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Background: Epstein–Barr virus (EBV) infection involves distinct clinical and

serological profiles. We evaluated the frequency of alleles of locus DRB1 of HLA

class II in different serological profiles of EBV infection among HIV-1 infected

patients.

Methods: We recruited 19 patients with primary infection, 90 with serological

transition and 467 with past infection by EBV, HIV-1 co-infection was 100% in

primary infection and approximately 70% in other serological profiles. EBV viral

load was quantified by real-time PCR, T lymphocyte quantification and cytokine

level analysis were performed by flow cytometry, and HLA locus genotyping was

performed by PCR-SSO.

Results: The DRB1∗09 allele was associated with primary infection (p: 0.0477),

and carriers of the allele showed changes in EBV viral load (p: 0.0485), CD8(+)

T lymphocyte counts (p: 0.0206), double-positive T lymphocyte counts (p:

0.0093), IL-4 levels (p: 0.0464) and TNF levels (p: 0.0161). This allele was also

frequent in HIV-coinfected individuals (p: 0.0023) and was related to the log10

HIV viral load (p: 0.0176) and CD8(+) T lymphocyte count (p: 0.0285). In primary
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infection, the log10 HIV viral load was high (p: 0.0060) and directly proportional

to the EBV viral load (p: 0.0412). The DRB1∗03 allele correlated with serological

transition (p: 0.0477), EBV viral load (p: 0.0015), CD4(+) T lymphocyte count (p:

0.0112), CD8(+) T lymphocyte count (p: 0.0260), double-negative T lymphocyte

count (p: 0.0540), IL-4 levels (p: 0.0478) and IL-6 levels (p: 0.0175). In the

serological transition group, the log10 HIV viral load was high (p: 0.0060), but

it was not associated with the EBV viral load (p: 0.1214). Past infection was

related to the DRB1∗16 allele (p: 0.0477), with carriers displaying IgG levels (p:

0.0020), CD4(+) T lymphocyte counts (p: 0.0116) and suggestive CD8(+) T count

alterations (p: 0.0602). The DRB01∗16 allele was also common in HIV-1 patients

with past EBV infection (p: 0.0192); however, the allele was not associated with

clinical markers of HIV-1 infection.

Conclusion: Our results suggest that HLA class II alleles may be associated with

the modulation of the serological profiles of the immune response to Epstein-

Barr virus infection in patients coinfected with HIV-1.
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Introduction

In the natural history of Epstein–Barr virus (EBV) infection,
primary infection is predominantly asymptomatic when it occurs
in childhood. However, EBV infection in adolescents and adults
can result in infectious mononucleosis, which is characterized
by significant clinical variation and can progress to atypical
manifestations in approximately 15% of young adults (1, 2).
Although the prevalence of primary infection varies between early
childhood and early adulthood, it is assumed that on a global scale,
approximately 90% of the population will come into contact with
the virus before the age of 30 years (3, 4).

Serum levels of the IgM antiviral capsid antigen (VCA)
antibody reach their serological peak within the first 5 days of
disease onset, a period in which there is an increase in clinical
severity and the EBV viral load in the oral mucosa and peripheral
blood. Seroconversion to IgG anti-VCA antibodies occurs later,
clinical symptoms are still present, and titers tend to remain
high and persistent even with a decrease in viral load in the
bloodstream (5, 6).

At the beginning of the active phase, the virus infects epithelial
cells where it amplifies its viral load, which allows cell-to-cell
spread. B cells are subsequently infected due to their expression
of CD21, the main receptor for the virus (7). After the end of
the active phase of EBV infection, the latent phase begins, in
which the viral DNA remains as a closed circular plasmid in the
memory B lymphocytes of the host. Coordinated expression of
EBV proteins stimulates different patterns of latency that can either
induce viral persistence without causing cellular transformation or
favor specific lymphoproliferative disorders (8, 9).

The pathology of EBV infection tends to be influenced
by coinfection with the HIV-1 virus since the presence of
both potentiates the clinical manifestations expected for a
monoinfection (10). In fact, the impairment of the immune system

caused by HIV contributes to the escape of EBV-infected cells,
allowing their proliferation and, eventually, the emergence of EBV-
transformed clones (11). These observations are valid even at
replication sites in the primary phase of EBV infection, where a
relationship between HIV-1 and increased EBV viral load in the
tonsils has already been observed (12).

In cases of more severe disease, the emergence of EBV-
associated neoplasms correlates with the depletion of specific
CD4(+) T lymphocytes induced by HIV-1, and this loss leads
to an exhausted CD8(+) T lymphocyte population that can no
longer control EBV-mediated lymphoproliferation (13). On the
other hand, EBV can also make B lymphocytes susceptible to HIV-
1 infection by inducing the expression of CXCR4 and CD4 in these
cells (14).

A previous study by our group showed that, of a total of
282 patients from the Brazilian Amazon region with a history
of HIV-1 infection evaluated, 19 patients, approximately 7%,
were also coinfected with EBV. Coinfection was predominant in
homosexual individuals with low education and low family income
who used illicit drugs and did not use condoms during their sexual
contacts (15).

It has been argued that a hereditary basis for the risk of EBV
infection is as relevant as other known risk factors (16). For human
leukocyte antigen [HLA], most of the associations observed are
related to class I loci.

The genetic profiles of the class I A and B loci have been
associated with a polyclonal T lymphocyte response in primary
EBV infection, and the specificity of the response can differ slightly,
even between similar allelic groups (17). In an ex vivo study,
maintenance of a balanced anti-EBV response was associated with
the HLA-B∗08 allele, with restriction to the early BZLF1 protein
(18). However, the restricted response of the HLA-A∗02:01 allele
to epitopes of lytic phase proteins appears to be unstable and
associated with the expression of cell death markers (19). Other
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studies have shown that the microsatellite markers D6S510 and
D6S265 and the polymorphisms rs2530388 and rs6457110 in HLA
class I loci are associated with changes in viral load and immune cell
counts in patients with mononucleosis (20). The strict relationship
between EBV and HLA class I is proposed to be due to blockage of
synthesis of the TAP transporter by the viral gene BNLF2a, leading
to interference with antigen presentation (21).

One study showed that the viral protein EBNA2 downregulates
HLA expression through a CIITA transcription factor-dependent
pathway (22).

In a detailed search, we found no published studies
that investigated the association of HLA locus alleles with
HIV/EBV coinfection.

Taken together, the above results show that HLA variability
is associated with the elaboration of relevant immunological
responses that indicate specific outcomes in EBV infection. In
the present study, we evaluated the allelic frequency of HLA
class II DRB1 loci and their association with immunological and
viral biomarkers in patients with primary EBV infection, in those
undergoing serological class transition (interprofiles) and in those
with past infection who were predominantly coinfected with HIV-
1. Our objective was to identify immunogenetic markers associated
with the complex natural history of EBV and/or EBV/HIV-
1 coinfection.

Materials and methods

Sampling

This was a descriptive, cross-sectional, and analytical study.
We recruited patients with symptoms of intermittent fever or
episodes of recurrent fever from the Setor de Atendimento Médico
Unificado do Instituto Evandro Chagas (Unified Medical Care
Sector of Instituto Evandro Chagas; SOAMU-IEC); patients with
a positive diagnosis of HIV in a subclinical state from the Centro
de Atenção à Saúde nas Doenças Infecciosas Adquiridas (Health
Care Center for Acquired Infectious Diseases; CASA DIA); and
voluntary blood donors from the Fundação Centro de Hematologia
e Hemoterapia do Estado do Pará (Pará State Hematology and
Hemotherapy Center Foundation; HEMOPA). From January 2018
to January 2020, peripheral blood samples were collected weekly.

A total of 576 participants were included, of whom 19 had
serology consistent with primary EBV infection (P.I.) (anti-VCA
IgM (+), anti-VCA IgG (−)), 90 had a class serological transition
profile (S.T.) (anti-VCA IgM (+), anti-VCA IgG (+)), and 467 had
serology consistent with past EBV infection (Past I.) (anti-VCA IgM
(−), anti-VCA IgG (+)).

Sociodemographic and clinical data

Sociodemographic data (gender, age, education and family
income), behavioral data (smoker, alcohol drinker, user of illicit
drugs, sexual orientation, active sexual life, steady sexual partner,
history of sexual relations with sex workers and use of sexual
condoms) and clinical data (sleep quality, diagnosis or family
history of cancer, symptoms and history of infections) were

obtained through a project-specific questionnaire applied during
the participant interview and from medical records databases
accessed through authorization filed by the institutions where the
study was carried out. All access and disclosure of participant data
were included in the study’s ethical opinion.

Screening and viral load

EBV infection was screened by semiquantitative detection of
anti-VCA IgM and IgG class antibodies by enzyme immunoassays
(Dia. Pro Diagnostic Bioprobes EBV VCA, Italy). Identification
of EBV genotypes was performed by nested PCR targeting the
EBNA-3C gene using primers described by Sample et al. (23) and
Lorenzetti et al. (24) following appropriate recommendations: (1◦

round) (F: 5′-AGATGGTGAGCCTGACGTG-3′/R: 5′-GCATCC
TTCAAAACCTCAGC-3′) (2◦ round) (F: 5′-AGAAGGG
GAGCGGTGTGTTGT-3′/R: 5′-GGCTGTTTTTGACGTCGGC-
3′). The reaction mixture and program were as follows: 10 pmol/µL
primers, MgCl2 (50 mM), dNTPs (10 mM), and Taq (5 U/µL);
cycling 1◦ round–1 cycle at 95◦C/3′; 20 cycles at 94◦C/45,
56◦C/45, 72◦C/45; 1 cycle at 72◦C/7; cycling 2◦ round–1 cycle
at 95◦C/3′; 35 cycles at 94◦C/45, 56◦C/45, and 72◦C/45; and
1 cycle at 72◦C/7. The presence of a 153-bp fragment was
considered positive for EBV-1; a 246-bp fragment was considered
positive for EBV-2.

To quantify the EBV load, we used blood plasma samples
from patients with positive serology for anti-VCA IgM in
a real-time PCR estimation matrix following the protocol
of the XGEN MASTER EBV kit (Mobius Life Science,
Pinhais, PR, Brazil).

Cytokine level and cell quantification

Plasma concentrations of the cytokines IL-17A, IFN-γ , TNF,
IL-10, IL-6, IL-4 and IL-2 were determined using a Cytometric Bead
Array (CBA) with BD FACSCantoTM II and BDTMCBA Human
Th1/Th2/Th17 Cytokine kits (BD Biosciences, San Jose, CA, USA).
Quantification of CD4(+) T, CD8(+) T, CD4(+)/CD8(+) T (double-
positive) and CD4(−)/CD8(−) T (double-negative) lymphocytes
was performed by immunophenotyping and flow cytometry using
BD FACSCalibur-4 colors and monitoring kits FACSCountTM
Reagents and TriTESTTM/TruCount (BD Biosciences, San Jose,
CA, USA).

DNA extraction and genotyping of the
HLA locus

Peripheral blood samples were collected from the participants,
and DNA was extracted using a QiaAmp DNA Mini Kit
(Qiagen, Düsseldorf, Nordrhein-Westfalen, Germany) following
the manufacturer’s recommendations. The extracted DNA samples
were quantified by spectrofluorimetry using Qubit equipment
(Invitrogen, USA) following the manufacturer’s recommendations.
The degree of purity was evaluated using a NanoDropTM

2000/2000c spectrophotometer (Waltham, Massachusetts, USA), in
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TABLE 1 Multifactorial comparison of sociodemographic, behavioral and clinical aspects between patients with primary EBV infection, patients with
serological transition and patients with past EBV infection.

Groups P.I. S.T. Past I. G-test L.R.

Factors n: 19 n: 90 n: 467 p OR (IC 95%) p

Sex

Female 6 (31.6) 26 (28.88) 108 (23.13) 0.4093 – –

Male 13 (68.4) 64 (71.11) 359 (76.87)

Age

18–28 10 (52.6) 40 (44.44) 217 (46.47) 0.4440 – –

29–39 7 (36.8) 27 (30.00) 129 (27.62)

40–50 1 (05.3) 18 (20.00) 85 (18.20)

51–61 1 (05.3) 3 (03.33) 35 (07.49)

62–72 0 2 (02.22) 1 (00.21)

Complete education

Illiterate 0 0 1 (00.21) 0.2257 – –

Literate 2 (10.5) 7 (07.78) 44 (09.42)

Elementary school 1 6 (31.6) 12 (13.33) 63 (13.49)

Elementary school 2 9 (47.4) 46 (51.11) 167 (35.76)

High school 2 (10.5) 20 (22.2) 127 (27.19)

University education 0 5 (05.56) 65 (13.92)

Family income

No fixed salary 1 (05.3) 7 (07.78) 19 (04.07) 0.2562 – –

(<1) salary 8 (42.1) 14 (15.56) 72 (15.42)

(1–3) salary 10 (52.6) 56 (62.22) 307 (65.74)

(4–6) salary 0 7 (07.78) 43 (09.21)

(7–10) salary 0 4 (04.44) 17 (03.64)

(>10) salary 0 2 (02.22) 9 (01.93)

Smoking

history

No 10 (52.6) 48 (53.33) 235 (50.32) 0.8500 – –

Yes 9 (47.4) 42 (46.67) 232 (49.68)

Current usage

No 6 (66.7) 32 (76.19) 182 (78.45) 0.7162 – –

Yes 3 (33.3) 10 (23.81) 50 (21.55)

Alcohol use

History

No 2 (10.5) 12 (13.33) 47 (10.06) 0.6904 – –

Yes 17 (89.5) 78 (86.67) 420 (89.94)

Current usage

No 10 (58.8) 39 (50.00) 182 (43.33) 0.2768 – –

Yes 7 (41.2) 39 (50.00) 238 (56.67)

Illicit drug use

History

No 14 (73.7) 67 (74.44) 358 (76.66) 0.8814 – –

Yes 5 (26.3) 23 (25.56) 109 (23.34)

(Continued)
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TABLE 1 (Continued)

Groups P.I. S.T. Past I. G-test L.R.

Factors n: 19 n: 90 n: 467 p OR (IC 95%) p

Usage time

<5 years 3 (60.00) 8 (34.78) 58 (53.21) 0.2663 – –

≥5 years 2 (40.00) 15 (65.22) 51 (46.79)

Sexual orientation

Heterosexual 9 (47.4) 48 (53.33) 275 (58.89) 0.7480 – –

Homosexual 7 (36.8) 30 (33.33) 143 (30.62)

Bisexual 3 (15.9) 12 (13.33) 49 (10.49)

Active sex life

No 8 (42.1) 30 (33.33) 137 (29.34) 0.4187 – –

Yes 11 (57.9) 60 (66.67) 330 (70.66)

Fixed partner

No 5 (26.3) 41 (45.55) 178 (38.12) 0.2342 – –

Yes 14 (73.7) 49 (54.44) 289 (61.88)

Relationships with sex workers

No 16 (84.2) 66 (73.33) 356 (76.23) 0.5770 – –

Yes 3 (15.8) 24 (26.67) 111 (23.77)

Use of condoms

No 4 (21.05) 15 (16.67) 105 (22.48) 0.4505 – –

Yes 15 (78.95) 75 (83.33) 362 (77.52)

Difficulty sleeping

No 14 (73.68) 49 (54.44) 285 (61.03) 0.2616 – –

Yes 5 (26.32) 41 (45.56) 182 (38.97)

Daily rest hours

<8 h 8 (42.11) 59 (65.56) 259 (55.46) 0.0843 – –

≥8 h 11 (57.89) 31 (34.44) 208 (44.54)

Cancer diagnosis

No 19 (100.0) 90 (100.0) 465 (99.57) 0.8475 – –

Yes 0 0 2 (00.43)

Family history of cancer

No 12 (63.2) 52 (57.78) 261 (55.89) 0.7938 – –

Yes 7 (36.8) 38 (42.22) 206 (44.11)

Degree of kinship

First-degree relatives 1 (14.29) 8 (21.05) 41 (19.90) 0.9904 – –

Second-degree relatives 3 (42.86) 14 (36.84) 73 (35.43)

Third-degree relatives 3 (42.86) 16 (42.11) 92 (44.66)

HIV infection

Yes 19 (100.0) 60 (66.67) 317 (67.88) 0.0008 11.4 (1.51–85.88) 0.0064

No 0 30 (33.33) 150 (32.12)

History of other infections

No history 9 (47.37) 61 (67.78) 330 (70.67) 0.1137 – –

History 10 (52.63) 29 (32.22) 137 (29.34)

Syphilis 9 (0.9) 17 (54.84) 80 (54.05) 0.1447 – –

Gonorrhea 1 (0.1) 7 (22.59) 39 (26.35)

(Continued)
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TABLE 1 (Continued)

Groups P.I. S.T. Past I. G-test L.R.

Factors n: 19 n: 90 n: 467 p OR (IC 95%) p

Other IST 0 7 (22.59) 29 (19.59)

Symptomatology

Asymptomatic 9 (47.37) 44 (48.35) 253 (54.47) 0.4976 – –

Symptomatic 10 (52.63) 46 (51.65) 214 (45.53)

Symptoms

Adenomegaly 0 1 (01.56) 0 0.9312 – –

Fever 9 (37.50) 19 (29.69) 69 (29.87)

Sore throat 7 (29.17) 19 (29.69) 77 (33.33)

Arthralgia 2 (08.33) 5 (07.81) 23 (09.96)

Headache 4 (16.67) 14 (21.88) 51 (22.08)

Lymphadenopathy 0 1 (01.56) 0

Myalgia 2 (08.33) 5 (07.81) 11 (04.76)

L.R., logistic regression; OR, odds ratio; CI, confidence interval.

which the elution solution used for extraction of genetic material
was used as a reference standard.

We standardized the following profiles as the ideal range for
successful amplification: concentrations between 10 and 15 µg/ml.
The degree of purity for the locus was represented by the
ratios 260/280: 1.8–2.0 and 260/230: 1.8–2.2. Samples outside the
established standard were diluted in ultrapure distilled water free
of DNase/RNase (Invitrogen, USA) at concentrations above the
expected concentrations. Samples with concentrations below the
expected concentrations were re-extracted.

HLA genotyping was performed using low/medium resolution
PCR-SSO methodology (polymerase chain reaction – sequence-
specific oligonucleotide) with Luminex technology (Luminex
Corporation, Austin, TX, USA) and a LABType R© kit (One Lambda
Inc., Canoga Park, USA). CA, USA).

The target DNA was amplified by conventional PCR using
specific primers for each locus provided by the recombinant Taq
kit (Invitrogen, USA) and D-mix solution following the supplier’s
amplification protocol, in which, for each sample, 13.8 µL of
D-mix, 4 µL of the supplied primer and 0.2 µL of TAQ polymerase,
totaling 18 µL of preparation for 2 µL of extracted DNA. Sequence
amplification followed the following cycles: 1 cycle at 96◦C for
3 min; 5 cycles at 96◦C for 20 s, 60◦C for 20 s and 72◦C for 20 s;
30 cycles at 96◦C for 10 s, 60◦C for 15 s and 72◦C for 20 s; and
1 cycle at 72◦C for 10 s. To confirm amplification, electrophoresis
was performed on a 2.5% agarose gel.

The amplified DNA was denatured and subjected to
hybridization with a set of specific fluorescently stained
oligonucleotide probes immobilized on polystyrene microspheres.
The reagents were standardized in the following proportions:
2.5 µL of denaturation buffer/sample, 5 µL of neutralization
buffer/sample, 34 µL of hybridization buffer/sample, and 4 µL of
bead mix/sample.

The microspheres were washed with wash buffer
(480 µl/sample) and then reacted with 50 µL of streptavidin-
phycoerythrin (SAPE) conjugate, which binds to biotinylated
amplified DNA. The SAPE mixture was standardized in the

following proportions: 0.5 µL of stock SAPE at 10 × /sample and
49.5 µL of SAPE buffer/sample.

In the analytical phase, the fluorescence intensity of
phycoerythrin in each microsphere was evaluated using a
Luminex analyzer, and the data were archived. Data analysis was
performed with HLA Fusion software to determine the HLA gene
alleles, and the reactivity pattern of each DNA sample in relation
to the set of probes conjugated to the microspheres allowed the
establishment of the genotype.

Statistical analysis

We applied multivariate analysis to determine the separation
of the studied groups according to the values of their variables
(lymphocyte quantification, cytokine dosage, anti-EBV antibody
titer and EBV viral load). A scatterplot was generated to identify the
groups and visualize the group separations and approximations.

We calculated the Spearman coefficient through a matrix of
general correlations between the immunological and virological
variables in each of the three groups.

The frequency of HLA alleles was calculated by direct counting
and compared between groups using the G test. For groups with
significantly different allelic profiles, the chi-square residual test
was applied to determine the probabilistic importance of each of
the alleles, followed by calculation of the odds ratio to determine the
advantage or disadvantage of significant alleles. We calculated the
false positive probability (FPRP) for significant associations, with
a predefined threshold value of 0.5. The odds ratio for calculating
the statistical power was 1.5. We adopted a range from 0.25 to
0.00001 as the prior probability of association of the alleles with
the serological profiles of EBV infection, in accordance with the
recommendations of Wacholder et al. (25).

We also applied the G test to compare sociodemographic
and clinical data between the groups. To assess significance,
logistic regression was performed, with the EBV serological profile
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FIGURE 1

Immunological characterization of the studied groups. (A) Discriminant scatter plot of the groups based on immunological and virological aspects.
Patients in serological transition and those with past infection tended to overlap; patients with primary infection grouped differently. (B–D) Dot plot
graphs showing differences in the following predictive immunological and virological variables between the groups: (B) viral load, (C) CD4+ T
lymphocyte count and (D) CD8+ T lymphocyte count. *p = 0.005–0.0001; **p < 0.0001.

used as the dependent variable and the analyzed data used as
independent variables.

HWE was measured by selecting as an alternative hypothesis of
interest an excess of heterozygotes in the groups; standard Markov
chain parameters were adopted (26).

We applied the Mann–Whitney test for two-by-two
comparisons of quantitative and semiquantitative data between the
groups and between HLA alleles. We opted for nonparametric tests
due to the degree of normality of the variables in question, which
was estimated by the Lilliefors test.

We adopted a significance level (α) of 95% while considering
a probability of significance (p) less than or equal to 0.05 as a
criterion for rejecting the null hypotheses for the statistical analyses.
The diagrams and graphs were assembled using GraphPad Prism
8.4.3 (San Diego, CA, USA), and statistical analyses were performed
using BioEstat 5.3 software (27).

Ethical aspects

In compliance with resolutions 466/2012 and 347/05 of the
National Health Council, which address guidelines and regulatory

standards for research involving humans, the project was submitted
for ethical consideration and approved by the Ethics Committee
in Research with Human Beings of the IEC (Protocol: 3.121.265;
CAAE: 73927717.3.0000.0019). All participants were informed
about the research objectives, and those who agreed signed
a consent form. Individuals under 18 years of age or who
were using any specific therapy (antivirals, antiretrovirals or
immunosuppressants) were excluded.

Results

Characterization of the groups

Among the sociodemographic and behavioral characteristics,
the most common were male sex, age between 18 and 28 years,
complete primary education and family income between 1 and
3 years. There were also higher rates of nonsmokers, those who
consumed alcohol and those who had no history of using illicit
drugs among the participants, as well as heterosexuals and those
who had an active sexual life, who had a steady partner, and who
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FIGURE 2

Correlations between immunological and virological factors in the
studied groups. Heatmap graphs showing correlation matrices
between immunological and virological factors in patients with
active infection (A), patients in serological transition (B) and patients
with past EBV infection (C).

had no relationship with sex workers. and who reported using
condoms in their relationships (Table 1).

In relation to stress and history of cancer, individuals who did
not have difficulty sleeping were more likely to experience stress,
but with variable rest times and without a diagnosis of cancer or
family history (Table 1).

Regarding the history of infections and clinical aspects,
individuals with a history of coinfection with HIV and syphilis
prevailed. Fever and sore throat were more common in
symptomatic individuals (Table 1).

HIV coinfection varied between 70 and 100% in the serological
groups, and it was significantly associated with the primary phase of
EBV infection (100% of patients; p = 0.0008). In fact, patients with
primary EBV infection were approximately 11 times more likely to
be coinfected with HIV than patients in the other groups were (OR:
11.4; CI (95%): 1.51–85.88; p = 0.0064) (Table 1).

In multivariate analysis, we observed an overlap between the
serological transition groups and the past EBV infection group;
the primary infection group tended to cluster in coordinates
further away from the others; the generated analysis represented
approximately 47% of the total data variance (Figure 1A). The
viral load and CD4(+) and CD8(+) T lymphocyte counts were
the most relevant parameters. The primary infection group had a
greater viral load than did the serological transition group (P.I. =
median: 15.33; IIQ: 6.50–78.50); (S.T. = median: 0; IIQ: 0.0–2.0);
p< 0.00001) (Figure 1B) and a lower CD4(+) T lymphocyte count
(P.I. = median: 319.50; IIQ: 140.00–443.25); (S.T. = median: 475;
IIQ: 245–764); (Past I. = median: 525.50; IIQ: 280.75–938.25); p:
0.0068) (Figure 1C) but a higher CD8(+) T lymphocyte count than
did the other groups (P.I. = median: 1024.50; IIQ: 886.25–2136.75);
(S.T. = median: 1140; IIQ: 582–1735); (Past I. = median:807; IIQ:
553–1235); p< 0.00001) (Figure 1D).

In the group with primary infection (Figure 2A), the IgM
concentration correlated negatively with the viral load (r: −0.568;
p: 0.0334) and positively with the CD4(+) T lymphocyte count (r:
0.7004; p: 0.0006), IL-6 level (r: 0.1767; p: 0.0457), TNF level (r:
0.2019; p: 0.0522) and IL-4 level (r: 0.1860; p: 0.0517). The EBV viral
load correlated negatively with the CD4(+) T lymphocyte count
(r: −0.1874; p: 0.0526) and IL-6 level (r: −0.1915; p: 0.0525) but
positively with the IL-4 level (r: 0.6976; p: 0.0427). In addition,
the CD4(+) T lymphocyte count correlated positively with the IL-
17A (r = 0.1250; p = 0.0494) and TNF (r = 0.1367; p = 0.0513)
levels. The CD8(+) T lymphocyte count correlated negatively with
the CD4(+) T lymphocyte count (r: −0.1612; p: 0.0497) and IL-4
level (r:−0.1748; p: 0.0475) and positively with the double-negative
T lymphocyte count (r: 0.7431; p: 0.0002). The double-positive T
lymphocyte count also correlated positively with the IL-17A level
(r: 0.6584; p: 0.0016), and cytokine levels correlated positively with
each other (r: 0.1051–0.8297).

In the serological transition group (Figure 2B), the viral
load correlated negatively with the CD4(+) T lymphocyte count
(r = −0.1791; p = 0.0569) and positively with the IL-6 level
(r = 0.3312; p = 0.0017). The CD4(+) T lymphocyte count correlated
negatively with the IL-6 level (r: −0.6256; p: 0.0021), though the
double-positive T lymphocyte count correlated positively with the
CD4(+) T lymphocyte count (r: 0.6521; p < 0.0001) and negatively
with the IL-6 level (r: −0.2536; p: 0.0177). Additionally, cytokine
levels correlated positively (r = 0.4998–0.9343).

In the group with past EBV infection (Figure 2C), the IgG level
correlated negatively with the CD4(+) T lymphocyte (r: −0.3256;
p < 0.0001) and double-positive T lymphocyte (r: −0.1108; p:
0.0401) counts and positively with the CD8(+) T lymphocyte
count (r: 0.1712; p: 0.0016). However, the CD4(+) T lymphocyte
count correlated negatively with the IL-6 level (r: −0.1069; p:
0.0476) and positively with TNF (r: 0.1042; p: 0.0535) and IL-4 (r:
0.1053; p: 0.0510) levels and with double-negative T lymphocyte (r:
0.3555; p < 0.0001) and double-positive T lymphocyte (r: 0.4532;
p < 0.0001) counts. The CD8(+) T lymphocyte count correlated
positively with the double-positive T lymphocyte (r: 0.1238;
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FIGURE 3

Alleles associated with EBV infection profiles. (A) Column graph showing the frequency of alleles at the HLA class II DRB1 locus. The DRB1*09, *03,
and *16 alleles were associated with primary infection, serological transition and past EBV infection, respectively. *p = 0.005–0.0001. (B) Dot plot
graph showing the odds ratio and confidence interval (CI 95%) of DRB1 alleles in primary EBV infection, with the DRB1*09 allele being approximately
4-fold more frequent in the group. (C) Dot plot graph showing the odds ratio and confidence interval (CI 95%) of DRB1 alleles at serologic transition
and past EBV infection. The DRB1*03 allele was approximately 2-fold more frequent in the serological transition group. The DRB1*16 allele was less
frequent in the serological transition group (OR: 0.2724) and approximately 7-fold more frequent in the group with past infection.

p: 0.0219) and double-negative T lymphocyte (r: 0.2279; p <

0.0001) counts, and the double-negative T lymphocyte count
correlated positively with the IL-2 (r: 0.1128; p: 0.0368), TNF (r:
0.1554; p: 0.0041) and IL-4 (r: 0.1283; p: 0.0175) levels. For the
other groups, cytokine levels correlated positively with each other
(r = 0.0913–0.8608).

Frequency of the DRB1 locus

The DRB1 locus was in Hardy–Weinberg equilibrium in all
groups studied (P.I.: p = 0.9158; S.T.: p = 0.7626; Past I.: p = 0.8574).
We observed relevant differences in the frequency of DRB1 locus
alleles between the groups studied (p = 0.0477), with the DRB1∗09
allele showing greater probabilistic relevance in the group with
primary EBV infection (residues x2: 2.4538), the DRB1∗03 allele
being more relevant in the serological transition group (residues
x2: 2.8528) and the DRB1∗16 allele being more relevant in the
group with past EBV infection (residues x2: 2.6223) (Figure 3A and

Table 2). The rate of heterozygosity was high in the three groups,
with no significant differences among them (p = 0.1817) (Table 2).

The DRB1∗09 allele was associated with
primary EBV infection

The DRB1∗09 allele was approximately 4-fold more frequent
in the group with primary EBV infection than in the other groups
(OR: 4.235; CI (95%): 1.21–14.80; p: 0.054) (Figure 3B).

The median EBV viral load was greater in carriers of this allele
(DRB1∗09 = 47.33; IIQ = 40.33–80.67) (others = median: 9.33;
IIQ = 3.75–18.33); p = 0.0485) (Figure 4A). However, the anti-VCA
IgM titer was not associated with DRB1∗09 (Figure 4B).

The CD8(+) T lymphocyte count was greater (DRB1∗09 =
median: 2844; IIQ: 2401.5–3054.0) (others = median: 975.5; IIQ:
795.5–1179.5); p = 0.0206) (Figure 5B), as was the double-
positive T lymphocyte count (DRB1∗09 = median: 27; IIQ: 21–29)
(others = median: 3.5; IIQ: 2.75–7.00); p = 0.0093) (Figure 5D).
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TABLE 2 Allelic frequency of the DRB1 locus of HLA class II in groups with primary infection, in serological transition and with past infection with EBV.

Alleles Primary Transition Past Primary Transition Past

N % N % N % p G test residues x2

(α : 0.05): 1.96
residues x2

(α : 0.05): 1.96
residues x2

(α : 0.05): 1.96

DRB1-01 2 5.26 14 7.82 69 7.42 0.0477 34.3380 −0.5140 0.2283 0.0233

DRB1-03 3 7.89 21 11.73 54 5.81 0.2725 2.8528 −2.7680

DRB1-04 4 10.53 25 13.97 115 12.37 −0.3837 0.6206 −0.3997

DRB1-07 4 10.53 21 11.73 105 11.29 −0.1597 0.1828 −0.0964

DRB1-08 3 7.89 17 9.50 93 10.00 −0.4117 −0.1733 0.3487

DRB1-09 3 7.89 1 0.56 21 2.26 2.4538 −1.6167 0.3768

DRB1-10 2 5.26 3 1.68 13 1.40 1.8632 0.1250 −0.9673

DRB1-11 3 7.89 18 10.06 97 10.43 −0.4938 −0.1111 0.3286

DRB1-12 0 0.00 3 1.68 12 1.29 −0.7217 0.4720 −0.1076

DRB1-13 8 21.05 32 17.88 132 14.19 1.0636 1.1754 −1.5751

DRB1-14 4 10.53 11 6.15 78 8.39 0.5554 −1.0473 0.7166

DRB1-15 0 0.00 9 5.03 69 7.42 −1.6934 −1.0253 1.7239

DRB1-16 2 5.26 4 2.23 72 7.74 −0.3828 −2.6412 2.6223

Homozygous 1 5.26 16 17.78 54 11.56 0.1817 3.4109 −0.9568 1.8375 −1.2797

Heterozygous 18 94.74 74 82.22 413 88.44 0.9568 −1.8375 1.2797
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FIGURE 4

Alleles associated with EBV viral load and anti-VCA IgM and IgG
antibody levels. (A) Dot plot graph showing the associations of the
DRB1*03 and DRB1*09 alleles with the EBV load. (B) Dot plot graph
showing the lack of association of the DRB1*03 and DRB1*09
alleles with semiquantitative IgM antibody titers. (C) Dot plot
showing the association of the DRB1*16 allele with the
semiquantitative IgG antibody titer. *p = 0.005–0.0001.

The levels of TNF (DRB1∗09 = median: 11.64; IIQ: 11.07–
12.38); (others = median: 9.52; IIQ: 8.72–10.24); p = 0.0161) and IL-
4 (DRB1∗09 = median: 11.78; IIQ: 10.30–12.04); (others = median:
8.52; IIQ: 6.67–8.85); p = 0.0464) were also higher in the DRB1∗09
allele carriers (Figure 6C). Other cytokines were not associated with
the allele (Supplementary Data 1).

The DRB1∗03 allele was associated with
the serological transition profile

The DRB1∗03 allele was approximately 2-fold more frequent
in patients who underwent a serological transition (OR: 2.1560; CI
(95%): 1.27–3.67; p: 0.001) (Figure 3C).

Moreover, the EBV viral load was greater in DRB1∗03 allele
carriers (DRB1∗03 = median: 20; IIQ: 0.00–52.98) (others =
median: 0; IIQ: 0–0); p: 0.0015) (Figure 4A). In contrast, anti-
VCA IgM and IgG titers were not associated with this allele
(Figures 4B, C).

The CD4(+) T lymphocyte counts (DRB1∗03 = median: 272;
IIQ: 83.25–450.25); (others = median: 477; IIQ: 223.0–743.5); p:
0.0112) (Figure 5A) and double-negative T lymphocyte counts
(DRB1∗03 = median: 50; IIQ: 39.25–90.00); (others = median: 75;
IIQ: 45.5–116.5); p: 0.0540) (Figure 5C) were lower in carriers
of the DRB1∗03 allele, but the CD8(+) T lymphocyte count was

FIGURE 5

Alleles associated with the T lymphocyte count. (A) Dot plot
showing the associations of the DRB1*03 and DRB1*16 alleles with
the CD4(+) T lymphocyte count. (B) Dot plot graph showing the
associations of the DRB1*03 and DRB1*09 alleles with the CD8(+) T
lymphocyte count. (C) Dot plot showing the association of the
DRB1*03 allele with the double-negative T lymphocyte count
(CD8-CD4-). (D) Dot plot graph showing the association of the
DRB1*09 allele with the double-positive T lymphocyte count
(CD8+CD4+). *p = 0.005–0.0001.

greater (DRB1∗03 = median: 1749; IIQ: 1426.00–2367.25); (others =
median: 1111; IIQ: 620.0–1687.5); p: 0.0260) (Figure 5B).

Additionally, IL-4 dosage levels were lower in carriers of
this allele (DRB1∗03 = median: 8.89; IIQ: 7.09–11.34); (others =
median: 10.10; IIQ: 8.45–14.10); p: 0.0478) (Figure 6A), but the
IL-6 level was greater (DRB1∗03 = median: 14.96; IIQ: 11.22–
26.00); (others = median: 12.46; IIQ: 9.44–16.62); p: 0.0175)
(Figure 6B). Other cytokines were not associated with the allele
(Supplementary Data 1).

The DRB1∗16 allele was associated with
past EBV infection

In this study, the DRB1∗16 allele was significantly associated
with past EBV infection (OR: 0.2724; CI (95%): 0.10–0.76; p: 0.012)
(Figure 3C), being up to 7-fold more frequent in this group.

The anti-VCA IgG titer was lower in DRB1∗16 allele carriers
(DRB1∗16 = median: 5.41; IIQ: 3.76–7.63) (others = median: 6.9;
IIQ: 4.93–8.39); p = 0.0020) (Figure 4C).

The CD4(+) T lymphocyte count was greater in carriers of this
allele (DRB1∗16 = median: 541; IIQ: 361–980) (others = median:
480; IIQ: 250.75–891.25); p = 0.0116) (Figure 5A). The counts of
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FIGURE 6

Alleles associated with cytokine dosage. (A) Dot plot showing the associations of the DRB1*03 and DRB1*09 alleles with the IL-4 concentration.
(B) Dot plot showing the association of the DRB1*09 allele with the TNF-α level. (C) Dot plot showing the association of the DRB1*03 allele with the
IL-6 level. *p = 0.005–0.0001.

other cells were not associated with the allele; however, CD8(+) T
lymphocytes tended toward lower counts in carriers of the allele
(DRB1∗16 = median: 744; IIQ: 595–1106; (others = median: 853;
IIQ: 595–1273); p: 0.0602) (Figure 5B).

HIV infection was associated with the
DRB1∗09 allele in patients with primary
EBV infection

Our data showed that HIV infection was associated with
serological profiles of EBV infection, which was more frequent
in the group with primary infection (Table 1). We subsequently
evaluated whether this aspect was also associated with alleles of the
DRB1 locus. We found that the frequency of the DRB1∗09 allele
was significantly greater in individuals with HIV who were in the
primary phase of EBV infection, at approximately 6 times greater in
this group (OR: 6.15; CI (95%): 1.79–21.16; p: 0.0067). In contrast,
the frequency of the DRB1∗16 allele was greater in individuals with
HIV who were in the past phase of EBV infection, at approximately
4 times greater in this group (OR: 4.19; CI (95%): 1.27–13.86; p:
0.0192) (Table 3).

We also evaluated whether these alleles are associated with
several pathological markers of HIV infection (viral load, CD4+
T-cell count and CD8+ T lymphocyte count) (Figures 7A–H).
We observed that carriers of the DRB1∗09 allele in the primary
phase of EBV infection had both higher log10 HIV viral loads

(DRB1∗09 = median: 5.67; IIQ: 5.56–5.76); (others = median: 4.45;
IIQ: 3.85–5.33); p: 0.0176) (Figure 7A) and CD8(+) T lymphocyte
counts (DRB1∗09 = median: 2766.5; IIQ: 2506.5–2949.0); (others =
median: 1024.5; IIQ: 834.5–2136.8); p: 0.0285) (Figure 7C) than
carriers of other alleles. For individuals with past EBV infection
and carriers of the DRB1∗16 allele, no significant differences were
observed in the quantification of these markers (Figures 7D–F).

Our next step was to assess whether the HIV load is associated
with the serological profile of EBV infection and the viral load. We
found that the log10 HIV viral load was lower in patients with past
EBV infection (P.I. = median: 4.96; IIQ: 4.34–5.67); (S.T. = median:
5.06; IIQ: 4.49–5.52); (Past I. = median: 4.68; IIQ: 3.99–5.21);
p = 0.0060) (Figure 7G).

Furthermore, positive linear regression was inferred between
viral load in patients with primary EBV infection (R2: 0.22; p:
0.0412). There was also a negative trend in the viral load in patients
who underwent serological transition, although the difference was
not statistically significant (R2: 0.03; p = 0.1214) (Figure 7H).

Calculation of the FPRP

The FPRP values for significant findings at different probability
levels are shown in Table 4. In most findings, FPRP was notable in
the range between 10 and 25% probability of association between
alleles with serological profiles of EBV infection, which seems
adequate for studies of genetic associations in general (25).
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The low power of the statistical test is challenging if we consider
the sampling obtained, suggesting additional validations using
larger samples. However, the epidemiological aspects of control
studies can lead to bias in the intended analyses.

Discussion

We stratified the study population into three serological
profiles, which were also immunologically distinguished in terms
of EBV viral load and CD4(+) and CD8(+) T lymphocyte
counts. In patients with primary infection, viral biosynthesis was
more active and statistically significant, as we observed CD8(+)
T lymphocyte count maintenance and CD4(+) T lymphocyte
depletion. This seems to agree with studies showing differential
kinetics of T lymphocytes in primary EBV infection, in which
the CD4(+) T lymphocyte response appears early, with a rapid
decrease, although the CD8(+) T lymphocyte response tends to
be more robust and durable (28, 29). This complex response
reflects the immunodominance of the proinflammatory cytokine
profile in primary infection (30); nevertheless, the presence of
anti-inflammatory cytokines suggests the immunomodulation of
EBV (31), which could also explain our findings regarding the
correlation matrix between immunological factors and cytokines in
different profiles.

In this context, we observed that the HLA class II DRB1∗09
allele frequency was associated with primary EBV infection. In fact,
the association of this allele with the incidence of infection and,
mainly, autoimmune diseases in populations with different ethnic
profiles has been discussed, and it has been suggested that the allele
favors inflammation related to the establishment of pathological
conditions (32–36). Recently, a study carried out in Japanese
individuals revealed an association between the DRB1∗09 allele and
severe cases of COVID-19 (37), which, from an immunological
point of view, is characterized by a systemic inflammatory state
(38). Our results appear to agree with this hypothesis, as carriers
of the DRB1∗09 allele had high CD8(+) and double-positive T
lymphocyte counts and TNF levels, which may be indicative of an
attempt to maintain a proinflammatory antiviral response to active
EBV infection (39), as represented by the high viral load in carriers.
On the other hand, high IL-4 levels in the same group may be
associated with viral persistence (40, 41), which is also in line with
our results showing a positive correlation between cytokine levels
and the EBV load.

However, the negative correlation between the EBV load and
CD4(+) T lymphocyte count conflicts with the findings in the
literature. This suggests that the observed lymphopenia may, in
part, not be specific to EBV infection (42). Interestingly, all patients
with primary infection had a history of coinfection, with HIV
being the most frequent, and the HIV viral load was high and
directly proportional to that of EBV. We believe that the presence
of HIV might be closely related to changes in lymphocyte counts,
as expected in a typical infection (43), favoring the expansion of
EBV (44). In fact, in a recent study involving patients with primary
infection and a history of coinfection, we showed that in HIV/EBV
coinfection, retroviral pathology benefits at the expense of host
immune response maintenance (45).

Here, we highlight that the DRB1∗09 allele frequency is
associated with HIV-1/EBV coinfection, specifically primary EBV
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FIGURE 7

The DRB1*09 allele was associated with HIV/EBV coinfection. (A) Dot plot showing the association of the DRB1*09 allele with HIV viral load. (B) Dot
plot graph showing the lack of association of the DRB1*09 allele with the CD4(+) T lymphocyte count. (C) Dot plot showing the association of the
DRB1*09 allele with the CD8(+) T lymphocyte count. *p = 0.005–0.0001. (D–F) Dot plot graphs showing that the DRB1*16 allele was not associated
with markers of HIV infection in individuals with past EBV infection. (G) Dot plot showing that the HIV viral load was elevated in the groups with
primary EBV infection and in the serologic transition group. *p = 0.005–0.0001. (H) Linear regression between the viral loads of both viruses. The
HIV viral load correlated positively with the EBV load in patients with primary EBV infection.

infection, and that both the HIV viral load and CD8(+) T
lymphocyte count are elevated in these patients. Again, probable
immunological modulation by this allele is related to an attempt
to maintain the response to viral coinfection. Our hypothesis is
that the overstimulation of active EBV/HIV coinfection highlights
the inflammatory response naturally favored by carriers of the
DRB1∗09 allele in an attempt to modulate a more effective
immunological profile in defense against pathogens. Although we
did not assess the predominance of response specificity, a consistent
response against HIV can trigger immune activation against EBV
(46) and may differ in terms of magnitude and polyfunctionality
(47). Regardless, there is a strong relationship between the viral
loads of the viruses (48).

Patients in serological transition were characterized by a low
EBV viral load and maintenance of CD4(+) and CD8(+) T

lymphocyte counts; cytokines correlated strongly with each other
but without a clear immunodominance profile. This scenario likely
reflects sustainable immunological control of the active phase of the
infection and consequent management of the homeostatic balance
of an expected response in the latent phase (49). In this case, the
establishment of a viral memory pool with qualitatively different
responses to lytic and latent virus antigens is also observed (50).

In general, patients in serological transition who were
coinfected with HIV maintained a high HIV viral load, even
though there was no association with an EBV viral load. Hence,
the attempt at immune reboot observed in the transition group,
which is expected due to the characteristics of EBV in the latent
phase (10, 51), may assist in the response to HIV. This is due,
among other factors, to the production of CD40 receptor binding
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protein (CD40L) in CD4(+) T lymphocytes cocultured with EBV-
infected B lymphocytes. CD40L can disfavor both the maintenance
of EBV replication (51) and HIV replication (52) through the
modulation of a consistent immune response. The fact that the
HIV viral load was lower in the group with past infection than in
the other groups may indicate that this process of immunological
control occurs in the long term. Nonetheless, we cannot ignore
the close relationship between these viruses and the stimulation of
carcinogenic conditions (53), which requires a detailed assessment
of long-term aspects of the pathogenesis of coinfection. Most
patients in the present study had no cancer diagnosis or family
history of cancer.

The DRB1∗03 allele was associated with serological transition;
however, contrary to the immunological tendency observed in
the group, carriers of this allele had a high viral load and a
suggestive proinflammatory profile, as represented by an increase
in CD8(+) T lymphocytes and IL-6 and low IL-4. Such immune
modulation has been associated with the DRB1∗03 allele in the
context of autoimmune diseases and therapy-induced platelet
disorders in different populations (54–59). In addition, a Brazilian
ecological study showed the association of haplotypes containing
the DRB1∗03 allele with the rate of deaths from COVID-19 (60).
We propose that the persistence of viral activation specifically in
carriers of the DRB1∗03 allele can induce an effective immune
counterresponse for controlling infection. A longitudinal study
evaluating whether this immunological and virological profile of
DRB1∗03 allele carriers is maintained in the long term, even after
complete seroconversion, would be enlightening, especially in cases
of active chronic EBV infection (CAEBV) (61).

Patients with past EBV infection had high counts of CD4(+)
T lymphocytes but low counts of CD8(+) T lymphocytes.
Nonetheless, a certain degree of immunological activity was
observed, mainly by the correlation of CD4(+) and double-negative
T lymphocytes with proinflammatory cytokines, which may be
a reflection of the immune response to HIV infection that was
present in approximately 53% of this group. Our results suggest that
in the absence of active EBV infection, patients with HIV appear to
have a good prognosis, which is in line with studies that reinforce
the association of EBV with HIV progression (62, 63).

The DRB1∗16 allele was associated with past infection, anti-
VCA IgG titer regulation and a high CD4(+) T lymphocyte
count but was suggestive of a low CD8(+) T-cell count. Our
findings appear to contradict studies that relate this allele to
proinflammatory profiles in autoimmune diseases in different
ethnic groups, some of which were acquired after viral infections
(64, 65). For example, a study associated the DRB1∗16 allele with
susceptibility to chronic hepatitis B (66). However, we showed
that DRB1∗16 allele carriers tended to exhibit control of the
immune response, consistent with the profile of patients with
past EBV infection.

Conclusion

We conclude that the DRB1∗09, ∗03 and ∗16 alleles seem to be
associated with immunological modulation in different serological
profiles of EBV infection in young adult patients from the Brazilian
Amazon region who, in the majority, were coinfected with HIV-1.
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A limiting factor of this proposal is that we were unable to sample
patients with only primary EBV monoinfection within the universe
studied, so we could actually distinguish whether the frequency of
the alleles was more strongly associated with EBV or EBV/HIV-1
coinfection; however, we highlight that, to our knowledge, this is
the first report that links these alleles to viral infections.
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