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Background: Osteoarthritis (OA) entails a prevalent chronic ailment, marked 
by the widespread involvement of entire joints. Prolonged low-grade synovial 
inflammation serves as the key instigator for a cascade of pathological alterations 
in the joints.

Objective: The study seeks to explore potential therapeutic targets for OA and 
investigate the associated mechanistic pathways.

Methods: Summary-level data for OA were downloaded from the genome-wide 
association studies (GWAS) database, expression quantitative trait loci (eQTL) 
data were acquired from the eQTLGen consortium, and synovial chip data for 
OA were obtained from the GEO database. Following the integration of data and 
subsequent Mendelian randomization analysis, differential analysis, and weighted 
gene co-expression network analysis (WGCNA) analysis, core genes that exhibit 
a significant causal relationship with OA traits were pinpointed. Subsequently, by 
employing three machine learning algorithms, additional identification of gene 
targets for the complexity of OA was achieved. Additionally, corresponding ROC 
curves and nomogram models were established for the assessment of clinical 
prognosis in patients. Finally, western blotting analysis and ELISA methodology 
were employed for the initial validation of marker genes and their linked 
pathways.

Results: Twenty-two core genes with a significant causal relationship to OA 
traits were obtained. Through the application of distinct machine learning 
algorithms, MAT2A and RBM6 emerged as diagnostic marker genes. ROC curves 
and nomogram models were utilized for evaluating both the effectiveness of the 
two identified marker genes associated with OA in diagnosis. MAT2A governs 
the synthesis of SAM within synovial cells, thereby thwarting synovial fibrosis 
induced by the TGF-β1-activated Smad3/4 signaling pathway.

Conclusion: The first evidence that MAT2A and RBM6 serve as robust diagnostic 
for OA is presented in this study. MAT2A, through its involvement in regulating 
the synthesis of SAM, inhibits the activation of the TGF-β1-induced Smad3/4 
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signaling pathway, thereby effectively averting the possibility of synovial fibrosis. 
Concurrently, the development of a prognostic risk model facilitates early 
OA diagnosis, functional recovery evaluation, and offers direction for further 
therapy.
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1 Introduction

Osteoarthritis (OA), being the most widespread and commonly 
encountered chronic joint ailment among the aging population 
worldwide, involves not solely alterations in a singular tissue but the 
entirety of the joint, primarily encompassing progressive degradation 
of articular cartilage, sustained low-grade inflammation of the 
synovium, injury and reconstruction of subchondral bone, and the 
formation of osteophytes within the joint space, among other aspects 
(1, 2). Among these, synovitis emerges as the pivotal factor 
contributing to this array of pathological alterations. Numerous 
etiological factors contribute to the onset of OA, encompassing 
elements such as age, gender, genetic predisposition, and body weight 
(3). However, due to the absence of a clearly delineated pathogenic 
mechanism, there currently exists no method capable of curing or 
ameliorating the condition of OA. In the early stages of the disease, 
relief from pain is often sought through the application of exercise 
therapy and nonsteroidal anti-inflammatory drugs (NSAIDs). 
However, in the advanced stages, joint replacement surgery stands as 
the sole pathway for OA patients to achieve a complete restoration of 
joint function and attain a curative outcome. This imposes significant 
economic burdens on the healthcare system and the households of 
affected individuals (4). However, it is regrettable that we  must 
acknowledge OA as a silent malady, occurring before the manifestation 
of typical clinical symptoms and radiographic changes. During this 
protracted subclinical phase, irreversible damage and alterations to 
articular cartilage may have already occurred (5, 6). Therefore, the 
exploration of highly sensitive and efficient diagnostic biomarkers, 
along with the investigation of their associated mechanistic pathways, 
holds great allure for the diagnosis and treatment of OA.

Mendelian randomization (MR) has ascended to prominence as 
a dependable methodology for investigating potential causal 
relationships. At its core, this methodology employs single nucleotide 
polymorphisms (SNPs) as instrumental variables (IV) to infer the 
causal relationships between exposure factors and study outcomes (7, 
8). In this endeavor, we used summary-level data from genome-wide 
association studies (GWAS) on OA with expression quantitative trait 
loci (eQTL) data to explore genes associated with expression levels 
and complex traits. Subsequently, in conjunction with the GEO 
database, differential analysis and weighted gene co-expression 
network analysis (WGCNA) analysis were conducted on the 
corresponding dataset samples. This process identified core genes that 
demonstrate a significant causal relationship with OA traits. Building 
upon this foundation, the application of three machine learning 
algorithms was integrated, ultimately confirming two genes (RBM6 
and MAT2A) as gene targets for the complexity of OA. Simultaneously, 
corresponding ROC curves and nomogram models were established 

for the assessment of clinical prognosis in patients. Finally, 
we preliminarily demonstrated that MAT2A effectively mitigates the 
potential for synovial fibrosis by participating in the regulation of 
S-adenosylmethionine (SAM) synthesis, thereby inhibiting the 
activation of the TGF-β1-induced Smad3/4 signaling pathway.

2 Materials and methods

2.1 Data source and preprocessing

Retrieve eQTL data from the eQTLGen consortium, 
encompassing 31,684 samples of blood and peripheral blood 
mononuclear cells, spanning 19,942 genes (9). Utilize this dataset as 
the exposure data and filter cis-eQTLs with p-value<5 × 10−8 for 
subsequent bidirectional MR analysis. During this process, establish 
the cis-regulatory region within a range of 10,000 kilobases on both 
flanking sides of the coding sequence, and perform linkage 
disequilibrium clustering with R2 < 0.001. Simultaneously, only SNPs 
with effective allele frequency (EAF) >0.01 and F-statistic >10 were 
retained, while corresponding palindromic SNPs were removed to 
avoid confounding and weak instrumental variable bias.

Retrieve the osteoarthritis dataset (ebi-a-GCST007090) from the 
GWAS database, which consists of 403,124 samples, including 24,955 
cases in the afflicted group and 378,169 controls in the reference group.

Acquire human osteoarthritis microarray datasets from the GEO 
database, encompassing GSE55235-GPL96, GSE55457-GPL96, 
GSE82107-GPL570, GSE1919-GPL91, GSE12021-GPL96, and 
GSE206848-GPL570. Among these, the first three datasets serve as 
training set data, totaling 57 samples, including 27 health control 
samples and 30 OA samples. The latter three datasets function as 
validation set data, comprising an overall sample of 43 samples, 
including 21 health control and 22 OA cases. Eliminate batch effects 
between datasets from different platforms utilizing the “limma” and 
“SVA” packages in R software, standardize and merge the samples, and 
visualize the results using PCA functionality (10, 11).

2.2 Mendelian randomisation analysis

This analysis was conducted entirely using R (version 4.3.2). No 
new data were collected in the process; instead, publicly available 
GWAS statistical summaries were utilized. Hence, no additional 
ethical approval was required. We  first identified genetic variants 
(SNPs) that are significantly associated with the exposure of interest 
(gene expression levels) from GWAS data. Select these SNPs (p-value 
<5 × 10−8) as IVs to explore causal effects between exposure data and 
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outcome data (12). The eligible IVs must satisfy the following three 
conditions: (1) correlation assumption: SNPs exhibit close associations 
with the exposure (eQTL data). (2) Independence assumption: IVs are 
unrelated to any unmeasured confounders of OA. (3) Exclusion 
assumption: IVs are only associated with OA through eQTL and not 
through other pathways (i.e., they have no direct association with the 
outcome). During this process, establish the cis-regulatory region 
within a range of 10,000 kilobases on both flanking sides of the coding 
sequence, and perform linkage disequilibrium clustering with 
R2 < 0.001. Simultaneously, only SNPs with effective allele frequency 
(EAF) >0.01 and F-statistic >10 were retained, while corresponding 
palindromic SNPs were removed to avoid confounding and weak 
instrumental variable bias. Subsequently, harmonize the instrumental 
variables (IVs) with the outcome data. Assessed through five methods, 
namely MR Egger, inverse variance weighted (IVW), weighted median, 
weighted mode and simple mode, utilizing the “TwoSampleMR” 
package within the R software (13). Filter the corresponding results 
according to the following conditions: (1) p < 0.05 for the IVW method. 
(2) Consistency in the direction of the odds ratio (OR) among the five 
methods, where all OR values are either >1 or <1. (3) p > 0.05 for 
heterogeneity. Finally, the Wald ratio method was used to estimate the 
effect of each SNP. Cochrane’s Q test assessed heterogeneity between 
SNP instruments. Sensitivity analysis methods included MR Egger 
regression test and leave-one-out analysis, with the former assessing 
multiplicity and the latter revealing the contribution of individual 
SNPs to significant results. Based on the MR results, we prioritized 
genes with strong evidence of a causal relationship with OA.

2.3 Identifying differentially expressed 
genes and performing weighted gene 
co-expression network analysis

Utilizing the “limma” package to identify differentially expressed 
genes (DEGs) between samples from HC and those with OA. The criteria 
are set to p < 0.05 and |logFC| >0.585 for standardization. Visualization 
of the outcomes is performed using the “pheatmap” function.

Employing the “WGCNA” package to build a gene co-expression 
network based on the expression profiles of samples from OA and HC 
groups (14). Choosing a gene subset with a standard deviation 
exceeding 0.5 for further analysis. Utilizing the “goodSampleGenes” 
function to ensure the absence of missing values or anomalies in the 
dataset. Employing the “pickSoftThreshold” function to determine the 
optimal soft threshold. Upon this foundation, transforming the data 
matrix of gene expressions into the corresponding adjacency matrix. 
Subsequently, identifying gene modules through a topological overlap 
clustering method. By computing module eigengenes (ME) and 
merging between similar modules, a hierarchical clustering dendrogram 
is then generated. Integrating pertinent phenotypic data to evaluate 
gene significance (GS) and module significance (MS). Thereby, 
elucidating the significance between associated genes and clinical 
information, as well as the correlation between modules and models.

2.4 Acquisition of core genes

Initially, we filter the outcomes of Mendelian randomization. The 
filtration criteria are as follows: (1) p < 0.05 for the IVW method. (2) 

Consistency in the direction of the odds ratio (OR) among the five 
methods, where all OR values are either >1 or <1. (3) p > 0.05 for 
heterogeneity. Subsequently, we select modules from the WGCNA 
results that demonstrate associations with the disease and possess a 
p-value <0.05, designating these as core modules. Finally, we make use 
of the “VennDiagram” package to intersect the obtained differentially 
expressed genes, genes included in the core modules from WGCNA, 
and genes resulting from Mendelian randomization (15). The genes 
obtained from this intersection are designated as core genes.

2.5 Functional enrichment analysis and 
chromosomal localization

Utilizing the “clusterProfiler” and “enrichplot” packages to 
perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) functional enrichment analyses on the identified 
core genes (16). The criteria are established as p < 0.05 and q < 0.05 for 
standardization. Gene Ontology (GO) terms include Biological 
Processes (BP), Molecular Functions (MF), and Cellular Components 
(CC). Display the results based on enrichment ranking thresholds, 
such as p-values. Utilize the “circlize” package for visualizing the 
chromosomal localization of core genes.

2.6 Analysis of immune cell infiltration and 
correlation

Employing the CIBERSORT algorithm to assess the composition 
and abundance of 22 immune infiltrating cell types in both HC and 
OA samples. This algorithm operates through deconvolution and is 
grounded in the principles of linear support vector regression (17). 
The results are visually represented as a heatmap. Apply the rank-sum 
test to assess differences in immune cell infiltration between two 
sample groups, considering p < 0.05 as the threshold for indicating 
significant distinctions. Conducting a thorough investigation of core 
genes and infiltrating immune cells in the samples using Spearman 
correlation analysis. Finally, visualizing the results of both analyses 
using the “ggplot2” functionality.

2.7 Selection of disease-specific 
characteristic genes

Utilizing the “randomForest” package, employ the Random Forest 
(RF) method for further refinement in the selection of core genes (18). 
This constitutes a machine learning approach that integrates multiple 
decision trees, mitigates overfitting, and is adept at handling high-
dimensional and imbalanced data. It proves advantageous for the 
screening and identification of characteristic genes.

Utilizing the “e1071” package, employ the Support Vector 
Machine Recursive Feature Elimination (SVM-RFE) method for 
further refinement in the selection of core genes (19). This is a widely 
employed supervised machine learning method in classification and 
regression analysis, possessing high discriminatory capabilities for the 
selection of characteristic genes.

Utilizing the “glmnet” package, employ the Least Absolute 
Shrinkage and Selection Operator (LASSO) regression method for 

https://doi.org/10.3389/fmed.2024.1409439
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yan et al. 10.3389/fmed.2024.1409439

Frontiers in Medicine 04 frontiersin.org

further refinement in the selection of core genes (20). This is a 
machine learning method for variable selection of characteristic genes 
through regularization, demonstrating unique superiority in assessing 
high-dimensional data.

Cross-referencing the findings obtained from the three algorithms 
to identify the OA diagnostic marker genes.

2.8 Construction of ROC curves and 
nomograms for the clinical prognosis 
model

Utilizing the “pROC” package, construct ROC curve models for 
diagnostic signature genes. Calculate the area under the curve values 
to preliminarily assess the diagnostic effectiveness of the signature 
genes for OA (AUC >0.7 is considered indicative of accuracy).

Utilizing the “rms” package, construct a nomogram for the risk 
prognosis model. Infer the occurrence rate of osteoarthritis based on 
the total score corresponding to the sum of scores from individual 
diagnostic signature genes. A higher score indicates a higher 
likelihood of disease occurrence. The “regplot” package is employed 
to draw a calibration curve, where a better prediction accuracy is 
indicated by a slope closer to 1. The “ggDCA” package is employed for 
drawing a decision curve, with a net benefit value >0 signifying a well-
performing predictive model.

2.9 Collection of clinical specimens and 
cell culture

The clinical specimen collection plan for synovial tissues from 
both HC and OA has received approval from the Ethics Committee of 
the Second Affiliated Hospital of Anhui Medical University (Approval 
Number: YX2022-104). The procedures were conducted in accordance 
with relevant guidelines and regulations. Among these, synovial 
specimens from HC were obtained from two patients who underwent 
limb amputation due to accidents. Synovial specimens from patients 
with severe OA were collected from four patients undergoing surgical 
treatment. After specimen collection, synovial cells were immediately 
extracted for primary culture. Notably, the cells derived from OA 
samples were passaged for no more than five generations. All cells 
were cultured in DMEM medium supplemented with 10% fetal bovine 
serum, under the conditions of 37°C and 5% CO2 in a humidified 
incubator. Additionally, we  characterized the composition of 4–5 
generations of primary synoviocytes using flow cytometry. Following 
trypsin digestion, cells were washed through centrifugation and 
resuspended in PBS. Subsequently, cell closure was achieved using a 
5% BSA solution. The cells were then incubated with CD45 antibody 
at 4°C in the absence of light. Following washing steps, flow cytometry 
was employed to detect the expression of CD45 on the cell surface, 
with CD45-negative cells identified as synovial fibroblasts. Please refer 
to Supplementary Figure S1 for further details.

The following is the exact procedure for synoviocyte extraction: 
after excising the fresh synovial tissue, it was immersed in pre-cooled 
PBS. Using scissors and forceps, efforts were made to remove as much 
fat and muscle tissues from both sides of the synovium to obtain a 
pure, white synovial tissue. Subsequently, the tissue was minced into 
pieces as small as possible, approximately 2 mm3 in size, and placed 

into a 5 mL EP tube. Then, α-MEM containing 2 mg/mL Collagen I at 
a volume 2–3 times that of the synovial volume was added. The tube 
was then placed in a 37°C incubator for digestion for 3–4 h. During 
this period, tissue digestion was monitored, and the tube was gently 
shaken every half hour. After digestion, the mixture was filtered 
through a 70 μm filter and centrifuged at 1,800 rpm for 5 min, followed 
by discarding the supernatant. The cells at the bottom of the centrifuge 
tube were resuspended in DMEM, centrifuged for 5 min, and this 
washing step was repeated twice. Finally, the cells were cultured in 
culture flasks with DMEM medium containing 10% fetal 
bovine serum.

2.10 Transient transfection technique

The siRNA targeting MAT2A was designed and constructed by 
Shanghai Gima Pharmaceutical Co., Ltd. (Sequence: 
5′-ACACAUUGGAUAUGAUGAUTT-3′). Cultivate synovial cells in 
a six-well plate and transfect MAT2A using Lipofectamine 2000 
(Invitrogen, Carlsbad, CA). Transfect cells and culture for 5 days, then 
assess the knockout efficiency of the target gene through western 
blotting analysis.

2.11 ELISA method is used to determine the 
expression of SAM in cells

The SAM reagent kit was purchased from Jiangsu Meimian 
Industrial Co., Ltd. On the enzyme-linked plate, set up standard wells, 
blank wells, and wells for the test samples. Add the corresponding 
reagents to each well. After sealing the plate, it was placed in a 
sterilized humidified incubator with the following conditions: 37°C, 
5% CO2, for 30 min. Subsequently, each well was washed for 30 s, 
repeated 5 times. Enzyme-linked reagent (50 μL) was added, and the 
plate was placed back in the humidified incubator. After completion, 
it was washed again. Color reagent A and B were added in a 1:1 ratio, 
and the plate was incubated in the dark for 10 min. Termination 
solution (50 μL) was added to stop the reaction. Using an enzyme 
reader, the absorbance of SAM was calculated at 450 nm. To determine 
the concentration of SAM in each sample, and present the results in a 
bar chart.

2.12 Western blotting analyze

The cells were lysed using RIPA lysis buffer containing proteinase 
inhibitors (Beyotime Biotech #P0013B), and the total protein content 
was quantified using the BCA assay kit (Thermo #PL212989). Separate 
proteins using 7.5% SDS-PAGE and transfer them onto a PVDF 
membrane. Following blocking with 5% skim milk, membranes are 
incubated with primary antibodies against RBM6 (1:750, 
AB_2720243), MAT2A (1:1000, AB_2718781), TGF-β1 (1:2500, 
AB_2202039), SMAD3 (1:2500, AB_2552126), SMAD4 (1:2500, 
AB_2552158), GAPDH (1:2500, AB_2107311), αSMA (1:500, 
AB_2792219), and COL1A1 (1:750, AB_2803705) at 4°C overnight. 
All the mentioned antibodies are rabbit polyclonal antibodies and are 
sourced from Thermo Fisher, United States. Subsequently, incubate 
the membrane with secondary antibodies at 37°C for 2 h, and visualize 
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the protein bands using a microplate chemiluminescence system 
(Share-BIO, SB-WB012). Finally, utilize ImageJ software (version 
1.80v) to normalize and analyze the bands of each target using the 
GAPDH band as a reference.

3 Results

3.1 Causal effects between gene expression 
and OA

After correlation analysis and removal of linkage disequilibrium, 
we obtained a total of 5,430 genes, involving 26,152 strongly correlated 
SNPs (F-value >10, Supplementary Table S1). Using instrumental 
variables (SNPs) derived from the exposure data, we obtained the 
summary results of 22,306 SNPs associated with OA from the 
osteoarthritis GWAS dataset (Supplementary Table S2). There is no 
evidence indicating heterogeneity among these IVs 
(Supplementary Table S3) or multiplicity (Supplementary Table S4). 
Perform Mendelian randomization analysis based on a unified 
reference allele direction and calculate the odds ratios (OR) for the 
corresponding results. Subsequently, further screening of the results 
of Mendelian randomization according to preset criteria resulted in a 
final selection of 318 genes causally connected to the onset and 
progression of OA, including 173 low-risk genes and 145 high-risk 
genes (Supplementary Table S5). High/low-risk genes refer to genes 
where an increase in gene expression is associated with an increased 
or decreased likelihood of osteoarthritis occurrence, respectively.

3.2 PCA analysis and identification of DEGs

Prior to batch correction and standardization integration, the 
PCA results demonstrate no overlap among the three datasets 
(Figure 1A). However, following integration, the three datasets exhibit 
overlap (Figure  1B). This suggests that the integrated data can 
be considered as a unified batch for subsequent analysis. Based on this, 
we  conducted differential analysis between HC and OA samples, 
revealing significant differences between the two (Figures 1C,D). In 
total, 2,258 DEGs were identified, comprising 978 genes significantly 
downregulated and 1,280 genes significantly upregulated.

3.3 Identification of key modules using 
WGCNA

We explored the relationship between genes and traits by 
performing WGCNA. Opting for the optimal soft-thresholding power 
β = 5 (scale-free R2 = 0.9), we  established a co-expression network 
involving HC and OA samples (Figures 2C,D). By employing dynamic 
hybrid cutting, a total of 11 modules with distinct colors were acquired 
(Figure  2A). Simultaneously, compute the Pearson correlation 
coefficients and significance levels for the relationship between each 
module and clinical trait features. The corresponding results are 
represented in a heatmap format (Figure 2B). Remarkably, the black, 
blue, brown, green, yellow-green, pink, tan, and yellow modules are 
recognized as key modules, comprising 335, 1,729, 1,005, 613, 159, 
252, 1,793, and 665 genes, respectively.

3.4 Obtaining intersecting core genes

By cross-referencing the 318 genes causally connected to the onset 
and progression of OA from the MR results, the 2,258 DEGs, and the 
genes from the key modules identified by WGCNA, we identified 22 
core genes (Figure  2E). Subsequently, we  visually represented the 
Mendelian randomization results of the 22 core genes in the form of 
a forest plot (Figure 3). Specifically, genes with p < 0.05 in the IVW 
method are regarded as genes causally associated with the outcome 
factor (OA). Employing the dashed line in the center of the forest plot 
as a reference, we evaluated genes associated with high and low risk. 
Genes with OR values to the left of the dashed line are <1, indicating 
a low risk, while those to the right are >1, indicating a high risk. It can 
be observed that within the 95% confidence interval, all core genes can 
be classified into 17 low-risk genes and 5 high-risk genes. Additionally, 
we conducted an analysis of the correlation among these high/low-risk 
genes, displaying their functional associations or co-regulation in the 
form of a heatmap or a circos plot (Figures 4A,B). This can provide 
insights into the molecular mechanisms driving the disease. Genes 
that are co-regulated or functionally related may have a higher 
likelihood of being key players in OA. This might lay the foundation 
for future research.

3.5 Functional enrichment analysis of core 
genes

To elucidate the biological functions in which core genes are 
involved, we conducted GO and KEGG enrichment analyses. The 
outcomes from the GO enrichment analysis, as depicted in 
Figures  5A,B,E, unveil: (1) in the BP category, these genes are 
significantly enriched in processes such as the sulfur compound 
metabolic process, T cell receptor signaling pathway, sulfur compound 
biosynthetic process, and T cell-mediated immunity. (2) In terms of 
CC, there is a potential involvement in the synthesis of substances 
such as exocyst and MHC class II protein complex. (3) In the MF 
category, there is a close association with MHC class II receptor 
activity, ligase activity, and protein tyrosine/threonine phosphatase 
activity. The results from the KEGG analysis, as depicted in 
Figures  5C,D, suggest that these genes are primarily involved in 
pathways related to biosynthesis of amino acids and biosynthesis of 
cofactors. Furthermore, for an enhanced comprehension of the 
structure, function, and genetic transmission patterns of the core 
genes, we  constructed a circular plot depicting chromosome 
localization for the relevant genes (Figure 5F).

3.6 Correlation between immune cell 
infiltration in OA and the co-expression of 
core genes

To examine the correlation between immune cell infiltration in 
OA and the expression of core genes, we  initially employed the 
CIBERSORT algorithm to assess the composition and abundance of 
22 immune cell types in both OA and HC samples, as illustrated in 
Figure 6A. Expanding on this, a differential analysis of immune cell 
infiltration between the two sample types was performed, as depicted 
in Figure 6B. A notable escalation in the infiltration levels of plasma 
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cells, p = 0.001, and macrophages M0, p = 0.006, was observed in OA 
samples. Conversely, in HC samples, heightened infiltration was noted 
for NK cells activated, p = 0.004, mast cells resting, p = 0.005, T cells 
CD4 memory resting, p < 0.001, and mast cells activated, p = 0.001. 
Here, we believe that the cause of the increased mast cell infiltration 
in the HC group may involve: (1) a specific subgroup of mast cells, and 
(2) factors such as the age and weight of the HC samples selected in 
the GEO dataset. Lastly, we conducted a correlation analysis between 
the expression of core genes and the infiltration of the 22 immune cell 
types across all samples, as depicted in Figure 6C.

3.7 Identification of genes that are specific 
to the disease

Using three machine learning algorithms, specifically RF, LASSO, 
and SVM, we performed a secondary selection on the set of 22 core 
genes. Employing the RF algorithm, we discerned 14 feature genes 
with a relative importance exceeding 0.9 (Figures  7A,B), which 
encompassed: MAT2A, RBM6, TSPAN4, TNS3, RTP4, DUSP6, 
ZNF668, CDC42EP3, MYBL1, BTN3A2, MMP9, BTN3A3, ASNS, 
SARS2. Applying the LASSO algorithm, we determined the number 
of genes corresponding to the minimum cross-validation error 

(Figures 7C,D), resulting in the identification of a total of 11 feature 
genes: TSPAN4, TNS3, ZNF668, RBM6, CDC42EP3, MMP9, MYBL1, 
SARS2, PAAF1, BTN3A2, MAT2A. By utilizing the SVM algorithm, 
we determined the number of genes corresponding to the minimum 
cross-validation error (Figures 7E,F), resulting in the identification of 
a total of 4 feature genes: RBM6, RTP4, PAAF1, MAT2A. Following 
this, we performed a cross-analysis of the feature genes derived from 
the three algorithms (Figure 7G), leading to the identification of two 
disease diagnostic signature genes: MAT2A and RBM6.

3.8 The causal relationship between RBM6, 
MAT2A, and OA

We visualized the causative link between RBM6, MAT2A, and OA 
(Figures  8A,E), building upon the findings of the Mendelian 
randomization study. Using the IVW method, we  revealed the 
correlation between the risk of OA and the expression of these two 
disease diagnostic genes. In this analysis, the odds ratio for RBM6 was 
0.967, 95% CI = 0.935–0.999, p = 0.046, and for MAT2A, the odds ratio 
was 0.912, 95% CI = 0.840–0.990, p = 0.028. Simultaneously, 
we  assessed the impact of each SNP on the outcome of OA 
(Figures 8B,F). Correspondingly, from top to bottom, the funnel plot 

FIGURE 1

PCA and DEGs identification results. (A,B) PCA of samples before/after integration of datasets. (C,D) A heatmap and a volcano plot showing how DEGs 
are expressed in the OA and HC samples.
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shape also exhibited approximate symmetry, and no horizontal 
pleiotropy was observed in the MR Egger regression intercept 
(Figures  8C,G). Finally, we  conducted MR analysis again by 
sequentially removing each SNP, and the corresponding results 
remained consistent with the previous findings (Figures 8D,H). This 
suggests that the calculated outcomes of all SNPs make substantial 
contributions to the ultimate causal relationship, avoiding dominance 
by any specific SNP.

3.9 Establishment and evaluation of the 
clinical prediction model

To evaluate the specificity and sensitivity of RBM6 and MAT2A 
in diagnosing OA, ROC curves and the accompanying AUC values 

were employed. A model demonstrating an AUC value exceeding 0.7 
is indicative of a robust predictive performance. In the training set 
samples, RBM6 and MAT2A, the two diagnostic marker genes, had 
ROC curve AUC values of 0.807 and 0.823, respectively (Figure 9A). 
Correspondingly, in the validation set samples, RBM6 and MAT2A, 
the two diagnostic marker genes, had ROC curve AUC values of 0.879 
and 0.729, respectively (Figure 9H).

Subsequently, based upon sample data from the training and 
validation sets, we constructed a nomogram clinical prognosis model 
for RBM6 and MAT2A to assess their clinical diagnostic value for OA 
(Figures 9B,I). Each marker gene in the nomogram is assigned a score, 
and the overall score is obtained by summing the scores of all marker 
genes, corresponding to different risk levels for OA. Clearly, both in 
the samples from the training set and validation set, the predictive 
accuracy of RBM6 and MAT2A for the likelihood of OA surpasses 

FIGURE 2

WGCNA Analysis. (A) Hierarchical clustering dendrogram. Each branch represents a gene, and the colors below each branch represent co-expressed 
modules. (B) Heatmap depicting the correlation and significance between modules and clinical trait features. (C,D) Depiction of the scale-free fitting 
index and average connectivity for the co-expression networks associated with OA and HC across various soft-thresholding powers. (E) Venn diagram 
intersection of MR genes, DEGs, and WGCNA key module genes.
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FIGURE 3

Forest plot of Mendelian randomization for the 22 core genes.
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90%. Furthermore, to evaluate the model’s accuracy (Figures 9C,J), 
calibration curves were employed., where a slope closer to 1 signifies 
higher accuracy. DCA and clinical impact curve were utilized to assess 
the predictive performance of the model. In the former, a net benefit 
value greater than 0 signifies good predictive performance 
(Figures 9D,K). In the latter, the judgment is based on the alignment 
of the red solid line with the blue dashed line (Figures 9E,L). The 
results show that whether the model exhibits good accuracy and 
predictive performance in the training set samples or the validation 
set samples, both.

Additionally, we validated the differential expression of RBM6 and 
MAT2A in the samples. From the boxplots, it is evident that the 
expression of RBM6 (p = 3.6 × 10−5) and MAT2A (p = 1.2 × 10−5) is 
significantly elevated in the training set HC samples and significantly 
decreased in the OA samples (Figures 9F,G). Correspondingly, RBM6 
(p = 5.5 × 10−5) and MAT2A (p = 0.0094) show significantly elevated 
expression in the validation set HC samples and significantly 
decreased expression in the OA samples (Figures  9M,N). The 
consistency of this result aligns with the conclusions derived from the 
Mendelian randomization analysis.

3.10 The expression of RBM6 and MAT2A in 
synovial tissue

We performed an initial validation of the expression of diagnostic 
markers, namely RBM6 and MAT2A, in synovial tissues obtained 
from both HC and individuals with OA through Western blot analysis 
(Figure 10A). The corresponding results corroborate the findings of 
previous analyses, showing elevated expression of RBM6 and MAT2A 
in synovial tissue from HC, while demonstrating reduced expression 
in synovial tissue from OA subjects.

Building upon previous research findings, we further investigate 
the association between MAT2A and the onset of OA. MAT2A 

represents a pivotal gene encoding methionine adenosyltransferase 
(MAT), crucially involved in regulating the biosynthesis of 
S-adenosylmethionine (SAM) (21). SAM serves as a primary 
methyl donor and precursor of glutathione (GSH). Maintaining 
normal levels of SAM in the liver is essential for liver health and 
preventing fibrosis (22). Likewise, in synovial cells, does MAT2A 
exert a similar influence by regulating the expression levels of 
SAM? Therefore, we chose to downregulate MAT2A expression in 
synovial cells obtained from HC and evaluated the respective SAM 
levels in each group employing the ELISA method (Figure 10B). 
The results indicate a noteworthy decrease in SAM expression 
levels within synovial cells from both the ShMAT2A group and the 
OA group, in comparison to the HC group. This suggests that 
MAT2A plays a similar role in regulating SAM expression within 
synovial cells.

3.11 SAM inhibits synovial fibrosis induced 
by the TGF-β1-stimulated Smad3/4 
pathway

Based on an abundance of prior research, it is clear that SAM 
demonstrates notable therapeutic efficacy in OA. In a randomized 
double-blind clinical trial, Bradley et al. (23) treated 81 patients with 
OA using SAM, leading to a noteworthy improvement in the mobility 
of the participants Coincidentally, Kim et  al. (24) showcased the 
effectiveness of SAM in relieving joint pain among patients with OA 
in an 8-week multicenter, randomized, double-blind, placebo-
controlled phase IV clinical trial. Moreover, in a recent study 
conducted within the past year, SAM has been confirmed to 
demonstrate comparable therapeutic efficacy in the treatment of OA, 
when compared to traditional medications like glucosamine sulfate 
(GS) and non-animal sourced chondroitin sulfate (naCS) (25). The 
aforementioned studies provide additional support to the assertion 

FIGURE 4

Spearman correlation analysis of core genes. (A,B) The correlation heatmap and circos plot demonstrate the functional associations or co-regulation 
among the 22 core genes.
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FIGURE 5

Enrichment results of GO and KEGG. (A,B,E) GO bar chart, bubble chart, and circle plot illustrating the top 10 entries determined by the enrichment 
ranking threshold, such as the p-value. (C,D) KEGG bar chart and bubble chart illustrating the top 12 entries determined by the enrichment ranking 
threshold, such as the p-value. (F) Gene chromosome localization circle plot.
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FIGURE 6

Assessment and visualization of immune cell infiltration. (A) Composition and abundance of 22 immune cell types in OA and HC samples. (B) Violin 
plot depicting differential analysis of immune cell infiltration. (C) Correlation between core gene expression and immune cell infiltration in the samples.
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that maintaining optimal expression levels of SAM is crucial for 
preventing OA.

The TGF-β1 pathway is the most common pathway implicated in 
inducing synovial fibrosis. Upon activation of TGF-β1, it engages with 
its receptor, facilitating the assembly and activation of the SMAD3/4 
complex, leading to the subsequent expression of fibrosis-related genes 
(α-SMA, COL1A1) downstream (26, 27). In this context, we hypothesize 
that a key factor contributing to joint osteoarthritis-like changes could 
be the diminished secretion of SAM in the synovium, leading to the 
activation of the TGF-β1-stimulated Smad3/4 signaling pathway. 
Western blot analysis (Figures 10C,D) was utilized for the preliminary 
validation of TGF-β1, SMAD3, SMAD4, α-SMA, and COL1A1 
expression in the OA group, ShMAT2A group, and HC group. Results 
reveal a significant upregulation in the TGF-β1 pathway and its 
downstream fibrotic markers in synovial cells from both the ShMAT2A 
group and the OA group, compared to the HC group.

4 Discussion

Osteoarthritis primarily occurs in the elderly population, 
emerging as the most prevalent chronic, degenerative joint disorder 
clinically linked to pain and disability (28). It is not limited to affecting 
a single tissue; instead, it involves pathological changes throughout the 
entire joint. Among these, persistent low-grade synovial inflammation 
is considered the initiating and end point precipitating irreversible 
joint damage (29, 30). Nevertheless, a conclusive consensus regarding 
the exact pathogenesis of OA continues to be elusive. This has also 
resulted in a lack of effective therapeutic agents and modalities, 
concurrently placing a significant economic burden on both the 
healthcare system and the households of affected individuals. 
However, more lamentably, OA is a silent malady before the onset of 
typical clinical symptoms and radiographic alterations (5, 6). 

FIGURE 7

Feature gene selection using RF, LASSO, SVM algorithms. (A) The RF gene significance ranking. (B) The connection between the error rate in RF and the 
quantity of trees. (C,D) Coefficient plot and LASSO model for tenfold cross-validation. The ideal lambda value is shown by the vertical dashed line. 
Plots of accuracy and cross-validation error for SVM are shown in (E,F). Venn diagram (G) showing the outcomes of the three algorithms.
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FIGURE 8

Mendelian randomization study results on the relationship between RBM6, MAT2A, and OA. (A,E) Scatter plots illustrating the causal relationship 
between RBM6, MAT2A, and OA. (B,F) Forest plots depicting the causal relationship of each SNP with OA risk. (C,G) Funnel plots assessing the reliability 
of the causal relationship between RBM6, MAT2A, and OA. (D,H) Visualization of the causal effects of RBM6, MAT2A on OA risk when omitting one SNP 
at a time.

https://doi.org/10.3389/fmed.2024.1409439
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Yan et al. 10.3389/fmed.2024.1409439

Frontiers in Medicine 14 frontiersin.org

Consequently, the exploration of highly sensitive and efficient 
diagnostic biomarkers for OA, along with the investigation of their 
associated mechanistic pathways, has emerged as the prevailing focus 

of current research endeavors. This enables a more precise prediction 
of the patient’s condition progression, facilitating the delivery of 
personalized diagnostic and therapeutic interventions.

FIGURE 9

Construction of ROC curves and nomogram clinical prognosis models. (A,H) The training and validation sets’ ROC curve models. (B,I) Nomogram risk 
prognosis models. (C,J) Calibration curves. (D,K) Decision curve analysis (DCA) curves in the training and validation sets. (E,L) Clinical impact curve. 
(F,G) Boxplots depicting differential analysis of RBM6 and MAT2A in the training set samples. (M,N) Boxplots depicting differential analysis of RBM6 and 
MAT2A in the validation set samples.
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In this endeavor, we initially integrated summary-level data from 
GWAS on OA with eQTL data to explore genes associated with 
expression levels and complex traits. Following Mendelian 
randomization analysis and subsequent meticulous filtering of the 
corresponding outcomes, we ultimately identified 318 genes causally 
linked to the occurrence and progression of OA, comprising 173 
low-risk genes and 145 high-risk genes. High/low-risk genes refer to 
genes where an elevation in gene expression correlates with an 
augmented or diminished likelihood of OA occurrence, respectively. 
Subsequently, we integrated data samples from the training set of the 
GEO database, which included synovial samples from both HC and 
individuals with OA, for conducting differential analysis. Two thousand 
two hundred fifty-eight DEGs were found, with 978 genes showing 
downregulation and 1,280 genes showing upregulation. Simultaneously, 
to unravel the associations between genes and traits, we conducted 
WGCNA on the training set data samples, acquiring the pertinent key 
module genes. Subsequently, through the cross-referencing of genes 
from the aforementioned results, we ultimately delineated the core 
genes exhibiting a significant causal relationship with OA traits. These 
core genes can be categorized into 17 low-risk genes and 5 high-risk 
genes. We presented the Mendelian randomization results of these 22 
core genes, along with their analysis of interrelatedness, using forest 
plots and circle plots. This provided additional insight into the causal 
relationship between gene expression and disease, while investigating 
the functional and interaction mechanisms among different core genes. 
Among these, the IVW method indicated an OR of 0.967 with a 95% 
CI of 0.935–0.999 and p = 0.046 for RBM6, and an OR of 0.912 with a 
95% CI of 0.840–0.990 and p = 0.028 for MAT2A. RBM6 showed 
substantial positive correlations with the expression of MYBL1, 
MAT2A, DUSP6, and MMP9, and a negative correlation with the 
expression of GPHN. MAT2A displayed marked negative correlations 
with the expression of BTN3A2, SARS2, and UROS, while exhibiting a 
positive correlation with the expression of MYBL1. To further elucidate 

the biological functions associated with these core genes, we performed 
GO and KEGG enrichment analyses. The pertinent results indicate that 
these core genes are predominantly involved in the T-cell receptor 
signaling pathway, regulating immune responses. Simultaneously, they 
exhibit significant enrichment in pathways related to sulfur compound 
biosynthesis, metabolic processes, and participate in pathways 
associated with amino acid biosynthesis. Among these, MAT2A is 
particularly enriched in the metabolic process of SAM. Moreover, 
considering OA as an inflammatory disease, we explored the association 
between immune cell infiltration in OA and the expression of core 
genes. A notable escalation in the infiltration levels of plasma cells, 
p = 0.001, and macrophages M0, p = 0.006, was observed in OA samples. 
Conversely, in HC samples, heightened infiltration was noted for NK 
cells activated, p = 0.004, mast cells resting, p = 0.005, T cells CD4 
memory resting, p < 0.001, and mast cells activated, p = 0.001. Among 
these, the expression of RBM6 is negatively correlated with activated 
NK cells, R = 0.51, p = 0.004, and resting mast cells, R = 0.66, p = 0.0001, 
while positively correlated with macrophages M0, R = 0.40, p = 0.02, and 
activated mast cells, R = 0.48, p = 0.006. The expression of MAT2A is 
negatively correlated with mast cells resting (R = 0.55, p = 0.001) and 
positively correlated with mast cells activated (R = 0.58, p = 0.0007) and 
macrophages M0 (R = 0.47, p = 0.008). This suggests the involvement of 
RBM6 and MAT2A in the inflammatory response process of OA, 
potentially linked to the body’s self-protective mechanisms during the 
initial stages of the disease. To augment the representativeness and 
clinical utility of the screened genes, we utilized three machine learning 
algorithms—RF, LASSO, and SVM—to reevaluate the 22 core genes. 
Upon cross-referencing the genes from the respective results, 
we  ultimately identified two diagnostic marker genes: RBM6 and 
MAT2A (31). Subsequently, we  constructed ROC curves and 
nomogram clinical prediction models for RBM6 and MAT2A, with the 
goal of assessing their clinical diagnostic and prognostic significance 
for OA. The results reveal that in the training set samples, the AUC 

FIGURE 10

Expression of RBM6 and MAT2A in synovial cells. (A) Western blot analysis and quantitative bar graph of RBM6 and MAT2A. (B) ELISA assay determining 
the expression levels of SAM in the HC group, ShMAT2A group, and OA group. (C,D) Western blot analysis and quantitative bar graph of the expression 
of proteins in the TGF-β1 pathway in each group.
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values for the ROC curves of RBM6 and MAT2A are 0.807 and 0.823, 
respectively. Correspondingly, in the validation set samples, the AUC 
values for the ROC curves of RBM6 and MAT2A are 0.879 and 0.729, 
respectively. In the nomogram, for both the training set and validation 
set samples, the prediction of the likelihood of OA by RBM6 and 
MAT2A surpasses 90%. The respective clinical calibration curve slopes 
closely approach 1, and the net benefit values on the decision curve are 
consistently greater than 0. This strongly supports the superior 
diagnostic capabilities and predictive efficacy of both models for OA.

MAT2A represents a pivotal gene encoding MAT, crucially involved 
in regulating the biosynthesis of SAM (21). SAM serves as a primary 
methyl donor and precursor of GSH. Maintaining normal levels of SAM 
in the liver is essential for liver health and preventing fibrosis (22). 
Likewise, in synovial cells, does MAT2A exert a similar influence by 
regulating the expression levels of SAM? Building upon previous research 
findings, we chose to downregulate MAT2A expression in synovial cells 
obtained from HC and evaluated the respective SAM levels in each group 
employing the ELISA method. The results indicate a noteworthy decrease 
in SAM expression levels within synovial cells from both the ShMAT2A 
group and the OA group, in comparison to the HC group. This suggests 
that MAT2A plays a similar role in regulating SAM expression within 
synovial cells. The TGF-β1 pathway is the most common pathway 
implicated in inducing synovial fibrosis. Upon activation of TGF-β1, it 
engages with its receptor, facilitating the assembly and activation of the 
SMAD3/4 complex, leading to the subsequent expression of fibrosis-
related genes (α-SMA, COL1A1) downstream (26, 27). Based on an 
abundance of prior research, it is clear that SAM demonstrates notable 
therapeutic efficacy in OA (23–25). In this context, we hypothesize that a 
key factor contributing to joint osteoarthritis-like changes could be the 
diminished secretion of SAM in the synovium, leading to the activation 
of the TGF-β1-stimulated Smad3/4 signaling pathway. Thus, we employed 
western blot analysis to preliminarily validate the expression of TGF-β1, 
SMAD3, SMAD4, α-SMA, and COL1A1 in the HC group, ShMAT2A 
group, and OA group. The results show a noteworthy increase in the 
expression levels of the TGF-β1 pathway and its downstream fibrotic 
markers in synovial cells from both the ShMAT2A group and the OA 
group, when compared to the HC group. Nevertheless, our study is 
subject to certain limitations. Owing to various constraints, we were only 
able to conduct preliminary validation of the relevant hypotheses based 
on previous research. Moreover, the limited number of relevant samples 
may introduce a degree of bias.

5 Conclusion

This work offers the first proof that RBM6 and MAT2A serve as 
robust diagnostic indicators for OA. MAT2A, through its involvement 
in regulating the synthesis of SAM, inhibits the activation of the 
TGF-β1-induced Smad3/4 signaling pathway, thereby effectively 
averting the possibility of synovial fibrosis. Concurrently, the 
development of a prognostic risk model facilitates early OA diagnosis, 
functional recovery evaluation, and offers direction for further therapy.
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