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Background: Pathological scars, including keloids and hypertrophic scars, 
represent a significant dermatological challenge, and emerging evidence 
suggests a potential role for the gut microbiota in this process.

Methods: Utilizing a two-sample Mendelian randomization (MR) methodology, 
this study meticulously analyzed data from genome-wide association studies 
(GWASs) relevant to the gut microbiota, keloids, and hypertrophic scars. The 
integrity and reliability of the results were rigorously evaluated through sensitivity, 
heterogeneity, pleiotropy, and directionality analyses.

Results: By employing inverse variance weighted (IVW) method, our findings 
revealed a causal influence of five bacterial taxa on keloid formation: class 
Melainabacteria, class Negativicutes, order Selenomonadales, family XIII, and 
genus Coprococcus2. Seven gut microbiota have been identified as having 
causal relationships with hypertrophic scars: class Alphaproteobacteria, 
family Clostridiaceae1, family Desulfovibrionaceae, genus Eubacterium 
coprostanoligenes group, genus Eubacterium fissicatena group, genus 
Erysipelotrichaceae UCG003 and genus Subdoligranulum. Additional sensitivity 
analyses further validated the robustness of the associations above.

Conclusion: Overall, our MR analysis supports the hypothesis that gut microbiota 
is causally linked to pathological scar formation, providing pivotal insights for 
future mechanistic and clinical research in this domain.
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Introduction

Wound healing is a multifaceted and dynamic process, governed by a balance of 
numerous regulatory pathways. A deviation from this balance can lead to pathological scars, 
chiefly hypertrophic scars and keloids, characterized by excessive extracellular matrix 
deposition and abnormal fibroblast behavior (1, 2). The profound impact of pathological 
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scars extends beyond their physical appearance, encompassing 
cosmetic concerns, functional impairments such as contractures, 
and subjective symptoms including pruritus and pain (3). 
Collectively, these aspects highlight the far-reaching effects of 
pathological scars, with significantly influencing various facets of 
patient well-being (3).

The intricate mechanisms underlying the formation of these scars 
involve both local and systemic factors, including genetic 
predispositions (4). Recent advancements in dermatological research 
have highlighted the potential influence of the gut microbiota on skin 
health, particularly in the context of inflammatory disorders (5). This 
has led to the exploration of the “gut-skin axis,” a concept describing 
the complex interactions between the gut microbiota and skin health 
(5). Alterations in the gut microbiota have been linked to skin 
inflammation and the manifestation of various skin diseases, including 
rosacea, psoriasis, and atopic dermatitis (6–8). The gut-skin axis 
involves complex interactions where the gut microbiome impacts skin 
health through immune modulation, metabolic functions, and 
hormonal pathways. Gut bacteria influence immune responses, 
producing anti-inflammatory mediators that reduce skin 
inflammation (9). They also metabolize dietary components into 
bioactive metabolites like short-chain fatty acids, enhancing skin 
barrier function and hydration (10). Additionally, the gut microbiome 
affects nutrient absorption, essential for skin health (5). Hormonal 
pathways are influenced as gut bacteria modulate hormones such as 
cortisol and serotonin, impacting conditions like acne and psoriasis 
(11). Therapeutic approaches include probiotics and dietary 
modifications to restore gut microbiome balance, offering potential 
for improved skin health (12). Notably, a recent study revealed distinct 
differences in the gut microbiota composition between individuals 
with normal scars and those with pathological scars (13). This 
emerging evidence suggests that the gut microbiota may also play a 
role in the development of pathological scars, adding a new dimension 
to our understanding of skin disorders. A pivotal question that arises 
from these observations is whether the relationship between gut 
microbiota imbalance and the onset or exacerbation of pathological 
scars is merely observational or indicative of a direct causal influence. 
Addressing this question is challenging due to the multifaceted nature 
of gut microbiota, which is influenced by a range of factors such as age, 
sex, body mass index, and even environmental factors. These variables 
not only affect the composition of the gut microbiota but also 
complicate the task of assembling a diverse and representative sample 
for research. Furthermore, ethical considerations and practical 
limitations pose significant hurdles in conducting clinical trials to 
investigate the causal links between the gut microbiota alterations and 
pathological scar development.

To address these challenges, our study employs a two-sample 
Mendelian randomization (MR) approach. MR utilizes genetic 
variants as instrumental variables to establish causal relationships 
between exposures (such as variations in the gut microbiota) and 
outcomes (such as pathological scars) (14). This method offers a 
strategic advantage over traditional randomized controlled trials 
(RCTs) and observational studies, as it reduces the confounding biases 
and ethical concerns associated with direct manipulation of the gut 
microbiota in human subjects (15). By leveraging this approach, our 
study aims to dissect the potential causal relationship between gut 
microbiota and the development of pathological scars. The findings 
from this research could significantly enhance our understanding of 

the gut-skin axis and its implications for skin health, potentially 
leading to novel therapeutic strategies for managing pathological scars.

Methods

Study design

Our study’s analytical framework, depicted in Figure 1, employs a 
two-sample MR design to investigate the potential causal relationships 
between gut microbiota and pathological scar formation. This 
approach is underpinned by three fundamental hypotheses, each 
aligning with core MR principles and collectively crucial in elucidating 
the connection between the gut microbiota and pathological scars. 
The initial hypothesis centers on the representativeness of the genetic 
instruments utilized in our MR analysis. These instruments must 
accurately reflect the exposure of interest, which in this case is the gut 
microbiota. This is essential for reliably measuring the impact of gut 
microbiota variations on the development of pathological scars. Our 
second hypothesis pertains to the independence of these genetic 
instruments from confounding factors. This aspect is critical for 
mitigating the risk of spurious associations, thereby bolstering the 
validity of our causal inferences. By ensuring this independence, 
we  strengthened the credibility of our findings in linking gut 
microbiota alterations to pathological scars. Finally, the third 
hypothesis, known as the exclusion restriction hypothesis, plays a 
pivotal role in establishing a direct causal pathway between changes 
in gut microbiota and the manifestation of pathological scars. This 
hypothesis is integral to reinforcing the causal interpretation derived 
from our MR analysis, as it asserts that the observed associations are 
not influenced by external factors unrelated to the gut microbiota-
pathological scar nexus (16).

Data source

In this study, genetic variants for the gut microbiota were derived 
from an extensive genome-wide association study (GWAS) meta-analysis 
(17). This analysis included a predominantly European cohort of 18,340 
participants across 24 separate cohorts. Post-imputation, the analysis 
covered 5,717,754 SNPs. In terms of the gut microbiota, the original 
study categorized it into 257 taxa across six taxonomic levels: phylum [p], 
class [c], order [o], family [f], and genus [g]. For our microbial 
quantitative trait locus (mbQTL) mapping analysis, this number was 
reduced due to quality control and filtering, excluding taxa with low 
prevalence or abundance. Out of the remaining 211 taxa, we excluded 15 
unknown taxa and ultimately included 196 taxa. This selection comprised 
9 phyla, 16 classes, 20 orders, 32 families, and 119 genera.

Additionally, GWAS summary statistics for hypertrophic scars 
were obtained from the latest R10 release data of the FinnGen 
consortium. This dataset comprises 1,641 documented hypertrophic 
scar cases, juxtaposed with a control cohort of 385,559 individuals. 
The GWAS summary statistics for keloids were extracted from a meta-
analysis conducted by Sakaue et al. (18). The present study included 
668 documented keloid cases with 481,244 control cases and identified 
a total of 24,197,210 SNPs to explore their potential associations 
sdwith keloids. The utilization of these diverse and comprehensive 
sources of data will undoubtedly facilitate a meticulous and thorough 
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investigation into delineating the potential causal relationships that 
exist between the gut microbiota and pathological scars. No obvious 
overlap between exposures and outcomes.

Instrumental variable selection

To identify potential instrumental variables (IVs) for our study, 
we first concentrated on single nucleotide polymorphisms (SNPs) 
associated with gut bacterial taxa, adhering to the genome-wide 
significance benchmark of p < 1.0 × 10–5. The selection of appropriate 
IVs hinged on meeting stringent quality control standards, which 
included establishing a linkage disequilibrium (LD) threshold for 
clumping at r2 < 0.001 within a 10,000 kb window, essential for 
minimizing LD impact and ensuring SNP independence. Additionally, 
we aligned the effect estimates of exposure and outcome variants, 
discarded SNPs with incompatible alleles or palindromic 
characteristics, and selected only SNPs present for all evaluated traits 
as IVs, avoiding the use of proxies for absent traits. Furthermore, 
we  conducted comprehensive examinations of each SNP via 
PhenoScanner V21 to determine whether the SNPs influenced 
outcomes exclusively through their exposure. Finally, we evaluated the 
robustness of our chosen instruments by calculating the F statistic 

1 http://www.phenoscanner.medschl.cam.ac.uk/

using the formula: F = (β/SE)2, where β represents the effect size and 
SE the standard error, adhering to an F > 10 criterion to mitigate bias 
toward weak IVs (19).

MR analysis

Our foundational analysis incorporated a comprehensive array of 
MR techniques to establish causal effects. Central to this was the 
inverse-variance weighted (IVW) method, which formed the core of 
our analysis, and was augmented by additional methods, including the 
simple model, weighted model, weighted median, and MR-Egger 
methods. These factors collectively enabled a thorough evaluation of 
causal relationships. To address the potential bias due to pleiotropy, 
we focused on the intercept term of MR-Egger regression. A near-zero 
intercept term suggests the absence of horizontal pleiotropy in our 
bidirectional MR approach, a crucial aspect in determining the 
validity of the SNP under investigation (20). To further investigate 
horizontal pleiotropy, where a single genetic variant may affect 
multiple traits and complicate causal inference, we  employed the 
MR-PRESSO global test (21). We  also meticulously assessed 
heterogeneity within the IVW method using Cochran’s Q statistics 
and funnel plots, tools that illuminate the consistency and reliability 
of our results. Given the extensive scope of hypothesis testing, the 
Benjamini-Hochberg (BH) procedure was rigorously applied to adjust 
for multiple comparisons in our analysis. The results with a false 
discovery rate p value (PFDR) below 0.1 were considered significant, 

FIGURE 1

Overview of the Mendelian randomization analysis and three main assumptions.
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setting a high bar was used to indicate statistical significance. However, 
outcomes with a p value less than 0.05 but a PFDR above 0.1, while 
not meeting this stringent criterion, were still noted for their nominal 
significance, indicating potential emerging trends meriting further 
investigation. Finally, the MR Steiger test was employed to rigorously 
determine the direction of causality between the exposure and the 
outcome, offering essential insight into the causative pathways 
involved in our study. All analyses were performed using the package 
“Two-Sample-MR” (version 0.5.6), “MR-PRESSO” (version 1.0) in R 
(version 4.3.0).

Results

According to the IV selection, a total of 2078 SNPs were used 
as IVs for SNPs associated with the gut microbiota. We explored the 
association between the gut microbiota and pathological scars using 
five MR methods (Figure 2; Supplementary Tables S1, S2). All the 
F-statistics of the IVs were greater than 10, which indicated that 
weak instrument bias was unlikely. The IVW methods highlighted 
five bacterial genera: class Melainabacteria (OR = 0.71, 95% CI: 
0.51–1.00, p = 0.046), class Negativicutes (OR = 1.64, 95% CI: 1.07–
2.51, p = 0.024), order Selenomonadales (OR = 1.64, 95% CI: 1.07–
2.51, p = 0.024), family XIII (OR = 0.57, 95% CI: 0.35–0.94, p = 0.026) 
and genus Coprococcus2 (OR = 0.62, 95% CI: 0.40–0.96, p = 0.032) 
(Figure 3). These factors play a protective role by preventing the 
onset of keloids. Additionally, our examination revealed seven gut 
microbiota taxa exerting significant causal effects on hypertrophic 
scars, and a range of taxa from broad phyla to specific genera was 
identified: class Alphaproteobacteria (OR = 1.46, 95% CI: 1.02–2.11, 
p = 0.041), family Clostridiaceae1 (OR = 0.67, 95% CI: 0.46–0.97, 
p = 0.035), family Desulfovibrionaceae (OR = 1.57, 95% CI: 1.09–
2.26, p = 0.014), genus Eubacterium coprostanoligenes group 

(OR = 0.73, 95% CI: 0.55–0.99, p = 0.042), genus Eubacterium 
fissicatena group (OR = 0.65, 95% CI: 0.44–0.97, p = 0.033), genus 
Erysipelotrichaceae UCG003 (OR = 1.29, 95% CI: 1.03–1.62, 
p = 0.028) and genus Subdoligranulum (OR = 1.64, 95%CI: 1.07–
2.51, p = 0.024) (Figure 3). The above results are depicted by scatter 
plots in Supplementary Figure S1 and illustrated through forest 
plots for causal effects of gut microbiota on keloids and hypertrophic 
scars with individual SNPs in Supplementary Figure S2. Despite the 
observed associations, no MR outcomes met the FDR correction 
threshold for multiple testing (QFDR < 0.1). Nevertheless, with 
p-values < 0.05, these results hold nominally significant 
(Supplementary Table S1).

In our rigorous analysis of data homogeneity, we  utilized 
Cochrane’s Q test and observed no significant heterogeneity 
among the selected single nucleotide polymorphisms (SNPs), with 
p-values exceeding 0.05, as detailed in Table  1. This lack of 
heterogeneity underscores the consistency of the SNP selection for 
our study. Additionally, we conducted comprehensive pleiotropy 
assessments using both the MR Egger test and the MR-PRESSO 
analysis. Pleiotropy occurs when a genetic variant influences 
multiple traits, which can bias the results of a Mendelian 
Randomization study. The MR Egger intercept provides evidence 
of directional pleiotropy if the intercept significantly deviates 
from zero. MR-PRESSO identifies and corrects for outliers that 
may bias the MR estimates. These tests consistently indicated the 
absence of pleiotropy, with all p values again exceeding the 0.05 
threshold (Table 2). Crucially, our study employed MR Steiger 
directionality tests, which uniformly indicated a strong causal 
relationship running from the gut microbiota to pathological scars 
across all evaluated outcomes. This finding, detailed in 
Supplementary Table S3, solidifies the direction of the causal 
pathway in our research. This consistent demonstration of a causal 
direction not only reinforces the robustness of our findings but 

FIGURE 2

Preliminary MR estimates of gut microbiota’s association with keloids (A) and hypertrophic scars (B).
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also highlights the potential impact of the gut microbiota on the 
formation of pathological scars.

Discussion

The complex interplay between the gut microbiota and 
various health outcomes has been a focal point of numerous 

investigations in recent years. Our study focused on this ever-
evolving frontier to delineate the causal relationships between the 
gut microbiota and pathological scars. We  identified five and 
seven distinct gut microbiota taxa causally linked to keloids and 
hypertrophic scar formations, respectively. Our findings 
underscore a promising direction for understanding the 
etiopathogenesis of pathological scars and open new vistas for 
potential therapeutic interventions.

FIGURE 3

Forest plot of the causal association between gut microbiota and pathological scars.
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The complex interplay between the gastrointestinal tract and skin, 
known as the gut-skin axis, is pivotal for sustaining skin homeostasis 
(22). Central to this interaction is the role of the gut microbiome in 
modulating both systemic and local inflammation through immune 
system engagement. In the gut, microbial communities maintain 
barrier integrity by metabolizing complex polysaccharides into vital 
vitamins and short-chain fatty acids (SCFAs), such as butyrate and 
propionate (23, 24). These substances are integral to reinforcing 
intestinal barrier strength and minimizing permeability (24). 
Furthermore, the presentation of commensal antigens by dendritic 
cells (DCs) facilitates the differentiation of gut commensal bacteria-
specific Tregs, IgA-producing B cells, and Th17 cells (22). This process 
is vital for maintaining the equilibrium of the gut microbiota and 
preventing bacterial entry into the bloodstream, thereby contributing 
to skin homeostasis. Skin inflammation can be influenced by minor 
alterations in specific bacterial species of the intestinal microbiome, 

potentially leading to disorders such as acne, alopecia areata, atopic 
dermatitis and psoriasis (5). For instance, Faecalibacterium prausnitzii 
helps protect against psoriasis by competitively inhibiting the 
colonization of pathogenic skin flora and producing SCFAs, which 
modulate inflammatory responses (25), and Lactobacillus casei helps 
reduce skin inflammation by decreasing the number of cytotoxic 
CD8+ T cells, thereby modulating the immune response and 
promoting skin health (26). In this study, it was discovered that the 
microbiota identified as potentially protective against pathological 
scars may exert its protective effects on pathological scars through 
similar pathways. The Coprococcus 2 genus, classified as a gram-
positive bacteria, is instrumental in producing butyrate, a compound 
with anti-inflammatory properties that notably inhibits nuclear factor 
κB, mitigates reactive oxygen species, and fosters both cell 
differentiation and intestinal health (25). A decrease in Coprococcus 2 
levels, leading to a consequential decrease in butyrate within the 

TABLE 1 Results of heterogeneity analysis using Cochran’s Q test for causal associations between gut microbiota and pathological scars.

Exposure Outcome IVW MR-Egger

Q p value Q p value

Class Melainabacteria Keloids 12.34 0.19 10.68 0.22

Class Negativicutes 3.73 0.98 2.51 0.99

Order Selenomonadales 3.73 0.98 2.51 0.99

Family XIII 9.10 0.42 7.41 0.49

Genus Coprococcus2 2.76 0.91 2.74 0.84

Class Alphaproteobacteria Hypertrophic scars 1.48 0.96 1.48 0.92

Family Clostridiaceae1 4.40 0.88 3.95 0.86

Family Desulfovibrionaceae 7.90 0.54 5.55 0.70

Genus Eubacterium coprostanoligenes group 7.80 0.80 7.62 0.75

Genus Eubacterium fissicatena group 5.76 0.67 5.27 0.63

Genus Erysipelotrichaceae UCG003 12.28 0.66 11.61 0.64

Genus Subdoligranulum 6.88 0.74 6.76 0.66

IVW, inverse-variance weighted.

TABLE 2 Pleiotropy assessment using Egger intercept analysis and MR-PRESSO.

Exposure Outcome MR egger-intercept p value of MR- 
PRESSO global

Intercept p value

Class Melainabacteria Keloids −0.065 0.297 0.238

Class Negativicutes 0.061 0.294 0.984

Order Selenomonadales 0.061 0.294 0.975

Family Family XIII −0.096 0.229 0.426

Genus Coprococcus2 −0.017 0.898 0.904

Class Alphaproteobacteria Hypertrophic Scars 0.002 0.972 0.958

Family Clostridiaceae1 −0.028 0.522 0.892

Family Desulfovibrionaceae 0.053 0.163 0.552

Genus Eubacterium coprostanoligenes group 0.020 0.681 0.816

Genus Eubacterium fissicatena group −0.055 0.503 0.681

Genus Erysipelotrichaceae UCG003 0.030 0.428 0.636

Genus Subdoligranulum 0.012 0.743 0.769

MR Presso Global, Mendelian Randomization Pleiotropy RESidual Sum and Outlier Global Test.
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gastrointestinal tract, may adversely affect immune functionality, 
potentially precipitating the development of keloids. 
Erysipelotrichaceae UCG-003, another butyrate-producing bacterium, 
is essential for colonic epithelial integrity, and its abundance is notably 
lower in patients with neurological disorders and lung cancer than in 
healthy individuals (27–29). This study also revealed that other gut 
microbiota taxa can influence the formation of pathological scars as 
protective factors or risk factors, but their specific mechanisms require 
further investigation.

Emerging evidence increasingly underscores a significant 
correlation between pathological scars and the microbiota. Regarding 
the skin microbiota, studies have identified dysbiosis predominantly 
characterized by S. aureus, which is linked to chronic inflammation 
and subsequent hypertrophic scar development (30). The topical 
application of probiotics may also represent a promising approach for 
the prevention of pathological scars. Lombardi et  al.’s research 
revealed that S. thermophilus lysate markedly reduces the primary 
mediators and activities involved in the abnormal activation of 
myofibroblasts triggered by TGF-β1 under fibrotic conditions. This 
treatment notably decreased the expression of α-SMA, fibronectin, 
and collagen-I, while also diminishing the collagen contraction 
ability of activated dermal fibroblasts (31). Focusing on the gut 
microbiota, Li et al. utilized 16S rRNA gene sequencing to investigate 
generalizable microbial signatures associated with pathological scars 
and their relationship with the gut microbiota. Their findings 
highlighted distinctions in alpha and beta diversity at the phylum and 
genus levels between patients with physiological and pathological 
scars, indicating a dysregulated gut microbiota in individuals with 
pathological scars (13). Notably, a significantly greater presence of 
Subdoligranulum was observed in the gut microbiota of patients with 
pathological scars than in that of patients with physiological scars. 
Our research further corroborates this finding, establishing a causal 
link between increased Subdoligranulum abundance and the 
development of hypertrophic scars, thus offering a mechanistic 
insight into previous observations. However, our findings present 
some divergences from those reported in Li′s study. This disparity 
may arise from several factors. First, Li et al. did not distinguish 
keloids from hypertrophic scars within pathological scars, and our 
study results indicate that the impact of the gut microbiota on keloids 
and hypertrophic scars is not identical. Second, our research sample 
comprised individuals of European descent, in contrast to the East 
Asian population in Li′s study. Third, the methodological strengths 
of our MR study include its capacity to explore causal relationships 
between exposure and outcomes while effectively controlling for 
confounders, which pose significant challenges in observational 
settings. Additionally, we have noted recent studies exploring the 
causal relationship between hypertrophic scars and gut microbiota 
by MR (32). Our research uniquely investigates the causal 
relationships between gut microbiota and both hypertrophic scars 
and keloids. Interestingly, we found distinct causal relationships for 
these two types of pathological scars with gut microbiota, offering 
new perspectives on their pathogenesis.

Our MR analysis revealed a subset of the gut microbiota with 
protective effects against pathological scars, most of which are directly 
or indirectly related to the production of SCFAs. For instance, the 
genus Coprococcus, a classic butyrate-producing microbial group, has 
been shown to have protective effects against a variety of diseases, 
including atopic disease and Parkinson’s disease (33, 34). Within the 

genus Eubacterium, groups such as Eubacterium coprostanoligenes and 
Eubacterium fissicatena are involved in cholesterol metabolism and are 
capable of producing SCFAs during the degradation of cholesterol 
(35). Additionally, certain microbial groups within family XIII and 
family Clostridiaceae 1, such as Clostridium, are well-known producers 
of butyric acid and other SCFAs (36, 37). The relationships among the 
gut microbiota, SCFAs, and the formation of pathological scars, such 
as keloids and hypertrophic scars, have emerged as a focal point of 
interest in understanding the complex mechanisms of fibrosis. The 
lipid hypothesis of pathological scar pathogenesis has emphasized the 
role of triglycerides, cholesterol, and unsaturated fatty acids, while 
investigations into SCFAs, such as butyric acid, isobutyric acid, 
malonic acid, isovaleric acid, and valeric acid, have been comparatively 
limited. Recent studies underscore the significance of these SCFAs, 
which are produced by the anaerobic fermentation of dietary fibers by 
colonic bacteria, and play crucial roles in various cellular processes, 
including apoptosis, proliferation, and differentiation, largely through 
their histone deacetylase inhibitor activity (38). SCFAs are present at 
lower concentrations in keloid tissues than in normal skin, suggesting 
disrupted metabolic equilibrium (39, 40). This reduction, particularly 
of butyric acid, suggests a compromised antifibrotic defense 
mechanism, potentially exacerbating scar pathogenesis through the 
deregulation of keloid-derived fibroblast activity. Such deregulation 
could culminate in unchecked cellular proliferation and excessive 
collagen deposition. Indeed, in vitro experiments have shown that 
butyrate can attenuate fibroblast proliferation and modulate 
inflammatory responses, in a concentration-dependent manner: lower 
concentrations of butyrate promote cellular proliferation, while higher 
concentrations of butyrate promote apoptosis (41, 42). Pathological 
scars are also intricately associated with inflammation and the 
connection between SCFAs and inflammation is highlighted by their 
regulatory effect on mast cells and the production of inflammatory 
mediators. Specifically, butyrate and propionate have been shown to 
inhibit the activation of mast cells, potentially mitigating 
inflammation-driven scar formation (43). In summary, the 
relationships among the gut microbiota, SCFAs, and pathological scars 
present a complex yet logically coherent narrative that encompasses 
metabolic, immunological, and cellular perspectives. Our 
investigation, through a bioinformatics approach, contributes novel 
insights into this intricate relationship, enriching the existing body of 
knowledge with additional reference points for further understanding 
the underlying mechanisms involved.

This study, while insightful, is subject to several limitations. First, 
it’s important to acknowledge that the results did not adhere to the 
stringent FDR correction threshold. Despite not meeting this rigorous 
standard, the nominal significance of the findings warrants 
consideration. Second, our analysis did not account for sex differences, 
a factor that could have influenced the outcomes, particularly given 
known sex-specific variations in the skin microbiome of burn scars 
(44). Third, the genetic studies we  referenced were limited to 
populations of European ancestry, potentially introducing 
stratification bias. This is especially relevant considering the higher 
incidence of pathological scars among African and Asian individuals, 
which may limit the applicability of our results to these groups. 
Fourthly, our study has only validated the causal relationship between 
gut microbiota and pathological scars at a bioinformatics level; these 
relationships still lack validation through molecular biology and 
clinical trials. Finally, our analysis was limited by the taxonomic 
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resolution of the exposure dataset, which was limited to the genus 
level, thereby restricting our ability to investigate species-
level relationships.

Conclusion

In this study, we conducted a comprehensive two-sample MR 
analysis utilizing publicly accessible GWAS summary-level data, to 
evaluate the causal influence of the gut microbiota on the development 
of pathological scars. Our MR analysis robustly supports the 
hypothesis that the gut microbiota is causally linked to pathological 
scar formation, providing pivotal insights for future mechanistic and 
clinical research in this domain.
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