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Background: Although previous clinical studies and animal experiments have 
demonstrated the efficacy of Gegen Qinlian Decoction (GQD) in treating Type 2 
Diabetes Mellitus (T2DM) and Ulcerative Colitis (UC), the underlying mechanisms 
of its therapeutic effects remain elusive.

Purpose: This study aims to investigate the shared pathogenic mechanisms 
between T2DM and UC and elucidate the mechanisms through which GQD 
modulates these diseases using bioinformatics approaches.

Methods: Data for this study were sourced from the Gene Expression Omnibus 
(GEO) database. Targets of GQD were identified using PharmMapper and 
SwissTargetPrediction, while targets associated with T2DM and UC were 
compiled from the DrugBank, GeneCards, Therapeutic Target Database (TTD), 
DisGeNET databases, and differentially expressed genes (DEGs). Our analysis 
encompassed six approaches: weighted gene co-expression network analysis 
(WGCNA), immune infiltration analysis, single-cell sequencing analysis, machine 
learning, DEG analysis, and network pharmacology.

Results: Through GO and KEGG analysis of weighted gene co-expression 
network analysis (WGCNA) modular genes and DEGs intersection, we found that 
the co-morbidity between T2DM and UC is primarily associated with immune-
inflammatory pathways, including IL-17, TNF, chemokine, and toll-like receptor 
signaling pathways. Immune infiltration analysis supported these findings. Three 
distinct machine learning studies identified IGFBP3 as a biomarker for GQD in 
treating T2DM, while BACE2, EPHB4, and EPHA2 emerged as biomarkers for 
GQD in UC treatment. Network pharmacology revealed that GQD treatment 
for T2DM and UC mainly targets immune-inflammatory pathways like Toll-like 
receptor, IL-17, TNF, MAPK, and PI3K-Akt signaling pathways.

Conclusion: This study provides insights into the shared pathogenesis of T2DM 
and UC and clarifies the regulatory mechanisms of GQD on these conditions. It 
also proposes novel targets and therapeutic strategies for individuals suffering 
from T2DM and UC.
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1 Introduction

Emerging research posits that chronic tissue inflammation is a 
central player in the pathogenesis of Type 2 Diabetes Mellitus 
(T2DM), characterized by a state of low-grade inflammation (1). The 
disturbance in gut mucosal ecology in individuals with T2DM, 
combined with the active migration of intestinal flora to mesenteric 
adipose tissue (MAT) and the bloodstream, results in a continuous 
influx of inflammatory antigens (2). Ulcerative colitis (UC) is a 
chronic, nonspecific inflammatory condition characterized by 
extensive mucosal inflammation in the colon (3), typically arising 
from an imbalance between the gut flora and the immune system (4). 
Although T2DM and UC share common features, such as disruptions 
in gut microbiota and intestinal mucosa inflammation, the precise 
mechanisms underlying their co-occurrence remain unclear.

Currently, there is no cure for Type 2 diabetes. Despite the recent 
successful development of numerous antidiabetic drugs, single-target 
treatments are increasingly seen as inadequate due to individual 
variations, diverse pathogenesis, and issues related to drug and body 
resistance (5). Similarly, ulcerative colitis carries a heightened risk of 
adverse events, treatment resistance, and loss of response over time, 
highlighting the limitations of current therapies (6). Thus, multi-target 
drugs offer greater potential advantages over single-target drugs, 
underscoring the need to continually identify new targets to develop 
effective and safe therapies. Traditional Chinese medicine formulations 
are characterized by their multi-component approach, targeting 
multiple pathways and targets simultaneously.

The venerable Chinese herbal prescription, Gegen Qinlian 
Decoction (GQD), traces its origins to the era of the Eastern Han 
Dynasty. This formulation, consisting of four vital herbs—Radix 
puerariae, Radix scutellariae, Rhizoma coptidis, and Glycyrrhizae 
Radix, represents a traditional prescription deeply rooted in the 
principles of Traditional Chinese Medicine (TCM), specifically 
tailored for addressing intestinal damp-heat syndrome. A large-scale 
randomized controlled study (RCT) has demonstrated GQD’s efficacy 
in significantly lowering HbA1c and fasting blood glucose (FBG) 
levels, offering relief in cases of T2DM (7). Animal experiments 
suggest that GQD may mitigate systemic and local inflammation by 
promoting the enrichment of butyrate-producing intestinal flora, 
thereby ameliorating clinical manifestations associated with T2DM 
(8). Meta-analyses have shown that GQD effectively alleviates 
symptoms in individuals with UC, resulting in decreased Ulcerative 
Colitis Endoscopic Index of Severity (UCEIS) scores and maintaining 
a low recurrence rate, all while exhibiting minimal adverse events (9). 
Furthermore, additional animal studies have elucidated the 
mechanisms underlying GQD’s therapeutic effects in alleviating 
ulcerative colitis, including the reduction of inflammation and 
oxidative stress, inhibition of the IL-6/JAK2/STAT3 signaling pathway, 
restoration of the balance between Treg and Th17 cells in colonic 
tissues, and enhancement of intestinal barrier function (10, 11).

As bioinformatics advances and the widespread adoption of gene 
chips continue, their integration into the biomedical domain has 
become indispensable. The analysis of microarray data emerges as a 
transformative tool, offering fresh insights into the shared etiological 
underpinnings of both T2DM and UC. In this investigation, a 
comprehensive strategy merging bioinformatics and machine learning 
was employed, drawing upon datasets from the GEO database to 
unravel the intertwined comorbid mechanisms associated with T2DM 

and UC. Furthermore, our study delved into network pharmacology, 
shedding light on the intricate mechanisms governing the utilization 
of GQD across diverse diseases sharing a common treatment modality 
(Figure 1).

2 Methods

2.1 Datasets

We queried the GEO database1 to retrieve gene expression profiles 
of individuals diagnosed with Type 2 Diabetes Mellitus (T2DM) and 
Ulcerative Colitis (UC), using search terms such as “type 2 diabetes” 
and “ulcerative colitis.” For the subsequent phase of our investigation, 
we  selected the following GEO datasets: GSE3365, GSE48958, 
GSE75214, GSE231993, GSE20966, GSE25724, GSE29221, and 
GSE220939 (Table 1).

2.2 Construction of weighted gene 
co-expression networks

We leveraged Weighted Gene Co-Expression Network Analysis 
(WGCNA) to pinpoint clusters of closely linked genes. Applying 
WGCNA, we scrutinized the differential genes within the GEO datasets 
GSE20966 and GSE75214, unveiling co-expression modules and pivotal 
genes intricately linked to both T2DM and UC. In the dataset about 
T2DM, the outlier GSM524165 was omitted, and subsequent parameter 
selection involved R2 = 0.85 and β = 9. In the case of the UC dataset, 
parameters R2 = 0.85 and β = 8 were applied. The matrices undergo 
sequential transformation and derivation, ultimately yielding the 
Topological Overlap Matrix (TOM). Hierarchical clustering, with a 
minimum module size set at 30, is employed to identify modules. 
Subsequently, feature genes are computed, and hierarchical clustering is 
applied to the modules. Ultimately, we identified the common genes 
within the top three significantly ranked modules associated with both 
T2DM and UC. Subsequently, we subjected these intersecting genes to 
a thorough GO enrichment analysis.

2.3 Acquisition of differentially expressed 
genes (DEGs)

The study analyzed the DEGs using the GSE25724 and GSE48958 
datasets. The initial gene expression data undergoes thorough 
cleaning, with the Robust Multi-array Average (RMA) method 
employed to equalize sample differences. Subsequently, gene name 
normalization is necessary to eliminate empty columns and duplicate 
values, ensuring the acquisition of normalized expression data. Our 
analysis utilized the R limma package, employing a filtering criterion 
for DEGs set at |logFC| ≥ 1 and a p-value threshold of <0.05. 
We proceeded to identify the common genes between the two sets  
of DEGs and subjected this intersection to KEGG pathway 
enrichment analysis.

1 https://www.ncbi.nlm.nih.gov/geo/
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FIGURE 1

Workflow diagram illustrating the research strategy, encompassing five main components: database preparation, exploration of co-morbidity 
mechanisms in T2DM and UC, biomarker prediction for GQD treatment, and network pharmacology along with molecular docking analyses.

https://doi.org/10.3389/fmed.2024.1406149
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Hu et al. 10.3389/fmed.2024.1406149

Frontiers in Medicine 04 frontiersin.org

2.4 Immune infiltration analysis

To precisely evaluate the composition of immune cells in UC 
compared to T2DM, we  conducted calculations utilizing the 
CIBERSORT algorithm. We utilized the authentic CIBERSORT gene 
signature file that delineates 22 immune cell subtypes for analyzing the 
T2DM versus UC dataset. A significance level of p < 0.05 denotes a 
meaningful difference. The datasets utilized were GSE3365 
and GSE29221.

2.5 Network pharmacology analysis

2.5.1 Acquisition of GQD active ingredients and 
target proteins

UPLC-Q-TOF/MS analysis revealed a comprehensive profile of 
130 active chemical components, out of which 37 components met the 
criteria of Oral Bioavailability (OB) ≥ 30% and Drug-Likeness 
(DL) ≥ 0.18 (12). Retrieve the 2D structure of the compound from the 
PubChem database.2 Chemical targets were then predicted using 
PharmMapper and SwissTargetPrediction (13).

2.5.2 Predictive hub genes for GQD treatment
We employed three machine learning algorithms to systematically 

screen biomarker targets associated with GQDs for the treatment of 
T2DM and UC, respectively. LASSO logistic regression selectively 
assigns coefficients to significant variables by imposing an L1 penalty 
to remove less relevant ones, thus optimizing the classification model. 
SVM-RFE analysis, a supervised learning approach, identifies key 
genes by iteratively eliminating feature vectors derived from 
SVM. Random forest analysis, rooted in decision trees, evaluates 
variable importance by scoring each variable (14). The seed was set to 
123 for consistency in the analysis. The targets of GQD were compared 

2 https://pubchem.ncbi.nlm.nih.gov/

with the DEGs of T2DM and modules from WGCNA that exhibited 
a positive correlation with T2DM at p < 0.05. The overlapping elements 
from these three sets were analyzed, and a parallel approach was 
applied to UC. To enhance diagnostic accuracy and prediction 
capabilities, diagnostic nomograms were created utilizing hub genes 
as the foundation.

2.5.3 Common targets of GQD for the treatment 
of T2DM and UC

Disease-associated targets were queried in the DrugBank,3 
GeneCards,4 TTD,5 and DisGeNET6 databases using the keywords 
“Type 2 diabetes” and “Ulcerative colitis” (15, 16). Targets occurring 
in at least two instances across DrugBank, GeneCards, TTD, 
DisGeNET, and DEGs datasets are identified as disease targets. The 
ultimate selection comprises overlapping genes from the targets 
associated with T2DM, UC, and GQD, serving as potential common 
targets for GQD treatment of both T2DM and UC.

2.5.4 Protein–protein interaction (PPI) network
TSV files of PPI were obtained by uploading potential therapeutic 

target genes into the STRING database and constructing networks in 
Cytoscape 3.9.1. We employed the cytoHubba plugin and computed 
parameters such as Degree Centrality (DC), Betweenness Centrality 
(BC), Closeness Centrality (CC), and Maximal Clique Centrality 
(MCC). Central genes were identified through two methods: firstly, 
by calculating the top ten targets ranked by each of the four parameters 
and then determining the overlap among them; secondly, by utilizing 
the MCODE plugin for cluster analysis, generating a highly connected 
sub-network.

2.5.5 The analysis of GO and KEGG
To comprehend the shared physiological mechanisms of GQD for 

both T2DM and UC, we  conducted GO and KEGG enrichment 
analyses of therapeutic targets using the R language. Significance 
thresholds were set at p ≤ 0.05 and q ≤ 0.01, and the outcomes were 
visually presented for comprehensive understanding.

2.5.6 Molecular docking
Key genes were selected from the PPI sub-network, and core 

chemicals were screened from the drug target network map for 
subsequent molecular docking analysis. The structures of the core 
active ingredients were sourced from online databases. Protein stereo 
structures were also retrieved from databases and subjected to 
dehydration, hydrogenation, and removal of impurity ligands using 
PYMOL software. Following that, molecular docking analysis was 
conducted using Autodock, and the results were graphically presented.

2.6 Single-cell sequencing analysis

Seurat objects were initialized by loading gene expression data 
from the GEO database via the read10X function. Cell curation 

3 https://go.drugbank.com/

4 https://www.genecards.org/

5 https://idrblab.net/ttd/

6 https://www.disgenet.org/

TABLE 1 Data sets and their characteristics.

Dataset Database Platform Sample

GSE3365 GEO GPL96 26 cases of UC and 42 

controls

GSE48958 GEO GPL6244 13 cases of UC and 8 

controls

GSE75214 GEO GPL6244 97 cases of UC and 11 

controls

GSE231993 GEO GPL18573 4 cases of UC and 4 controls

GSE20966 GEO GPL1352 10 cases of T2DM and 10 

controls

GSE25724 GEO GPL96 6 cases of T2DM and 7 

controls

GSE29221 GEO GPL6947 3 cases of T2DM and 3 

controls

GSE220939 GEO GPL11154 16 cases of T2DM and 6 

controls
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involved preserving those with a gene count between >200 
and < 10,000, while filtering out those with mitochondrial and 
ribosomal gene proportions exceeding 20%. Following this, 
standardization and normalization procedures were applied for data 
uniformity. Spatial relationships between clusters were evaluated using 
the tSNE method, and subsequent cluster annotations were conducted 
using the celldex package. The reclassification of cell subpopulations 
was accomplished through the singleR annotation tool, concurrent 
with referencing the Thermofisher website to identify genes 
characterizing different immune cell types. Following observation of 
the expression patterns of these genes within the clustering results, a 
manual classification of immune cell classes was performed for 
annotation purposes. Finally, we  have successfully visualized the 
expression patterns of GQD targets at the single-cell level and 
elucidated the distribution of the seven core targets.

2.7 Statistical analysis

The R packages utilized in this study include WGCNA, GEOquery, 
reshape2, ggfortify, limma, pheatmap, ggplot2, org.Hs.eg.db, pathview, 
topGO, and Rgraphviz.

3 Results

3.1 Construction of WGCNA network

WGCNA analysis revealed that in T2DM, higher independence and 
greater biological significance were observed at β = 9. Similarly, for UC, 
the optimal fit was achieved at β = 8 (Figures 2A,B). When reaching the 
optimal fit, a hierarchical clustering dendrogram was generated, 
allowing the classification of similar gene expressions into distinct 
modules. The expression profiles within each module were then 
summarized using modular eigengenes (MEs), and correlations 
between MEs and clinical features were subsequently calculated. In 
T2DM, a total of 24 modules were identified, with each color denoting 
a distinct module. Heat maps illustrating module-trait relationships 
were constructed based on Spearman correlation coefficients to evaluate 
the association between each module and the disease (Figures 2C,D, 
and Supplementary Table S1). In the heat map depicting module-trait 
relationships, cyan signifies a negative correlation, red indicates a 
positive correlation, and white denotes no correlation. Six modules, 
namely pale turquoise, turquoise, white, dark gray, pink, and violet, 
exhibit substantial positive correlations with T2DM, thus qualifying 
them as T2DM positively correlated modules (pale turquoise module: 
r = 0.58, p = 0.009; turquoise module: r = 0.53, p = 0.02; white module: 
r = 0.59, p = 0.008, dark gray module: r = 0.52, p = 0.02, pink module: 
r = 0.67, p = 0.002, violet module: r = 0.66, p = 0.002). Likewise, in UC, 22 
modules were identified, among which lightsteelblue1, black, 
mediumpurple3, green, darkolivegreen, orange4, plum1, and thistle1 
exhibited positive correlations with UC (lightsteelblue1 module: r = 0.25, 
p = 0.009; black module: r = 0.40, p = 2e-05; mediumpurple3 module: 
r = 0.24, p = 0.01, green module: r = 0.24, p = 0.01, darkolivegreen 
module: r = 0.24, p = 0.01, orange4 module: r = 0.27, p = 0.005, plum1 
module: r = 0.46, p = 5e-07, thistle1 module: r = 0.49, p = 7e-08) 
(Figures 2E,F, and Supplementary Table S2). Biological process analysis 
indicates that the interacting genes are primarily engaged in regulating 

the immune system and activating immune cells, among other functions 
(Figure 2G).

3.2 Identification of DEGs

With the limma package, we identified 70 genes exhibiting high 
expression levels and 1,171 genes showing low expression levels 
associated with T2DM. Similarly, in UC, 236 genes were found to 
be highly expressed, while 168 genes exhibited low expression levels 
(Figures  3A–D, and Supplementary Tables S3, S4). The KEGG 
enrichment analysis of overlapping genes predominantly focused on 
pathways involving IL-17, TNF, Chemokine, and Toll-like receptor 
signaling pathways, indicating that the shared mechanism between 
T2DM and UC may be  linked to immunity and inflammation 
(Figures 3E–H).

3.3 Immune infiltration analysis

The findings indicate a close association between the pathogenesis 
of T2DM and UC with the immune system (Figures 4A–D). In the 
T2DM group, there were observed differences in both the T cell 
population and resting NK cells compared to the normal group 
(p < 0.05). Compared to the normal group, significant differences 
(p < 0.05) were observed in Plasma cells, T cells regulatory (Tregs), NK 
cells resting, Neutrophils, NK cells activated, Monocytes, and 
Dendritic cells activated in UC.

3.4 Predictive hub genes for GQD 
treatment

Potential targets for 37 core chemicals were identified through 
PharmMapper and SwissTargetPrediction. Afterward, the obtained 
results underwent the removal of identical values, culminating in a 
total of 444 targets (Supplementary Tables S5, S6). When employing 
the SVM-RFE method, we conducted 10-fold cross-validation. In the 
identification of core targets of GQD for treating T2DM, SVM-RFE 
achieved the highest accuracy of 95% with 73 features. LASSO 
identified 10 core targets, while RF identified one target. The 
intersection of core targets identified by the three models resulted in 
one core therapeutic target, IGFBP3 (Figures  5A–D). Applying a 
similar approach to identify core targets for GQD treatment of UC, 
SVM-RFE identified 9 core targets, LASSO also identified 9 core 
targets, and RF identified 37 core targets. The final intersection yielded 
3 core targets: BACE2, EPHB4, and EPHA2 (Figures  5E–H). 
Nomograms and ROC curves depict the robust diagnostic potential 
of pivotal genes for both T2DM and UC (Figures 5I–N).

3.5 Common targets of GQD for the 
treatment of T2DM and UC

From the DrugBank database, we retrieved 150 targets associated 
with T2DM and 66 targets associated with UC. Additionally, 
GeneCard yielded 17,916 targets for T2DM and 5,282 targets for UC, 
while DisGeNET provided 2,359 targets for T2DM and 1,458 targets 
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for UC. Furthermore, TTD identified 88 targets for T2DM and 48 
targets for UC. After performing the process of removing duplicates, 
taking targets that appear at least twice in five databases—DrugBank, 
GeneCards, TTD, DisGeNET, and DEGs—and then intersecting them 
with the GQD target as a common target for GQD treatment of T2DM 
and UC. Subsequently, a total of 97 potential common targets were 
finalized (Supplementary Table S7).

3.6 PPI network

For the identification of common core targets of GQD for the 
treatment of T2DM and UC, we conducted an in-depth analysis of 
97 targets using Cytoscape (Figure 6A). By considering the genes 
identified in the overlapping sections of the four algorithms, 
including DC, BC, CC, and NCC, we ultimately identified seven 

FIGURE 2

Weighted gene co-expression networks. (A) Scale independence and average connectivity in GSE20966. (B) Scale independence and average 
connectivity in GSE75214. (C) Different modules obtained from GSE20966 are displayed in various colors, aggregating genes of high relevance within 
each module. (D) Correlation analysis between modules and T2DM. (E) Different modules obtained from GSE75214 are displayed in various colors, 
aggregating genes of high relevance within each module. (F) Correlation analysis between modules and UC. (G) Biological process analysis of T2DM 
and UC module intercourse genes.
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core target proteins of GQD for managing T2DM concomitant 
with UC (Figures 6B–E). The application of the MCODE plugin in 
cluster analysis generated highly connected sub-networks. The 

highest-scoring network comprised a total of 30 targets, among 
which the seven core targets identified previously were also 
encompassed (Figure 6F).

FIGURE 3

Acquisition of DEGs in T2DM and UC and KEGG enrichment analysis of genes intersecting both DEGs. (A) Volcano plot depicting the DEGs associated 
with T2DM (GSE25724). (B) Heatmap illustrating the DEGs associated with T2DM (GSE25724). (C) Volcano plot showing the DEGs associated with UC 
(GSE48958). (D) Heatmap displaying the DEGs associated with UC (GSE48958). (E) Chemokine signaling pathway. (F) Toll-like receptor signaling 
pathway. (G) IL-17 signaling pathway. (H) TNF signaling pathway. DEGs, Differentially Expressed Genes.
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3.7 GO, KEGG enrichment analysis

GO enrichment analysis revealed significant enrichment (p-value 
≤0.05, q-value <0.01) in 1784 biological processes (BP), 105 molecular 
functions (MF), and 50 cellular components (CC) 
(Supplementary Table S8). Among these, BP mainly encompasses 
immune-inflammatory responses, oxidative stress, etc.; CC mainly 
involves membrane raft, and MF mainly includes tyrosine kinase 
activity, insulin receptor substrate binding, phosphatase binding, heme 
binding, etc. (Figures  7A–C). The KEGG enrichment analysis of 
potential therapeutic targets for GQD revealed pathways related to 
immunoinflammation, among others, indicating a broader spectrum 
of pathways beyond just immunoinflammatory regulation 
(Supplementary Table S9). We visualize the top 30 results, as well as 
results specifically related to immunization (Figures 7D,E).

3.8 Molecular docking

To validate our findings, we assessed the interactions between 
the identified active drugs and targets through molecular docking 
analysis. Our PPI network analysis revealed 7 core targets (AKT1, 
BCL2, EGFR, ESR1, PTGS2, STAT3, and TNF). Additionally, 
through drug-component-target network mapping, we identified 7 
core chemical components of GQD: Berlambine, Palmatine, 
Moslosooflavone, Quercetin, Moupinamide, Panicolin, and 

Baicalein. Before docking, we transformed the core components 
and targets into the required format (Figure 8A and Table 2). The 
outcomes of the 49 docking combinations are represented through 
heatmaps and tables, highlighting the top 5 combinations exhibiting 
the strongest binding energy, which are then visualized in greater 
detail (Figures  8B–G and Table  3). In our molecular docking 
findings, it’s evident that Berlambine and Palmatine exhibit the 
strongest binding affinity to the core target.

3.9 Single-cell sequencing analysis

The tSNE algorithm was utilized to cluster cells based on the 
GSE220939 and GSE231993 datasets, and subsequent labeling of each 
cluster was performed using SingleR. All cells from patients with 
T2DM were classified into seven groups: Epithelial Cells, Endothelial 
cells, Hepatocytes, Smooth Muscle Cells, Monocytes, B cells, and 
Natural Killer (NK) Cells (Figure 9A). Similarly, in UC, all cells were 
classified into eight classes: B cells, T cells, Epithelial cells, Monocytes, 
Fibroblasts, Endothelial cells, CMP, and Neurons (Figure 9B). The 
distribution of drug targets revealed that in T2DM, the primary 
cellular cluster targeted by GQD was Epithelial Cells, with subsequent 
impact on Hepatocytes (Figure  9C). In ulcerative colitis, GQD 
predominantly targets B cells, with subsequent involvement of T cells 
(Figure 9D). The seven core targets exhibit a broad distribution across 
various cell clusters (Figures 9E,F).

FIGURE 4

Immune infiltration analysis. (A) Boxplots for T2DM immune infiltration analysis. (B) Bar graph for T2DM immune infiltration analysis. (C) Boxplots for 
UC immune infiltration analysis. (D) Bar graph for UC immune infiltration analysis (*p  <  0.05, **p  <  0.01, ***p  <  0.001).
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FIGURE 5 (Continued)
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4 Discussion

An increasing body of research is corroborating the association 
between UC and T2DM. It has been demonstrated that diabetes is the 

most prevalent co-morbidity of UC (17). A population-based cohort 
study reveals a significantly heightened risk of T2DM among 
individuals with UC (18). The association between diabetes and UC 
holds significant implications across epidemiology, etiology, clinical 

FIGURE 5

Predictive Biomarkers for GQD Treatment. (A) SVM-REF analysis of T2DM. (B) LASSO analysis of T2DM. (C,D) Random Forest analysis of T2DM. (E)  
SVM-REF analysis of UC. (F) LASSO analysis of UC. (G,H) Random Forest analysis of UC. (I) Nomograms of UC marker genes. (J–L) ROC curves for UC 
marker genes. (M) Nomograms of T2DM marker genes. (N) ROC curves for T2DM marker genes.
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practice, and therapeutic strategies, signaling profound implications 
for research and patient care alike (19). Hence, investigating the 
mechanisms underlying the co-occurrence of UC and T2DM holds 
clinical significance, aiding in early disease detection and timely 
intervention. In this study, we conducted analyses on four microarray 
datasets related to UC and T2DM using diverse bioinformatics 
approaches. Based on our predictions, inflammatory and immune 
processes, along with Immunoinflammatory signaling pathways such 
as IL-17, TNF, chemokine, and Toll-like receptor, may represent 
potential mechanisms underlying the co-morbidity of T2DM with 
UC. Following subsequent network pharmacological analyses, pivotal 
targets of GQD for the concurrent treatment of T2DM and UC were 
identified, including AKT1, BCL2, EGFR, ESR1, PTGS2, STAT3, and 
TNF. Notably, GQD predominantly acts on immuno-inflammatory 
pathways, such as Toll-like receptors, IL-17, TNF, MAPK, and the 
PI3K-Akt signaling pathways, in the simultaneous treatment of 
T2DM and UC.

In recent years, the roles of intestinal flora, inflammation, and 
immune regulation in the pathogenesis of T2DM and UC have 
attracted increasing attention (20, 21). Single-cell sequencing coupled 
with immune infiltration analysis underscored the pivotal role of 
immune cells in driving the pathogenesis of both UC and T2DM. The 
intestinal mucosal immune system, comprising lymph nodes, lamina 
propria, and epithelial cells, serves as a vital barrier safeguarding 
intestinal integrity. The symbiotic relationship between the 
microbiome and the intestinal immune system is crucial for preserving 
mucosal homeostasis (22). However, deficiencies and dysbiosis in the 
intestinal flora can result in significant impairments to the intestinal 
mucosal immune system, precipitating the onset of T2DM alongside 
UC (23, 24). UC’s development involves various factors within the gut 
microbiome, immune system dysfunctions, and compromised 
intestinal barriers, resulting in abnormal immune reactions to typical 

gut bacteria (25). UC is characterized by an imbalance between 
intestinal effector T cells and mucosal Treg, with effector T cells being 
overly active and Treg cells not expanding sufficiently (26). Balancing 
the population of Th17 and Treg cells in the intestines of mice 
markedly improves symptoms and reduces pathological damage in 
ulcerative colitis (27). In T2DM, disruptions in intestinal immunity 
and barrier function, alongside alterations in gut microbiota, foster 
heightened intestinal permeability. Consequently, intestinal bacterial 
components infiltrate circulation, fueling both local and systemic 
chronic inflammation, ultimately contributing to insulin resistance 
(28, 29). Dendritic cells, functioning as autocrine or paracrine 
modulators, synthesize and release classical neurotransmitters crucial 
for maintaining intestinal immune balance. Their abundance is 
markedly elevated in the gut of patients with UC and T2DM (30, 31). 
In ulcerative colitis, the usual equilibrium of intestinal B-cell reactions 
is disturbed, resulting in a notable decrease in regulatory B cells (32, 
33). In parallel, B cells modulate Th17 proliferation and the production 
of pro-inflammatory factors in the intestines of T2DM patients (34). 
Research indicates that managing macrophage metabolism and 
polarization can alleviate symptoms in DSS-induced UC mice, hinting 
at the potential of targeting macrophage polarization to restore 
immune balance as a promising UC treatment strategy (35). In 
individuals with T2DM, there is a reduction in the quantity of anti-
inflammatory T-cell subsets, such as regulatory T-cells (Treg), M2-like 
macrophages, and IgM-producing B-1 cells, alongside an elevation in 
the number and/or ratio of inflammatory effector T-cells (36). 
Individuals diagnosed with T2DM often exhibit irregularities in the 
frequency and functionality of B cells, potentially resulting in 
heightened inflammatory reactions and reduced insulin sensitivity. 
Moreover, the antibodies generated by B cells are pivotal in the 
progression of T2DM, notably contributing to neuroinflammation 
and cognitive deterioration (37, 38). In individuals with T2DM, 

FIGURE 6

Protein-Protein interaction (PPI) network. (A) Analysis results of PPI network. (B) Betweenness centrality. (C) Closeness centrality. (D) Degree centrality. 
(E) Neighborhood Component Analysis. (F) MCODE plugin cluster analysis.
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dendritic cells are implicated in vascular dysfunction. Research 
indicates an elevated accumulation of dendritic cells in the 
perivascular adipose tissue of diabetic mice, which consequently 
compromises their anticonstrictive and vasodilatory functions (39). 
Likewise, macrophages emerge as the primary immune cell driving 
inflammation within pancreatic islets in T2DM, posing a threat to the 
insulin-secreting function of β-cells through multiple mechanisms 
(40). In conclusion, the elevated permeability of intestinal mucosa 
caused by disturbances in intestinal flora and impairment of the 
intestinal mucosal immune system contributes to the onset of systemic 
chronic inflammatory responses, a shared mechanism underlying the 
development of UC and T2DM (41).

Ulcerative colitis manifests as recurring mucosal inflammation 
with periods of remission, necessitating treatment to induce and 

sustain remission (42). Concurrently, the incidence of T2DM is on the 
rise, contributing to escalating rates of disability and mortality, 
thereby compounding the burden on families (43). Thus, there is an 
imperative to discover additional routine serum biomarkers for the 
early diagnosis and treatment of T2DM and UC. Three distinct 
machine learning studies identified IGFBP3 as a biomarker for GQD 
in treating T2DM, while BACE2, EPHB4, and EPHA2 emerged as 
biomarkers for GQD in UC treatment. IGFBP3 interacts with cellular 
proteins involved in glucose metabolism regulation, consequently 
inducing insulin resistance and diminishing glucose uptake in adipose 
tissue (44). For every one-unit rise in genetically determined IGFBP3 
levels, there’s a 26 percent higher likelihood of developing T2DM (45). 
The degradation of pancreatic β-cells is a pivotal aspect of T2DM, and 
IGFBP3 signaling contributes to this decline in β-cell function and 

FIGURE 7

GO, KEGG enrichment analysis. (A) Biological process. (B) Cellular composition. (C) Molecular function. (D) Bubble plots of the first 30 pathways 
analyzed by KEGG enrichment. (E) KEGG enrichment analysis of immune-related pathways.
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viability. Suppressing IGFBP3 activity can protect β-cells, potentially 
delaying or preventing the onset of diabetes, making it a promising 
therapeutic avenue for diabetes treatment (46). BACE2, a protease 
regulated by the JAK2/STAT5 signaling pathway, emerges as a pivotal 
contributor to UC development (47). The activity of IL-1R2, linked to 
ulcerative colitis, is influenced by the BACE2 gene. Therefore, BACE2 
assumes a significant role in the pathogenesis of UC (48). The EphB/
ephrin-B system has become a promising focus for tackling gut 
inflammatory diseases. Suppressing this system seems to provide a 
therapeutic benefit by regulating immune responses (49). Eph/ephrin 
proteins are implicated in numerous chronic inflammatory 
conditions. Targeting EPHB4 to disrupt EphB/ephrin B signaling 

FIGURE 8

Molecular docking results. (A) Drug-constituent-target network diagram (the larger the value of degree in the diagram, the larger the node). (B) Heat 
map of molecular docking (kcal/mol). Berlambine – TNF (C), Berlambine – BCL2 (D), Berlambine – PTGS2 (E), Palmatine – TNF (F), Berlambine – EGFR 
(G).

TABLE 2 Proteins and chemicals information.

Molecule 
name

PubChem ID Target PDB ID

Berlambine 11066 EGFR 2ITV

Palmatine 19009 TNF 7KP9

Moslosooflavone 188316 PTGS2 1PXX

Quercetin 5280343 STAT3 6NJS

Moupinamide 5280537 ESR1 4XI3

Panicolin 5320399 AKT1 5AAR

Baicalein 5281605 BCL2 1G5M
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holds potential as a pharmacological strategy for treating UC (50). In 
summary, the involvement of Eph/ephrin signaling in maintaining 
intestinal balance, managing inflammation, and regulating 

neuroimmune interactions offers exciting possibilities for future 
investigations and therapeutic advancements in gastrointestinal 
conditions (51).

FIGURE 9

Single-cell sequencing analysis. (A) Cellular subtypes of T2DM. (B) Cellular subtypes of UC. (C) GQD expression in various cell clusters of T2DM. 
(D) GQD expression in various cell clusters of UC. (E,F) Distribution of the seven core targets in cell clusters of T2DM and UC.

TABLE 3 Binding energy.

EGFR TNF PTGS2 STAT3 ESR1 AKT1 BCL2

Berlambine −6.5 −7.9 −6.71 −4.64 −4.16 −5.4 −6.97

Palmatine −4.47 −6.62 −5.15 −4.62 −4.41 −5.75 −6.35

Moslosooflavone −5.05 −5.91 −5.03 −3.83 −4.66 −5.26 −5.47

Quercetin −2.81 −6.42 −4.18 −3.6 −3.22 −4.49 −4.78

Moupinamide −3.5 −6.49 −5.14 −3.07 −4.57 −4.44 −5.36

Panicolin −4.52 −6.17 −5.38 −3.48 −4.37 −4.71 −3.94

Baicalein −4.32 −5.92 −5.14 −4.18 −5.24 −4.45 −6.46
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In China, GQD is extensively employed for the treatment of 
both T2DM and UC. Through degree-value analysis of the herbal-
chemical-target-protein network, we  pinpointed seven active 
ingredients—Berlamine, Palmatine, Moslosooflavone, Quercetin, 
Moupinamide, Panicolin, and Baicalein—as potential compounds 
for treating the combined condition of T2DM and UC. Berlambine 
accomplishes the alleviation of inflammatory response and 
intestinal epithelial barrier dysfunction by diminishing the protein 
levels of TLR4 and MyD88, inhibiting the phosphorylation of I-κB 
α, and obstructing the translocation of NF-κB p65 from the 
cytoplasm to the nucleus (52). Concurrently, Berlambine notably 
increased the mRNA expression of the Nrf2 signaling pathway and 
elevated the activity of the pancreatic PI3K/Akt signaling pathway 
(53). Palmatine, a naturally occurring compound known for its 
anti-inflammatory and antioxidant properties, reverses the 
dysfunction in the insulin signaling pathway by increasing the 
expression of IRS-1, PI3K, AKT2, and GLUT4 genes while 
decreasing the expression of PKC (54). Furthermore, Palmatine 
alleviates ulcerative colitis symptoms by mitigating colon damage, 
preserving intestinal flora balance, and modulating tryptophan 
catabolism (55). Moslosooflavone markedly decreased the 
concentrations of inflammatory mediators like TNF-α, IL-1β, and 
IL-6  in mice (56). Quercetin’s renowned anti-inflammatory 
properties position it as a promising natural remedy for various 
inflammatory conditions (57). Quercetin ameliorates UC by 
restoring intestinal barrier function via the activation of 
AHR-mediated enhancement of tight junctions (58). Additionally, 
quercetin provides therapeutic benefits in T2DM by inhibiting 
pancreatic iron accumulation and pancreatic β-cell death (59). 
Panicolin exhibited strong anti-inflammatory properties by 
significantly suppressing the production of IL-6 induced by LPS 
(60). Baicalein demonstrates anti-inflammatory properties by 
inhibiting T cell activation and suppressing the thioredoxin system 
to restrict NF-κB-dependent inflammatory responses (61). 
Moreover, baicalein exhibits multifaceted effects on glucose 
metabolism, enhancing glucose uptake and glycolysis while 
inhibiting hepatocyte gluconeogenesis through modulation of the 
InsR/IRS-1/PI3K/AKT pathway (62). Simultaneously, it enhances 
the integrity of the intestinal epithelial barrier via the AhR/IL-22 
pathway in ILC3, thereby ameliorating ulcerative colitis (63). The 
therapeutic efficacy of the active constituents within the herbal 
formulation GQD for both T2DM and UC has been substantiated.

Ultimately, the affinity between seven key target proteins and 
active compounds was assessed through molecular docking 
techniques. Berlambine and Palmatine exhibited promising binding 
activity to the target, implying their potential relevance to the 
therapeutic role of GQD in treating T2DM and UC.

It is worth noting that our study also has some limitations. At the 
outset, our dataset originates from various public databases, each with 
its own set of inclusion criteria. These distinctions could potentially 
impact the precision of our findings. Secondly, the sample size in the 
GEO database is relatively small, potentially contributing to some 
degree of error. Additionally, variations in algorithms and parameter 
selections could yield divergent outcomes and interpretations. Hence, 
although employing various bioinformatics and machine learning 
approaches, validating the results through clinical trials and animal 
studies is imperative.

5 Conclusion

In summary, we delineated potential co-morbid mechanisms 
between T2DM and UC, primarily implicating pathways such as 
IL-17, TNF, chemokine, and Toll-like receptor signaling, alongside 
the involvement of immune-inflammatory pathways and various 
immune cells like T cells, B cells, and neutrophils. Three distinct 
machine learning studies identified IGFBP3 as a biomarker for 
GQD in treating T2DM, while BACE2, EPHB4, and EPHA2 
emerged as biomarkers for GQD in UC treatment. Ultimately, our 
investigation identified Berlambine and Palmatine as key 
components of GQD, presenting promising therapeutic prospects 
for managing the concurrent occurrence of T2DM and 
UC. Additionally, our study clarifies the mechanisms underlying the 
therapeutic effects of GQD, employing strategies that involve 
multiple components, targets, and pathways. This highlights its 
capacity to regulate immune responses and inflammation, with a 
specific focus on targeting toll-like receptors, IL-17, TNF, MAPK, 
and PI3K-Akt signaling pathways. The therapeutic strategy 
involving multiple components, targets, and pathways plays a vital 
and effective role in enhancing treatment outcomes, mitigating drug 
resistance, customizing treatment plans, managing complications 
comprehensively, and minimizing therapeutic side effects. 
Consequently, this approach significantly benefits patients’ clinical 
progress and enhances their quality of life.
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Glossary

GQD Gegen Qinlian Decoction

T2DM Type 2 diabetes

UC Ulcerative colitis

DEGs differentially expressed genes

GEO Gene Expression Omnibus

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

PPI Protein–protein interaction

DC degree centrality

BC betweenness centrality

CC closeness centrality

TCM traditional Chinese medicine

DL drug-likeness

OB Oral bioavailability

WGCNA Weighted Gene Co-Expression Network Analysis

FBG fasting blood glucose

UCEIS ulcerative colitis endoscopic index of severity

TOM Topological Overlap Matrix

LASSO Least Absolute Shrinkage and Selection Operator

SVM-RFE Support Vector Machine-Recursive Feature Elimination

RF Random Forest
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