed to investigate the 
impact of different disease severities.

In summary, this study proposes that radiomics features, CT 
imaging signs, and clinical features facilitate the identification of 
differences between adults and children with mycoplasmal 
pneumonia. For the individual model, the radiomics model 
achieved the highest AUC. The radiomics features are well-
correlated with CT imaging signs, which can provide a quantitative 
representation of different CT imaging signs using radiomics to a 
certain extent.
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