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Epilepsy is one of the most frequent neurological illnesses caused by epileptic 
seizures and the second most prevalent neurological ailment after stroke, 
affecting millions of people worldwide. People with epileptic disease are 
considered a category of people with disabilities. It significantly impairs a 
person’s capacity to perform daily tasks, especially those requiring focusing 
or remembering. Electroencephalogram (EEG) signals are commonly used to 
diagnose people with epilepsy. However, it is tedious, time-consuming, and 
subjected to human errors. Several machine learning techniques have been 
applied to recognize epilepsy previously, but they have some limitations. 
This study proposes a deep neural network (DNN) machine learning model 
to determine the existing limitations of previous studies by improving the 
recognition efficiency of epileptic disease. A public dataset is used in this study 
and classified into training and testing sets. Experiments were performed to 
evaluate the DNN model with different dataset classification ratios (80:20), 
(70:30), (60:40), and (50:50) for training and testing, respectively. Results were 
evaluated by using different performance metrics including validations, and 
comparison processes that allow the assessment of the model’s effectiveness. 
The experimental results showed that the overall efficiency of the proposed 
model is the highest compared with previous works, with an accuracy rate of 
97%. Thus, this study is more accurate and efficient than the existing seizure 
detection approaches. DNN model has great potential for recognizing epileptic 
patient activity using a numerical EEG dataset offering a data-driven approach 
to improve the accuracy and reliability of seizure detection systems for the 
betterment of patient care and management of epilepsy.
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1 Introduction

Epilepsy is a prevalent neurological condition that affects millions of people worldwide. It 
is considered a kind of disability, where epileptic patients are considered a category of people 
with disabilities. Different techniques are used to detect c activities and their shortcomings. 
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EEG is the manual way of diagnosing seizures by pinning many 
electrodes everywhere on the head, making it difficult to pinpoint 
where the electrical activity in the brain originates. Additionally, 
medical professionals’ reading of EEG signals is slow, time-consuming, 
and subject to human mistakes during the diagnosis process. Machine 
learning techniques are also used to identify epileptic seizures. 
Different methods have been adapted for epilepsy detection, such as 
CNN, K-NN, Naïve Bayes, and DWT, and briefly discussed in the 
literature of the study. However, most existing state-of-the-art 
methods are considered complex, time-consuming, and suffer from 
some limitations in terms of accuracy performance.

Early epilepsy detection can help society, health sectors, and 
medical specialists. Human activity recognition (HAR) is the 
automatic detection of numerous physical actions people perform 
daily. It is used to identify the actions that are carried out by a person, 
given a set of observations of themselves and the nearby environment. 
Activity recognition can be attained by exploiting the information 
retrieved from various sources, such as environmental (1) or body-
worn sensors (2). Multiple approaches have adapted dedicated motion 
sensors in different body parts such as the wrist, waist, and chest. 
These sensors are primarily uncomfortable for users and do not 
provide long-term results for activity monitoring, e.g., sensor 
repositioning after dressing (3). A HAR system aids in the recognition 
of a person’s activities and the provision of intervention responses. 
Most activities that keep track of everyday fitness exercises, such as 
walking, jogging, walking upstairs, and walking downstairs, are done 
daily. Taking phone calls, sweeping, making food, combing hair, 
washing hands, brushing teeth, wearing coats and shoes, and writing 
and reading are all tasks that everyone does daily. Also growing 
demand for wearable devices with sensing abilities (smart watches, 
intelligent bands) used to take out important information (4). Figure 1 
shows some of the daily activities of human life.

Through wearable devices, human activity recognition (HAR) is 
currently considered an essential tool for health care in the future. 
Tracking patient activities not only helps medical professionals to 

provide hospital care services to patients across any distance with the 
latest technology of communication and information but also provides 
facilities for patients to be monitored online (6). The advantages are 
the prevention of hospitalization, the cost, and improving human 
health. Patient activity recognition PAR includes monitoring Vital 
Data (VD) such as blood pressure, pulse, and blood glucose (7).

Different sensors are used to monitor various activities to improve 
patients’ health. The developments in wearable and cell phone devices 
have made it possible to gather information from built-in smartphones 
and health trackers, including microphones, magnetometers, 
gyroscopes, GPS, and accelerometers. An epileptic seizure is a usual 
neurological disorder that happens because of unexpected discharge of 
neurons of the brain and stress influence. It is a condition distinguished 
by repeated (two or more) epileptic seizures. A single event is considered 
as numerous seizures occurring within a 24-h time or an episode of 
status epilepticus (SE). It is one of the world’s oldest conditions of 
humankind, and still, it is the most typical neurological condition that 
affects people of all ages. About 50 million people worldwide have a 
diagnosis of epilepsy (8). A clinical device, an electroencephalogram 
(EEG) signal, plays a vital role in diagnosing epilepsy. It gives a 
photograph of the human brain while doing a cognitive task or even 
resting. The EEG is gathered by putting electrodes on the patient’s scalp. 
Then, electro-activity is recorded, produced by the brain, and can 
identify epilepsy, but this method for examining an EEG signal for 
epileptic seizure recognition is time-consuming (9). Figure 2 visualizes 
the hotspot of seizure in the human brain.

Machine learning techniques have been proposed to switch this 
typical method. There are two fundamental stages of extraction and 
classification of data involved in machine learning. The traditional 
system of consulting doctors is time-consuming and more costly, also 
leading to fatigue-based diagnostic mistakes and subject to the 
absence of diagnostic facilities in regions of the world where physicians 
are not available. Recently, machine learning methods have been 
capable of attaining skilled-level performance in health care and the 
medical field (11). Different deep learning approaches are used to 

FIGURE 1

Human activities of daily life (5).
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detect seizures, like support vector machines, convolutional neural 
networks, and deep convolutional neural networks. Still, these 
techniques use complex algorithms and image data extracted 
from EEG.

There are several reasons behind the development of a Deep 
Neural Network-based method for identifying seizure activity in 
epilepsy patients. First and foremost, it tackles the pressing issue of 
prompt and accurate seizure detection, which is necessary for both 
patient care and efficient treatment. Furthermore, improvements in 
machine learning—especially in deep learning—present the possibility 
of very precise pattern identification in EEG data, which might 
improve detection rates. This strategy also seeks to enhance the quality 
of life for individuals with epilepsy by facilitating more targeted 
intervention techniques, which in turn lowers the frequency and 
intensity of seizures.

This study used a deep neural network (DNN) based model to 
recognize seizures. Since patterns of EEG seizures differ significantly 
between patients, it is challenging to recognize seizures. Thus, most of 
the automated methods that will be discussed in the literature review 
use complex algorithms and substantial image data sets, which is time-
consuming and inefficient. The focus is on creating a model to swiftly 
and accurately detect epilepsy. Our main aim is to develop a fast and 
precise system. Through thorough testing and training, we aim to 
achieve high accuracy while also considering speed. Ultimately, our 
goal is to improve epilepsy diagnosis, potentially benefiting patients 
with better and faster care.

2 Literature review

Many deep learning and machine learning methods and 
algorithms are used for the detection of human activities, patient 
activities, and epileptic patient activities. In this section, some previous 
work that has been done recently will be discussed. Hassan et al. (12) 
proposed research on a smartphone inertial sensors-based approach 
for HAR. Effectual attributes are first taken out via raw data. The 
attributes contain median, mean, autoregressive coefficients, etc. The 
attributes are processed through a linear discriminant examination 
and kernel principal component analysis (KPCA) and (LDA) to make 
them extra robust. Lastly, the attributes are trained by a Deep Belief 
Network (DBN) for effective activity detection. The system comprises 

three central portions: sensing, attribute recognition, and extraction. 
The sensing part collects the sensor’s information as input to the HAR 
system. Attribute extraction removes noise to isolate signals. Finally, 
where DBN is used, a key aspect is modeling actions from attributes 
via deep learning with an overall accuracy of 95.85%.

Gul et al. (13) researched abnormal human activity recognition as 
a Tool for Patient Monitoring. The You Look Only Once (YOLO) 
network, which is based on CNN architecture, is used as a backbone 
CNN model. To train the CNN model, a large dataset of patient films 
is constructed by labeling each frame with the positions and behaviors 
of the patient. For 32 epochs, a CNN model with 23,040 tagged photos 
of the patient’s actions was used. The model assigned a unique action 
label and a confidence score for video orders by identifying the 
recurring action label in each frame. The study found that aberrant 
action recognition is 96.8% accurate. For patient nursing, the proposed 
framework can benefit hospitals and elder care homes. Murad et al. 
(14) performed a study on deep recurrent neural networks (DRNN) 
and built a model that can capture distant dependencies in variable-
length input arrangements. The model has bidirectional, 
unidirectional, and cascaded structural design, which is built on long 
short-term memory (LSTM). The approach exceeds other modern 
methods because it is capable of taking out more particular attributes 
via deep layers in end-to-end and task-dependent fashion and has an 
overall accuracy of 96.7%. Uddin et al. (15) performed research on 
Activity Recognition for Cognitive Assistance Using Body based 
sensor data and Deep Convolutional Neural Networks in which 
signals are examined from body wearable sensors for Medicare like 
gyroscope, ECG, accelerometer, and magnetometer sensors. The deep 
CNN is trained once attributes are extracted from sensor data using 
Gaussian kernel-based PCA and Z-score normalization. Lastly, 
trained deep CNN is utilized to detect activities in examining data. 
The method provides cognitive aid in wearable sensor-based 
intelligent medical care systems. The proposed method has an average 
accuracy of 93.90%.

Ouichka et al. (16) conducted research on prediction of seizures 
using DNN methods. In which five models (1-CNN, 2-CNN, 3-CNN, 
4-CNN, and Transfer learning with ResNet50) for the prediction of 
epileptic seizures were proposed. The findings show that both 
methods, one using a fusion of three CNNs (3-CNN) and the other 
using four CNNs (4-CNN), achieve an accuracy of 95%. Specifically, 
the 3-CNN method yields an accuracy of 95.0%, a recall of 94.5%, and 
an F1-score of 95.0%. The 4-CNN method provides an accuracy of 
95.5%, a recall of 95.5%, and an F1-score of 95.0%. Ibrahim et al. (17) 
presented two patient-specific CNN models for prediction and 
detection of seizure in which spectrogram images of EEG signal 
segments was used. The third CNN model is designed for patient 
non-specific scenarios and can classify two and three EEG signal 
states. It operates effectively on both spectrogram and PSR images of 
EEG segments. Experiments showed the highest classification 
performance when using PSR images, due to their superior 
representation of EEG signals. In contrast, the first two models are 
suitable for patient-specific uses, but their reliance on spectrogram 
images somewhat restricts their performance.

Poorani et al. (18) performed a research on a one-dimensional, 
patient-specific scheme for detecting epilepsy seizures addresses 
binary classification (seizure vs. non-seizure). The 1D-CNN and 
CNN-LSTM models offer a computationally efficient approach by 

FIGURE 2

Seizure hotspots in the human brain (10).
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processing EEG data through pooling and dense layers. Abderrahim 
et al. (19) conducted an experiment in which they introduces four 
models: S-CNN, Modif-CNN, CNN-SVM, and Comb-2CNN, each 
demonstrating high accuracy in predicting epileptic seizures. The 
Modif-CNN model stands out with an impressive accuracy rate of 
97.96%, making the results from all models both promising 
and interesting.

The presented study also addresses the challenges identified and 
some limitations of recent studies and machine learning techniques 
such as many models struggle to handle EEG data in real time and 
need large amounts of computing power. Additional problems include 
handling undesired data in the EEG, individual variations in seizure 
patterns, and an imbalance in data classes. Specifically for other deep 
learning models Long-term dependency maintenance is a hurdle for 
RNNs, non-image dataset adaptation may be a barrier for CNNs, 
training and parameter optimization are issues for RL so the current 
model that is using to identify Epileptic activities by using multiple 
hidden layers that allows to learn complex patterns and data 
representation the depth of these layers allows to capture the 
complicated features resulting in enhanced performance. DNN 
algorithm is more efficient because of its computational complexity, 
deep architecture and its ability to learn complicated patterns from the 
data as Compare to other deep learning models.

3 Problem identification and solution

There are various methods used to detect epileptic seizures; one 
of the most common and manual ways is EEG, which is a very time-
consuming process. Computer-aided diagnosis methods, automatic 
detection, deep learning, and machine learning methods exist. The 
conventional technique of identifying different brain disorders has 
been inspected manually for centuries. Still, those manual methods 
have some limitations, such as inaccuracy, slow diagnosing process, 
and various outcomes of the same inputs. Manual identification needs 
more resources and time. So, to achieve high accuracy and fast 
diagnosis, computer-aided disease detection methods have been used 
for the last few decades. This method will assist medical professionals 
in the clarification of medical imaging. Medical computer-aided 
diagnosis methods are limited by noise, fuzziness, and uncertainty in 
medical images, so such limitations may affect decisions of disease 
diagnosis while determining the disease type. The main idea of this 
research is to detect epileptic seizures using a Deep Neural Network 
(DNN), which is more powerful and optimistic. A simple numerical 
model that is built on deep learning has applications in the fields of 
bioinformatics, healthcare, and computer science. The personal 
monitoring system for the detection of epilepsy with high accuracy is 
becoming popular for the improvement of human life. Researchers 
can achieve their targeted objectives and improve their expertise 
through this research. In the current study, the DNN model contains 
several layers of neurons that build up an output layer.

4 Proposed methodology

The proposed method consists of four main stages, illustrated in 
Figure 3. Initially, data acquisition involves collecting the necessary 

data. This is followed by the data cleaning stage, where irrelevant or 
redundant features are eliminated to ensure the dataset is optimized 
for further analysis. Once cleaned, the dataset is divided into two 
subsets: one for training the model and the other for testing 
its performance.

In the activity recognition phase, a deep neural network is 
employed to identify brain activities related to seizures. This 
involves the model learning patterns and distinguishing between 
different types of brain activity. Finally, in the performance 
evaluation phase, the model’s effectiveness is assessed using various 
metrics. These metrics include the F1-score, which balances 
precision and recall, precision itself, the confusion matrix that 
shows the performance of the classification, accuracy indicating the 
proportion of correctly classified instances, and the Receiver 
Operating Characteristic (ROC) curve, which illustrates the true 
positive rate against the false positive rate across different threshold 
values. This structured approach ensures that each phase 
contributes to building a robust and reliable model for recognizing 
epileptic seizures, with thorough evaluation to validate 
its performance.

4.1 Data loading

The data of this study is publicly available and uploaded to the 
model for cleaning, splitting and classification. After uploading the 
historical data, the valuable data will be extracted, and then irregular, 
null, garbage, and inconsistent values will be eliminated, which may 
lead to many difficulties. Data cleaning removes unwanted features 
that do not belong to the proposed study. In the next stage, data 
transformation is done, in which the raw data is turned into a format 
or structure that is more suited for the model or algorithm.

4.2 Data splitting

The data is split into two parts: the first part of the dataset is used 
for training, and the remaining part will be used for data testing. The 
proposed model will split DNN’s dataset into different training and 
testing ratios to achieve high accuracy.

4.2.1 Training set
The data samples are used to fit the model, and a subset of the 

dataset is used to train the model (in the context of neural networks, 
calculating weights and biases). The model sees and learns this data, 
allowing it to improve its parameters.

4.2.2 Test set
The data set objectively evaluates a final model’s fit to the training 

data. It is used once the model has been adequately trained with 
training and validation.

4.3 Model architecture

ANN’s model architecture includes the creation of layers, 
which are input layers, dense layers, and output layers. Each neuron 
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in the dense layer receives input from all neurons in the previous 
layer, making it a deep-connected neural network layer. The thick 
layer is revealed to be the layer that is most usually utilized. The 
size of the input layers and output layers are also defined in 
this section.

4.4 Model compilation

Compilation is the last stage in the model creation process. 
The model will be ready to move to the training and testing phase 
at this stage. The model compilation uses some functions, such as 
the loss function, to find errors or deviations in the learning 
procedure. Moreover, the optimizer is used to optimize the 
weights of the inputs by comparing the loss function and 
prediction. The evaluation metrics are applied to evaluate the 
model’s performance.

4.5 Model training

The training set consisted of sample output data and the input 
data sets that affect the outcome. The training model is utilized to 
process the input data using the algorithm to match the processed 
result to the sample output. NumPy arrays using the fit function are 
used to train models. The main aim of the fit function is to evaluate 
the model during the training stage (20).

4.6 Model testing

After the training model moves toward the testing phase, testing 
of the model is the process of analyzing a fully trained model’s 
performance on a testing set. The testing set is a collection of samples 
separated from the training and validation sets, but it has the same 
probability distribution as the training set (21).

4.7 Model evaluation

In this stage, performance evaluation will be done to improve the 
system. Confusion matrix, F1-score, Precision, recall, and accuracy in 
a rigorously statistical manner are the parameters utilized for 
performance evaluation.

4.7.1 Confusion matrix
A Confusion Matrix is an n x n matrix used to assess the model’s 

classification performance, where N represents the number of target 
classes. The matrix differentiates the actual values from the machine 
learning model’s predictions. This gives us a clear picture of how 
efficiently our classification method works and the types of errors it 
generates (22).

4.7.2 Accuracy
Model accuracy is a metric for determining which model is 

the most effective in detecting patterns and correlations among 

FIGURE 3

Adopted methodology.
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variables in a dataset using training or input data. The greater a 
model’s generalization to ‘unseen’ data is, the more accurate 
insights and predictions it can deliver, and hence the additional 
commercial value it can provide. The accuracy of classification 
models is one of the factors to consider while evaluating the (23). 
Accuracy represents the percentage of correct predictions made 
by our model. Equation (1) below is the formal definition of:

 
Accuracy

Number of right predictions

Total number of predic
=

ttions  
(1)

Equation (2) below determined binary classification accuracy 
regarding negatives and positives.

 Accuracy TP TN TP TN FP FN= + + + +( )/  (2)

TP stands for True Positives, TN stands for True Negatives, FP 
stands for False Positives, and FN stands for False Negatives.

4.7.3 Precision
Precision is a statistic that measures the accuracy of a 

machine  learning model’s positive prediction. Precision (i.e., 
the  total number of true positives plus the number of false 
positives) is the ratio of true positives to total positive predictions 
as shown in Equation (3) below (24).

 
Precision

True Positive TP

True Positive TP False Positiv
=

( )
( ) + ee FP( )  

(3)

4.7.4 Recall
The model’s recall indicates how successfully it finds True 

Positives. As an outcome, recall tells us how many patients we correctly 
identified as having illness out of the total number of patients with 
disease (25). Mathematically shown in Equation (4) below.

 
Recall

True Positive TP

True Positive TP False Negative FN
=

( )
( ) + (( )  

(4)

4.7.5 F1-score
The F1 score represents a balance of precision and recall. 

The harmonic mean of accuracy and recall is used to compute 
the F1 score. The harmonic mean is a measure that can be used 
instead of the arithmetic mean. Calculating an average rate is 
especially beneficial (26). The average accuracy and recall are 
computed using the F1-score. Because they are both rates, the 
harmonic mean makes sense. It is calculated using the 
Equation (5) below:

 
F score

Precision Recall

Precision Recall
1

2
− =

∗ ∗( )
+( )  

(5)

5 Experimental setup

The experiments that are done are related to epilepsy detection 
using deep neural networks and will be deeply discussed in this section.

5.1 System specification

The system that is used in this research is an HP Intel core i5-fourth 
generation Desktop with 8 GB RAM, 1.90GHz processor, and 500 GB 
hard drive—Windows 10 64-bit operating system. In the proposed 
research, Python language is used to simulate Epileptic patient activity 
recognition. Google COLAB is used to execute the Python code.

5.2 Dataset description

The dataset used in this study is publicly available on the KAGGLE 
platform at the following link: https://www.kaggle.com/datasets/
harunshimanto/epileptic-seizure-recognition. The reference’s original 
dataset is separated into five categories, each containing 100 files, each 
representing a particular subject/person. For 23.6 s, each file records 
brain activity. A 4097 of data points are taken from the linked time 
series. Each data point represents the value of the EEG recording at a 
certain instant in time. So it has an overall of 500 people, each with 
4,097 data points collected over 23.5 s.

All 4,097 data points are split and scrambled into 23 portions, 
each holding 178 data points for 1 s, with each data point reflecting the 
amplitude of the EEG recording at a certain point. So, it has 23 × 
500 = 11,500 pieces of data (row), each data point containing 178 data 
points for 1 s (column), and the last column represents the labels y, 
which are 1, 2, 3, 4, and 5. In column 179, the response variable is y, 
and the explanatory variables are X X X1 2 178, ⊃ . The 178-dimensional 
input vector’s category is stored in y. In particular, 1, 2, 3, 4, and 5. 
Seizure activity is recorded. They took an EEG recording from the 
tumor’s location. They located the tumor in the brain and captured 
EEG activity in a normal brain region.

Eyes closed, which suggests the patient’s eyes were closed while the 
EEG signal was being recorded. Also, eyes open refers to the patient’s 
eyes being open while the EEG signal of the brain is being recorded.

There are 178 EEG characteristics and five potential classes, as 
mentioned before. The dataset’s purpose is to detect epilepsy from 
EEG data correctly. There are five classes in the dataset. The class label 
1 is for patients who have an epileptic seizure (seizure activity). The 
other classes, 2, 3, 4, and 5, are for the patients who did not have 
epileptic seizures (non-seizure activity). In this study, we classify the 
patients with seizure activity from those with non-seizure activity. 
Hence, a binary classification task is conducted among class label 1, 
encoded as class label 1 for patients with seizure activity, and the other 
classes 2, 3, 4, and 5, encoded as class label 0 for patients with 
non-seizure activity. Let us specify the dependent variable (Y) and 
independent variables (X) to train the model (f).

5.3 DNN structure

DNNs are capable of identifying complex patterns within data 
due to their deep architecture, which includes multiple layers of 
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neurons. Proposed model is highly adaptable and can be applied 
to various tasks, including natural language processing and 
numerical data processing. This versatility makes them a strong 
candidate for diverse research applications. When trained with 
large datasets, DNNs often achieve higher accuracy compared to 
other models. Their ability to model complex functions and 
relationships within data is advantageous for tasks requiring 
precise and detailed analysis. The model consists of three dense 
layers in which each input layer to each output layer is fully 
connected. The activation function, rectified linear unit (ReLU), 
is used in dense layers for the output layer activation function. 
Sigmoid is used because the model works on binary classification. 
The dropout with each dense layer temporarily ignores/deactivates 
the network’s neurons.

5.4 Results with 80% training and 20% test 
sets

Data splitting is performed with a ratio of 80% for training and 
20% for model testing. The results of the experiments are evaluated 
regarding the true positive examples in the confusion matrix, which 
are 1850, false positive examples, which are 10. False negative 
examples, which are 51, and true negative examples, which are 389, 
as shown in Figure 4A. In Figure 4B, we can see that the accuracy 

curve of the model for training differs from 99% and above, and the 
accuracy of testing varies from 96 to 97%. In Figure 4C, the ROC 
moves from 0.9 of true positive toward 1.0 of false positive rate. In 
the model loss graph, as shown in Figure 4D, the loss of testing is 
about 10–17%, and the loss of training is approximately in the range 
of 0–2%.

The excellence of the developed model can be obtained by the 
values of precision, recall, F1-score, and accuracy shown in Table 1. 
The precision of the model is 97% for non-seizure activity, whereas the 
precision of seizure activity is 98%. The recall results are 99%for 
non-seizure activity and 88% for seizure activity. Also, we can see that 
the F1-score for non-seizure activity is 98%, and for seizure activity is 
93%, regarding 1860 instances of non-seizure activity and 440 
instances of seizure activity.

FIGURE 4

Model training and testing with an 80:20 ratio. (A) Confusion matrix; (B) model accuracy; (C) ROC; (D) model loss.

TABLE 1 Performance evaluation of non-seizure and seizure activity with 
an 80:20 ratio.

Class 
label

F1-
score 

(%)

Precision 
(%)

Recall 
(%)

Accuracy 
(%)

Support

0 98 97 99 97 1860

1 93 98 88 440
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5.5 Results with 70% training and 30% test 
sets

The results of splitting data into 70% for training and 30% for 
testing the model are discussed in this subsection. As shown in 
Figure 5A, the confusion matrix displays the first row-wise value 
to represent the true positive instances, which are patients who do 
not have epileptic seizures, and the model classifies them correctly 
as true positive instances. The second value of the confusion 
matrix is for the false positive instances, which are the model 
classified incorrectly as patients not having epileptic seizures, but 
in actuality, they have. The third value of the confusion matrix is 
several false negative instances, which the model classified as 
patients having epileptic seizures, but in actuality, they do not 
have the disease. The last value of the confusion matrix is for the 
true negative instances that the model classified as patients who 
have epileptic seizures and have epileptic seizures. In Figure 5B, 
the blue curve represents the training accuracy of the model, and 
the orange curve indicates the testing accuracy. It shows that the 
maximum accuracy of training reaches 99%, and the testing 
accuracy reaches 97.5% during the different number of epochs. 
Figure  5C shows the ROC curve that represents the trade-off 
between specificity (1 – FPR) and sensitivity (or TPR) (27). 
Basically, it is the relation between the true positive rate and the 

false positive rate. It shows that when the true positive rate is 0.8, 
the false positive is 0.0, and when the true positive is 1.0, the true 
positive is 0.93. Figure  5D visualizes the training and testing 
model loss, showing how much data is lost at different epochs. 
The model has 97% overall accuracy, as seen in Figure 5B.

The precision, recall, F1-score, and accuracy values shown in 
Table 2 show the study’s proficiency. The accuracy of the model is 97% 
for overall activity recognition. The precision of non-seizure activity is 
97 and 98% for seizure activity, whereas the recall for seizure activity is 
99% and for non-seizure activity is 86%. The F1-score for non-seizure 
activity is 98 and 92% for seizure activity. This experiment’s test 
instances (support) are 2,753 for non-seizure activity and 697 for 
seizure activity.

TABLE 2 Performance evaluation of non-seizure and seizure activity with 
a 70–30 ratio.

Class 
label

F1-
score 

(%)

Precision 
(%)

Recall 
(%)

Accuracy 
(%)

Support

0 98 97 99 97 2753

1 92 98 86 697

FIGURE 5

Model training and testing with a 70:30 ratio. (A) Confusion matrix; (B) model accuracy; (C) ROC; (D) model loss.
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5.6 Results with 60% training and 40% test 
sets

In this subsection, the experiment uses 60% of the dataset for 
training the model and 40% for the models’ test. The obtained 
results are presented in Figure 6. The confusion matrix is given in 
Figure  6A. It shows that 3,670 instances are classified as true 
positives, 21 instances are classified as false positives, 131 instances 
are classified as false negatives, and 778 instances are classified as 
true negatives. Figure 6B visualizes the model accuracy rates during 
the training process, which are above 99% for training accuracy and 
between 96 and 97% for testing accuracy. Figure 6C shows the ROC 
of the model at different numbers of true and false positive rates for 
the splitting data with a 60:40 ratio. For model loss, Figure  6D 
shows that the testing loss varies from 15 to 25% and from 0 to 5% 
for the training loss.

The efficiency of the model can be assessed by the values of 
precision, recall, F1-score, and accuracy shown in Table  3. The 
accuracy of the developed model is 96% for classifying both 
activities, while the precision for non-seizure activity is 97 and 96% 
for seizure. The recall for non-seizure is 99 and 88% for seizure 
activity. The F1-score for non-seizure activity is 96 and 91% for 
seizure activity. The number of instances is 3,663 for non-seizure 
activity and 937 for seizure activity.

5.7 Results with 50% training and 50% 
testing sets

Figure 7 presents the model’s results trained on 50% of the dataset 
and tested on the remaining 50%. In Figure 7A, the confusion matrix 
shows that the number of true positives is 4,561 and the number of 
false positives is 37, measuring the model’s ability to predict the 
non-seizure activity truly. The false negative and true negative 
instances in the confusion matrix, which are 152 and 1,000, mean that 
the model can predict 152 cases from 1,152 as they have non-seizure 
activity, but actually, they have seizure activity. Similarly, the model 
can predict 1,000 instances as they have had seizure activity since 
1,152, and they have had seizure activity. The accuracy of training and 
testing during the training phase are given in Figure 7B. It shows the 
model’s accuracy fluctuation from 0 to 100 epochs. The same is true 

FIGURE 6

Model training and testing with a 60:40 ratio. (A) Confusion matrix; (B) model accuracy; (C) ROC; (D) model loss.

TABLE 3 Performance evaluation of non-seizure and seizure activity with 
a 60:40 ratio.

Class 
label

F1-
score 

(%)

Precision 
(%)

Recall 
(%)

Accuracy 
(%)

Support

0 96 97 99 96 3,663

1 91 96 88 937
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TABLE 4 Performance evaluation of non-seizure and seizure activity with 
a 50–50 ratio.

Class 
label

F1-
score 

(%)

Precision 
(%)

Recall 
(%)

Accuracy 
(%)

Support

0 94 95 98 95 4,598

1 90 94 87 1,152

for the model’s loss, which is given in Figure 7D. Figure 7C shows the 
ROC of the model at different numbers of true and false positive rates 
for the splitting data with a 50:50 ratio.

The results of precision, recall, F1-score, and accuracy are listed in 
Table 4. It illustrates the effectiveness of the model. We can see that the 
precision for non-seizure activity is 98% and for seizure is 94%, the 
recall for non-seizure is 98%, and for seizure is 87%, and the F1-score 
for non-seizure is 94 and 94% for seizure. The number of test instances 
(support) is 4,598 for non-seizures and 1,152 for seizure activity. The 
results of evaluation metrics for the model in overall splitting ratios 
are presented in Table 5.

5.8 10-fold cross validation

A 10-fold cross-validation technique is applied to the whole 
dataset to evaluate the model’s performance further, as shown in 
Figure 8. The total number of instances in the dataset is 11,500. It is 
divided into 10 equal parts for the 10-fold cross-validation. In each 
part, 1150 instances are used to test the model. The obtained results 
are introduced in this subsection. Figure 8 illustrates the strategy of a 
10-fold cross-validation technique for splitting the data for training 
and validation sets.

In Table 6, we present a comparison of different models’ accuracy 
results using the holdout and 10-fold cross-validation techniques. As 

we can see, the lowest accuracies are for the logistic regression model, 
which is 82.5% using a holdout technique, and 80.1% using a 10-fold 
cross-validation technique, while the highest accuracies are for the 
proposed model, which is 97% using a holdout technique and 95.5% 
using a 10-fold cross-validation technique. Also, we can notice that 
the accuracy of different models using a holdout technique is slightly 
higher compared to a 10-fold validation technique.

Table  7 compares different models’ F1-score results using the 
holdout and 10-fold cross-validation techniques. As we can see, the 
lowest F1-scores are for the logistic regression model, with 81.5% 
using a holdout technique and 80.1% using a 10-fold cross-validation 
technique, while the highest F1-scores are for the proposed model, 
which is 93% using a holdout technique and 90.5% using a 10-fold 
cross-validation technique. Also, we can notice that the F1-score of 
different models using a holdout technique is a little bit higher when 
compared with a 10-fold validation technique.

FIGURE 7

Model training and testing 50–50 ratio. (A) Confusion matrix; (B) model accuracy; (C) ROC; (D) model loss.

https://doi.org/10.3389/fmed.2024.1405848
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Khurshid et al. 10.3389/fmed.2024.1405848

Frontiers in Medicine 11 frontiersin.org

Similarly, in Table 8, we compare the precision results of different 
models using the holdout and 10-fold cross-validation techniques. As 
we can see, the lowest precisions are for the logistic regression model, 
with 81.5% using a holdout technique, and 80.1% using a 10-fold 
cross-validation technique, while the highest precisions are for the 
proposed model, with 93% using a holdout technique and 90.5% using 
a 10-fold cross-validation technique. Also, we  can notice that the 
precision of different models using a holdout technique is slightly 
higher compared to a 10-fold validation technique.

Figure 9 shows the receiver operator characteristic curve (ROC). 
The orange curve indicates the ROC of the proposed model using a 
holdout technique. It is shown that when the true positive rate is 0.9, 
the false positive is 0.0, and when the true positive is 0.93, the false 
positive is 1.0. The blue curve represents the ROC of the proposed 

model using a 10-fold cross-validation technique. It is 0.0 when it 
starts, but when the curve reaches 0.8, the graph achieves a rate of 
0.98. The ROC curve presents how well the model can differentiate 
among positive and negative classes by plotting the true positive rate 
against the false positive rate at several thresholds. The performance 
of the model is summarized by a single value by the area under the 
ROC curve (AUC). When the cost of false positives and false negatives 
fluctuates, the ROC curve provides a balanced assessment of the 
model’s performance by taking into account both true positive and 
false positive rates.

Figures 10, 11 show the proposed model’s loss and accuracy using 
a 10-fold cross-validation technique. The error or model loss graph 
indicates the overall loss of 10-fold cross-validation during testing and 
training. In the case of testing, the loss is 0.16% at the first epoch, and 

TABLE 5 Overall performance of the model with different ratios.

Training Testing F1-score (%) Precision (%) Recall (%) Accuracy (%)

80% 20% 93 98 88 97

70% 30% 92 98 86 97

60% 40% 91 96 88 96

50% 50% 90 94 87 95

FIGURE 8

A 10-fold cross-validation technique.

TABLE 6 Accuracy of different models using the holdout and 10-fold 
cross-validation techniques.

Model Accuracy of 
holdout 

technique (%)

Accuracy of 10-
fold validation 
technique (%)

ANN 95.7 93.4

Naive Bayes 95 94.3

KNN 93.1 91.6

Logistic regression 82.5 80.1

DNN 97 95.5

TABLE 7 F1-score of different models using the holdout and 10-fold 
cross-validation techniques.

Model F1-score of 
holdout 

technique (%)

F1-score of 10-
fold validation 
technique (%)

ANN 92.3 90.4

Naive Bayes 89.2 87.3

KNN 90 91.6

Logistic regression 81.5 80.1

DNN 93 90.5
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it goes higher at 50 and 100 epochs. The loss is 0.23%. For training, the 
loss is 0.03% on the first epoch and goes higher on the epoch number 
40; when it reaches the epoch number 100, the loss is 0.01%.

The accuracy graph for the training of 10-fold cross-validation is 
shown above as it can be  seen that the graph started from 90% 
accuracy on 0 epoch and remained almost the same at 90 epoch, but 
an abrupt increase in accuracy can be seen after 90 epoch and achieve 
93% accuracy. The accuracy graph for testing of 10-fold cross-
validation in which the graph fluctuates between 65 and 100%.

6 Discussion

The present study aims to achieve high accuracy by using a 
numerical data set for our model. The model is trained and tested 
using different dataset ratios for the best results. Before this study, 
most of the previous methods used image data sets to execute their 
research work, but in this study, historical numerical data was 
employed, which is not complex compared to other methods. 
Furthermore, a binary classifier (non-seizure or seizure) is used, 
which does not predefine more specific seizure categories to provide 
a more generalizable classifier. The DNN algorithm has more than one 
hidden layer between the input and output layers; the data will 
be  passed through these hidden layers’ functions, in which the 
function applies weights to the inputs and sends them as the output 
using an activation function. The activation function used in this 
study is Sigmoid.

7 Comparative analysis

This section will compare the proposed model with the other 
machine learning approaches concerning accuracy, precision, 
F1-score, and recall. The comparison of machine learning 
models with different training and testing ratios, i.e., 80–20%, 
70–30%, 60, −40%, and 50–50%, will be done through graphs 
and tables.

TABLE 8 The precision of different models using the holdout and 10-fold 
cross-validation techniques.

Model Precision of 
Holdout 

Technique (%)

Precision of 10-
fold Validation 
Technique (%)

ANN 95 93.4

Naive Bayes 96.4 94.3

KNN 92 91.6

Logistic regression 85.1 83.5

DNN 98 95.5

FIGURE 9

ROC of the proposed model using a holdout and a 10-fold cross-
validation technique.

FIGURE 10

A 10-fold cross-validation loss.

FIGURE 11

A 10-fold cross-validation accuracy.

TABLE 9 Accuracy (%) comparison results in the percentage of the 
proposed DNN model with the other models at different splitting ratios.

Model 80–20% 70–30% 60–40% 50–50%

ANN 95.7 95 94 92

Naive Bayes 95 94 93 91.5

KNN 93 92.5 91.5 91

Logistic 

regression

82.5 82 81 80

DNN 97 97 96.5 95

https://doi.org/10.3389/fmed.2024.1405848
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Khurshid et al. 10.3389/fmed.2024.1405848

Frontiers in Medicine 13 frontiersin.org

7.1 Accuracy

The accuracy of the proposed DNN model is compared with the 
other models, such as Logistic regression, KNN, ANN, and Naïve 

Bayes, using different splitting ratios as given in Table 9 and visualized 
in Figure 12. We can see that the proposed DNN model achieves the 
highest accuracy result compared to other models. Despite a general 
decline in accuracy across all models when the training data is 
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FIGURE 12

Visualization of accuracy comparison results in the percentage of the proposed DNN model with other models at different splitting ratios.

TABLE 10 F1-score (%) comparison results in a percentage of the proposed DNN model with other models at different splitting ratios.

Model 80–20% 70–30% 60–40% 50–50%

ANN 92 91 90 90

Naive Bayes 89 87 85 85

KNN 90 88 86 86

Logistic regression 81 79 77 76

DNN 93 92 91 90

92 89 90

81

9391 87 88

79

9290

85 86

77

9190

85 86

76

90

0

20

40

60

80

100

ANN Naive Bayes KNN Logis�c 
Regression

DNN

80%-20% 70%-30% 60%-40% 50%-50%

FIGURE 13

Visualization of F1-score comparison results in percentage of proposed DNN model with other models at different splitting ratios.
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reduced, the DNN model exhibits notable resilience, maintaining 
comparatively high accuracy even with a balanced 50–50 data split. 
This suggests that the DNN model is capable of delivering strong 
performance even with a smaller amount of training data.

7.2 F1-score

The F1-score of the proposed DNN model is compared with the 
other models, such as Logistic regression, KNN, ANN, and Naïve 
Bayes, using different splitting ratios as given in Table  10 and 
visualized in Figure 13. Logistic Regression consistently shows the 
lowest F1-scores for all data splits, indicating its limited effectiveness 
for this task. On the other hand, while ANN, KNN, and Naïve Bayes 
deliver decent results, they still fall short compared to the performance 
achieved by the DNN model.

7.3 Precision

We examine the precision of the proposed Deep Neural 
Network (DNN) model in contrast to several established models: 
Artificial Neural Network (ANN), Naïve Bayes, K-Nearest 
Neighbors (KNN), and Logistic Regression. This evaluation 
encompasses various data splitting ratios, including 80–20%, 
70–30%, 60–40%, and 50–50%.as shown in Table 11 and Figure 14. 
The values will be changed when the training and testing data ratios 
are changed.

7.4 Recall

In this section, we  investigate the recall capabilities of the 
proposed Deep Neural Network (DNN) model when compared to 
alternative models across diverse data splitting ratios. The outcomes 
are illustrated in Table 12 and Figure 15. Recall assesses a model’s 
proficiency in correctly recognizing all pertinent instances among the 
total relevant instances. As we manipulate the proportions between 
training and testing datasets, the figures in the table will 
adapt accordingly.

8 Conclusion

The primary objective of this study is to optimize the accuracy and 
performance of our research outcomes. To accomplish this, we have 
employed a sophisticated deep neural network (DNN) algorithm 
while systematically manipulating the ratios of training and testing 
datasets to discern optimal results. The results showed substantial 
advancements over previous research endeavors, boasting a 
remarkable 97% accuracy rate, a precision rate of 98%, an F1-score of 
92%, and a recall rate of 80%. Furthermore, our commitment to robust 
validation methodologies is evident in applying a rigorous 10-fold 
cross-validation technique designed to further enhance the model’s 
performance and bolster its reliability across the dataset. Integrating 
EEG data with other physiological measurements, such as heart rate 
and movement data, may enhance the accuracy of seizure detection. 
Future research could investigate methods for combining these diverse 

TABLE 11 Precision (%) comparison results in a percentage of the proposed DNN model with other models at different splitting ratios.

Model 80–20% 70–30% 60–40% 50–50%

ANN 95 92 91 91

Naive Bayes 96 95 85 85

KNN 92 93 90 89

Logistic regression 85 83 83 80

DNN 98 97 95 90
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FIGURE 14

Visualization of precision comparison results in a percentage of the proposed DNN model with other models at different splitting ratios.
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data types to utilize the unique benefits of each. Additionally 
combining the seizure detection system with electronic health records 
to enhance patient history tracking and care management could also 
be Upcoming research.
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TABLE 12 Recall (%) comparison results in the percentage of the proposed DNN model with other models at different splitting ratios.

Model 80–20% 70–30% 60–40% 50–50%
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Logistic regression 86 84 82 80
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FIGURE 15

Visualization of recall comparison results in the percentage of the proposed DNN model with other models at different splitting ratios.
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