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Single cells and TRUST4 reveal 
immunological features of the 
HFRS transcriptome
Ran Xiao , Mu Lin , Mubo Liu  and Qingqing Ma *

The Central Laboratory of Guizhou Aerospace Hospital, Zunyi, China

The etiology of hemorrhagic fever with renal syndrome (HFRS) is significantly 
impacted by a variety of immune cells. Nevertheless, the existing techniques 
for sequencing peripheral blood T cell receptor (TCR) or B cell receptor (BCR) 
libraries in HFRS are constrained by both limitations and high costs. In this 
investigation, we utilized the computational tool TRUST4 to generate TCR and 
BCR libraries utilizing comprehensive RNA-seq data from peripheral blood 
specimens of HFRS patients. This facilitated the examination of clonality and 
diversity within immune libraries linked to the condition. Despite previous 
research on immune cell function, the underlying mechanisms remain intricate, 
and differential gene expression across immune cell types and cell-to-cell 
interactions within immune cell clusters have not been thoroughly explored. 
To address this gap, we performed clustering analysis on 11 cell subsets derived 
from raw single-cell RNA-seq data, elucidating characteristic changes in cell 
subset proportions under disease conditions. Additionally, we utilized CellChat, 
a tool for cell–cell communication analysis, to investigate the impact of MIF 
family, CD70 family, and GALECTIN family cytokines—known to be involved in 
cell communication—on immune cell subsets. Furthermore, hdWGCNA analysis 
identified core genes implicated in HFRS pathogenesis within T cells and B cells. 
Trajectory analysis revealed that most cell subsets were in a developmental 
stage, with high expression of transcription factors such as NFKB and JUN in 
Effector CD8+ T cells, as well as in Naive CD4+ T cells and Naive B cells. Our 
findings provide a comprehensive understanding of the dynamic changes in 
immune cells during HFRS pathogenesis, identifying specific V genes and J 
genes in TCR and BCR that contribute to advancing our knowledge of HFRS. 
These insights offer potential implications for the diagnosis and treatment of 
this autoimmune disease.
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1 Introduction

Hemorrhagic fever with renal syndrome epitomizes a zoonotic malady characterized by 
acute renal insufficiency, hypotension, and coagulopathy (1). The causative agents behind 
HFRS encompass Hantaan virus (HTNV), Dobrava virus (DOBV), Seoul virus (SEOV), 
Puumala virus (PUUV), and Amur virus (AMV), each manifesting varying degrees of 
pathogenicity. China stands as an endemic epicenter, with HFRS instances linked to HTNV 
and SEOV constituting a staggering 90% of the global caseload (2). Analogous to other viral 
afflictions, the pathogenesis of HFRS predominantly hinges on orchestrated immune 
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responses, encompassing both innate and adaptive arms, aimed at 
eliminating the infective agent. Consequently, immune-mediated 
pathways, such as immune complex formation, complement 
activation, T cell activation, B cell responses, and HTNV-induced 
cytokine cascades, are widely acknowledged as pivotal contributors to 
HFRS pathophysiology (3). Studies have unveiled a correlation 
between the levels of HTNV-specific CD8+ T lymphocytes and 
distinct phases of HFRS, notably observing a significant surge during 
the febrile phase (4). Moreover, unraveling the intricacies of T and B 
cell receptor diversity holds paramount importance in the realm of 
infectious disease research and therapeutics (5, 6). However, the 
precise diversity profiles of TCR and BCR in the context of HFRS 
remain elusive.

Currently, the computational tool TRUST4 is deployed to discern 
immune signatures from bulk RNA-seq data, facilitating the 
construction of TCR and BCR libraries pertinent to the disease (7). 
Given the accessibility of peripheral blood samples from patients, they 
serve as common clinical transcriptome sequencing samples to unveil 
alterations in disease onset and progression (8). Hence, the objective 
of this study is to comprehensively delineate the attributes of TCR and 
BCR in HFRS using peripheral blood samples from patients.

Single-cell RNA sequencing (scRNA-seq) furnishes a nuanced 
understanding of the transcriptomic diversity among individual cells, 
affording insights into the developmental trajectories of immune cells 
and their intricate gene expression profiles (9, 10). This technology 
allows for the elucidation of distinct gene expression signatures within 
immune cells at a granular level, shedding light on the dynamic 
interplay between these cells and offering invaluable perspectives for 
dissecting disease mechanisms and devising therapeutic interventions.

In this study, we harnessed the power of TRUST4 and scRNA-seq 
to elucidate the immunological intricacies of HFRS patients, unraveling 
gene modulations and intercellular dialogues among diverse immune 
cell subpopulations. These findings pave the way for innovative 
diagnostic and therapeutic strategies in the management of HFRS.

2 Materials and methods

2.1 Data collection

Bulk RNA-sequencing data: We  obtained the gene expression 
profiles (RNA-seq) of blood from patients (GSE158712), 
encompassing HFRS samples (SRR12739155, SRR12739156, 
SRR12739157, SRR12739162, SRR12739163, SRR12739164) and 
healthy control (HC) samples (SRR12739152, SRR12739153, 
SRR12739154). PBMC scRNA-seq data(GSE161354) of two healthy 
samples and six HFRS patients were obtained from GSM4905210, 
GSM4905211, GSM4905212, GSM4905213, GSM4905214, 
GSM4905215, GSM4905216, GSM4905217. The clinical information 
of the samples is shown in Table 1.

2.2 T-cell receptor and B-cell receptor 
repertoire construction and analysis

To establish TCR and BCR repertoires, we  utilized the highly 
efficient tool TRUST4, specifically designed for reconstructing immune 
receptor repertoires from bulk RNA-seq data in both T cells and B cells. 

Following the standardized TRUST4 pipelines, we  obtained 
comprehensive output data encompassing conventional TCR and BCR 
repertoire information. Subsequently, we conducted statistical analysis 
in the following manner: (1) Calculation of the relative frequency of all 
clonotypes within the TCR and BCR repertoires. To assess differences 
between the HFRS and HC groups, we employed Student’s t-test. (2) 
TCR β-chain and BCR heavy-chain consist of variable and constant 
regions, where the variable regions hold responsibility for antigen 
recognition and binding specificity. The β-chain variable region 
comprises three gene segments, namely variable (V), diversity (D), and 
junctional (J). The V(D)J rearrangement event gene encodes the 
variable region. Thus, the combination of V and J genes reflects 
clonotype diversity in both T-cell receptors and B-cell receptors. 
Proportions of various TRBV, TRBJ, IGHV, and IGHJ genes were 
calculated under both HFRS and HC conditions. Subsequently, 
Student’s t-test was employed to identify significantly altered TRBV, 
TRBJ, IGHV, and IGHJ genes. (3) Evaluation of the diversity of TCR 
and BCR complementary determining region 3 (CDR3) amino acid 
sequences using Chao1 and InvSimpson indices, conducted for TCR 
β-chain and BCR heavy-chain CDR3 amino acid sequences under both 
HFRS and HC conditions. (4) Analysis of the distribution of TCR 
β-chain and BCR heavy-chain CDR3 amino acid sequence lengths 
within the HFRS and HC groups. (5) Examination of the top 10 TCR 
and BCR V region motifs within the HFRS group.

2.3 Cell filtering and data normalization

This study accounted for the gene count, unique molecular 
identifier count, and mitochondrial gene percentage of each cell sample 
in the dataset to mitigate the impact of dead cells and cellular debris. 
Cells exceeding a total gene count of 2,500, falling below a gene count 
of 200, and exhibiting a mitochondrial gene percentage below 5% were 
excluded. The normalization procedure employed the LogNormalize 
method, which logarithmically transforms and standardizes the gene 
expression values of each cell, thereby ensuring consistent total RNA 
expression across all cells (Supplementary Figure S1).

2.4 Data dimension reduction and UMAP 
clustering analysis

The data normalization process is conducted using the ScaleData 
function, while the RunPCA function diminishes the dimensionality 

TABLE 1 Basic information of single cell data samples.

Samples Age Gender Disease state

GSM4905210 52 Male HFRS fever stage

GSM4905211 34 Male HFRS fever stage

GSM4905212 49 Male HFRS fever stage

GSM4905213 29 Male HFRS fever stage

GSM4905214 37 Male HFRS fever stage

GSM4905215 26 Male HFRS fever stage

GSM4905216 32 Female Normal health control

GSM4905217 29 Male Normal health control
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of the normalized data through principal component analysis (PCA), 
resulting in the generation of PCA outcomes that are subsequently 
printed. The FindNeighbors function is employed to compute the 
intercellular neighbor relationships, evaluating the distances between 
each cell and others based on the selected principal fraction 
(pcSelect), thereby identifying the nearest neighbor for each cell. The 
FindClusters function applies the Leiden algorithm to partition the 
cells into distinct clusters. The Leiden algorithm, a graph-based 
clustering technique, utilizes the previously constructed adjacency 
graph to determine the clustering. In this study, the data were 
segregated into different clusters based on a resolution parameter of 
2.0. Higher resolution parameters yield more finely divided clusters, 
while lower resolution parameters classify a greater number of cells 
into a single cluster. Lastly, the RunUMAP function calculates the 
UMAP coordinates for each cell, utilizing the chosen principal 
fraction (pcSelect) to map the high-dimensional data to a 
two-dimensional space.

2.5 Identification of marker genes

To identify genes with high variability, we employed variable gene 
selection on a per-sample basis. Subsequently, an integration analysis 
was conducted on each sample to identify the top  2,000 genes 
exhibiting the greatest mean and dispersion across all samples. This 
selection was made to enhance subsequent analysis steps, including 
clustering and differential analysis of the data.

2.6 Cell annotation

Cell annotation was carried out through a meticulous manual 
annotation process. Additionally, the “FindAllMarkers” function was 
employed to identify specific markers for each cluster. This approach 
facilitated the initial classification of clusters based on the distinctive 
gene expression patterns of particular cell types, allowing for the 
annotation of cells using multiple reference sets.

2.7 hdWGCNA analysis

The high-dimensional weighted gene co-expression network 
analysis (hdWGCNA) was utilized to construct a scale-free network 
at the single-cell level using the R package “hdWGCNA”. A threshold 
of ≥0.80 was set to ensure a good fit to the scale-free topology model, 
and a soft threshold of 8 was selected to achieve optimal connectivity. 
The modules were assigned to the scRNA cohort using Ucell. To 
generate a protein–protein interaction (PPI) network, the 
“HubGeneNetworkPlot” function was employed.

2.8 Cell-cell communication analysis

To investigate intercellular communication, we utilized CellChat 
(version 1.6.1), an R package designed to facilitate the exploration of 
ligand-receptor interactions at the cell surface, thereby elucidating 
cell signaling across different cell types (11). By leveraging gene 
expression data, we  inferred protein expression and established a 

comprehensive cell interaction network. Initially, we extracted the 
expression matrix and cell classification information from the dataset. 
Subsequently, the “createCellChat” function was employed to 
generate a CellChat object, enabling the calculation of communication 
probabilities and the inference of cell interaction networks. To ensure 
the reliability of the communication relationships, a filtering step was 
implemented. Specifically, communication relationships involving 
low-quality cells were excluded, with a minimum threshold of 3 cells 
set to eliminate unreliable or spurious communication signals. 
Additionally, we explored cell communication at the level of signaling 
pathways, allowing for the inference of communication between cells 
based on the involvement of specific signaling pathways. By 
aggregating cells, we computed the communication network for this 
higher-level analysis, providing a broader understanding of the 
interactions between different cell types and their respective 
communication pathways.

2.9 Trajectory analysis of single cells

For trajectory analysis, we utilized the Monocle2 software package 
(version 2.28.0). The metadata from the integrated Seurat object and 
the top 2000 variable genes from the integrated assay were imported 
into Monocle2.

2.10 SCENIC analysis

To investigate the enrichment of key transcriptomic factors in 
macrophage clusters, we  utilized pySCENIC (version 1.2.4). The 
SCENIC dataset motif Hg38 was selected, and a co-expressed gene 
model was constructed by randomly selecting cells. GENIE3 was 
employed to identify the potential target genes of transcription factors. 
Furthermore, DNA-motif enrichment analyses were conducted using 
RcisTargetn (version 1.14.0) to identify direct binding sites, also 
known as regulons. The activity of each regulon in every cell was 
assessed using AUCell (version 1.16.0), which involved calculating the 
area under the receiver operating characteristic curve (AUC) and 
integrating the expression rank of all genes within the regulon. The 
resulting RegulonAUC matrix was imported into Seurat for cluster 
analysis and visualization of the single-cell data. Through this 
comprehensive analytical pipeline, we  were able to explore the 
enrichment patterns of key transcriptomic factors in macrophage 
clusters. The integration of diverse computational tools allowed us to 
identify potential target genes, assess regulon activity, and facilitate the 
clustering analysis and visualization of the single-cell data using Seurat.

2.11 Statistical analysis

The analysis was conducted using the R software. The Seurat 
package was employed for data preprocessing and analysis. The data 
was normalized using the LogNormalize function, followed by 
scaling using the ScaleData function. Principal Component 
Analysis (PCA) was performed using the RunPCA function to 
reduce the dimensionality of the data. The cells were then classified 
into distinct clusters using the FindClusters function based on the 
PCA results. UMAP coordinates for each cell were computed using 
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the RunUMAP function. To identify markers within each cell 
cluster, the FindAllMarkers function was utilized, aiding in the 
annotation of cell types. Statistical significance was determined 
using the Wilcoxon rank-sum test, with a significance level of 
p < 0.05.

3 Results

3.1 T-cell receptor repertoire analysis

Using the standard workflow of the TRUST4 algorithm, 
we extracted peripheral blood TCR libraries from both HFRS and HC 
groups based on extensive RNA-seq data. After obtaining the 
immunophenotype of T-cell receptors, we compared the clonotypes 
between the two groups. In comparison to the HC group, the 
clonotype frequencies were significantly increased in the HFRS group 
(p < 0.05, Figure  1A). Frequencies were categorized into small 
frequency (>0 and ≤ 0.0001), medium frequency (>0.0001 
and ≤ 0.001), large frequency (>0.001 and ≤ 0.01), and super-
expanded frequency (>0.01 and ≤ 1) for both groups. We observed an 
elevated distribution of small-frequency clonotypes and a reduced 
distribution of medium to super-expanded frequencies in the HFRS 
group (Figure  1B). These findings suggest that the HFRS group 
exhibits higher TCR repertoire diversity and greater clonal expansion, 
indicating a more specific T-cell response to HFRS. We also analyzed 
the distribution of the CDR3 amino acid sequence length in both 
groups. The most common CDR3 amino acid sequence lengths for 
HFRS and HC were 15 and 14, respectively. The difference in CDR3 
amino acid sequence lengths between the two groups was not 
statistically significant (Figure 1C). Diversity assessments of CDR3 
amino acid sequence were conducted using the Chao1 and inverse 
Simpson indices. Comparing the HFRS group to the HC group, both 
the Chao1 and inverse Simpson indices were significantly higher 
(p < 0.05, Figures 1D,E).

To assess the frequency of TRBV and TRBJ genes in both groups, 
the common usage frequencies of these genes were described in a bar 
chart (Figures 1F,G). Among the 27 different TRBV families, BV4-1 
was significantly higher in the HFRS group compared to the HC 
group, while BV4-3, BV7-2, and BV6-2 were significantly lower in the 
HFRS group (p < 0.05). Similarly, TRBJ1-5 was decreased, and 
TRBJ20-1 was significantly increased in the HFRS group compared to 
the HC group (p < 0.05).

The V region of TCR is the most variable region in TCR molecules 
and plays a crucial role in determining the antigen-binding specificity 
of TCRs. We further examined the top 10 TCR V region germline 
sequences in the HFRS group, which were highly expressed in 
individuals. This result is attributed to the immune response triggered 
by HTNV virus antigen stimulation in the HFRS group (Figure 1H).

3.2 B-cell receptor repertoire analysis

Similarly, using the standard workflow of the TRUST4 
algorithm, we extracted peripheral blood BCR libraries from both 
the HFRS and HC groups based on extensive RNA-seq data. After 
obtaining the immunophenotype of B-cell receptors, we compared 

the clonotypes between the two groups. In comparison to the HC 
group, the clonotype frequencies were significantly increased in the 
HFRS group (p < 0.05, Figure 2A). Frequencies were categorized 
into small frequency (>0 and ≤ 0.0001), medium frequency 
(>0.0001 and ≤ 0.001), large frequency (>0.001 and ≤ 0.01), and 
super-expanded frequency (>0.01 and ≤ 1) for both groups. 
We observed an elevated distribution of small, large, and super-
expanded frequency clonotypes, while the distribution of medium-
frequency clonotypes was reduced in the HFRS group (Figure 2B). 
These results suggest that the HFRS group exhibits higher BCR 
repertoire diversity and greater clonal expansion, indicating a more 
specific B-cell response to HFRS. We also analyzed the distribution 
of the CDR3 amino acid sequence length in both groups. The most 
common CDR3 amino acid sequence lengths for HFRS and HC 
were 17 and 17, respectively. The difference in CDR3 amino acid 
sequence lengths between the two groups was not statistically 
significant (Figure 2C). Diversity assessments of CDR3 amino acid 
sequence were conducted using the Chao1 and inverse Simpson 
indices. Comparing the HFRS group to the HC group, both the 
Chao1 and inverse Simpson indices were significantly higher 
(p < 0.05, Figures 2D,E).

To assess the frequency of IGHV and IGHJ genes in both groups, 
the common usage frequencies of these genes were described in a bar 
chart (Figures 2F,G). Among the 27 different IGHV families, IGHV1-
18, IGHV3-23, IGHV3-9, and IGHV4-59 were significantly higher in 
the HFRS group compared to the HC group, while IGHV1-69 and 
IGHV3-21 were significantly lower (p < 0.05). Similarly, in comparison 
to the HC group, IGHJ4 was decreased, and IGHJ6 was significantly 
increased in the HFRS group (p < 0.05).

The V region of BCR is the highly variable region in BCR 
molecules and plays a critical role in determining the antigen-binding 
specificity of BCRs. We further examined the top 10 BCR V region 
germline sequences in the HFRS group, which were significantly 
expressed in individuals. This result is attributed to the immune 
response triggered by HTNV virus antigen stimulation (Figure 2H).

3.3 Single-cell transcriptome of HFRS 
patient PBMCs

To investigate the single-cell transcriptome of PBMCs in HFRS 
patients, scRNA-seq data from 6 HFRS patients and 2 healthy 
individuals were analyzed. The individual cells from the 8 samples 
underwent integration, dimensional reduction, and clustering through 
an unsupervised method. Visualization via UMAP revealed 33 distinct 
cell clusters (Figure 3A). By assessing the expression of characteristic 
gene markers, we identified 11 clusters representing various cell types. 
These cell types encompassed CD4 (+) T cells (CD4+ CD3D+ CD3E+ 
CD3G+), CD14 (+) monocytes (CD14 + LYZ + S100A8 +), B cells 
(CD79A + MZB1 + CD38 + IGKC +), CD8 (+) T cells (CD3D+ 
CCR7 + LEF1 + CD8B+), red blood cells (HBD+ CA1 + HBA1 +), 
proliferative cells (STMN1+ MK167+), PDCs (IGHV7-4-1+), NK 
cells (KLRF1+ KLRB1 + MYOM2 +), mDCs (S100A8+ S100A12 +), 
megakaryocytes (PF4 + PPBP +), and CD16 monocytes (C1QA+ 
C1QB) (Figure 3B). All characteristic marker genes are depicted in 
Figure 3D, while the expression levels of annotated marker genes are 
presented in the violin plots (Figure 3C).
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FIGURE 1

Characteristics of HFRS Immunological Repertoire (TCR Repertoire). (A) Comparison of clone count in the TCR repertoire. Clonotypes are defined 
based on the nucleotide sequence of the CDR3 region. Each CDR3 sequence defines a unique clonal population. (B) Comparison of clonal space 
equilibrium. Clonal space equilibrium analysis relative abundance, also known as clonal space equilibrium, is defined as the proportion of the library 
occupied by clonal populations with specific abundances. (C) Distribution of TCR CDR3 amino acid sequence lengths in HFRS and HC groups. 
(D) Differential comparison of clonotype diversity index Chao1. (E) Differential comparison of clonotype diversity index inverse Simpson index. 
(F) Comparison of TRBV gene usage. (G) Comparison of TRBJ gene usage. (H) Clonotype tracking in HFRS samples. Mean target values, error target 
values, standard errors, and p-values were obtained using Wilcoxon test.
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FIGURE 2

Characteristics of HFRS Immunological Repertoire (BCR Repertoire). (A) Comparison of clone count in the BCR repertoire. Clonotypes are defined 
based on the nucleotide sequence of the CDR3 region. Each CDR3 sequence defines a unique clonal population. (B) Comparison of clonal space 
equilibrium. Clonal space equilibrium analysis relative abundance, also known as clonal space equilibrium, is defined as the proportion of the library 
occupied by clonal populations with specific abundances. (C) Distribution of BCR CDR3 amino acid sequence lengths in HFRS and HC groups. 
(D) Differential comparison of clonotype diversity index Chao1. (E) Differential comparison of clonotype diversity index inverse Simpson index. 
(F) Comparison of IGHV gene usage. (G) Comparison of IGHJ gene usage. (H) Clonotype tracking in HFRS samples. Mean target values, error target 
values, standard errors, and p-values were obtained using the Wilcoxon test.
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FIGURE 3

Single-Cell Transcriptome of PBMCs from HFRS and HC Groups. (A) Identification of cell clusters. Sequencing was performed on PBMC samples from 
the HFRS group (n  =  6) and the HC group (n  =  2). After quality control, 33 cell clusters were identified using UMAP. Each point corresponds to a single 

(Continued)
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3.4 Phenotypic features of cell types in 
HFRS and HC groups

To scrutinize the disparities in cellular composition between the 
HFRS and HC cohorts, Figure 4A delineates the expression profiles of 
the 11 distinct cell types in each group. Employing scRNA-seq data, 
we  computed the relative proportions of each cell type within 
individuals from both cohorts (Figures 4B,C). Notably, juxtaposed 
with the HC cohort, the HFRS group exhibited a conspicuous 
diminution in the relative proportions of CD8 T cells, CD4 T cells, and 
CD16 monocytes, while the relative proportions of other cell types 
remained relatively unaltered.

3.5 Characteristics of innate immune cells 
between the two groups

To delve deeper into the transcriptional alterations within innate 
immune cells between the HC and HFRS cohorts, we scrutinized the 
expression profiles of innate immune-related cell subtypes. Leveraging 
the UMAP findings, we delineated two principal categories of innate 
immune cells based on characteristic gene markers, namely CD14 
monocytes and CD16 monocytes (Figure 5A). Through an analysis of 

differentially expressed genes (DEGs) in each cell subtype across both 
groups, we unveiled a diverse array of gene ontologies. Notably, a 
compelling divergence in the expression of 70 genes implicated in 
innate immune responses emerged between the two cohorts 
(Figure  5C). Functional enrichment analysis illuminated that the 
distinct genes associated with CD16 monocytes were intricately linked 
with pathways encompassing influenza A, Phagosome, Pertussis, and 
Lysosome. Conversely, the distinct genes correlated with NK cells were 
implicated in pathways including Natural killer cell-mediated 
cytotoxicity, Spliceosome, Antigen processing and presentation, TCR 
signaling pathway, Epstein–Barr virus infection, and Th17 cell 
differentiation (Figure 5D). Furthermore, our observations revealed a 
pronounced augmentation in the innate immune response of CD16 
monocytes in the HFRS cohort relative to the HC group, juxtaposed 
against a notable attenuation in the innate immune response of NK 
cells (Figure  5B). In summation, these findings delineate a 
compromised innate immune response in HFRS.

3.6 Characterization of T cells

To elucidate the alterations in T cells following the onset of HFRS, 
a thorough investigation of T cells within PBMCs was conducted. 

cell, colored according to cell type. Each color represents a distinct cluster. (B) UMAP plot of single cells. The 33 cell clusters were further identified as 
11 cell types. UMAP was used to identify and visualize these 9 cell types. Each point represents an individual cell, colored based on its respective cell 
type. (C) Typical cell markers for 12 cell identity clusters, as shown in violin plots. (D) Typical cell markers were used to assign cell identities to the 
clusters represented in the UMAP plot. Data points are color-coded based on expression levels, with the legend marked on a logarithmic scale.

FIGURE 3 (Continued)

FIGURE 4

Differences in Cell Composition between HC and HFRS Groups. (A) UMAP projection of the HC and HFRS groups. Each point represents a cell, colored 
according to cell type. (B) The average proportion of each cell type in the HC and HFRS groups is provided. The bar plot on the left illustrates the 
average proportion of each cell type in both groups, calculated as (number of specific cell clusters in one group) / (total number of cells in one group). 
The plot on the right displays the proportion of each PBMCs cell subset in each sample, calculated as (number of specific cell clusters in one sample) / 
(total number of cells in one sample). (C) Box plots showing the distribution of cell composition in the two groups (n  =  2 in the HC group, n  =  6 in the 
HFRS group).
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Leveraging canonical T cell markers, a UMAP visualization revealed 
a total of nine distinct T cell subsets (Figures  6A,B). Through an 
analysis of differentially expressed genes (DEGs) in monocytes from 
both groups, an intricate gene ontology was constructed, highlighting 
notable differences in the expression of 70 genes related to immune 
response between the two cohorts (Figure 6C). Functional enrichment 
analysis based on Gene Ontology (GO) showcased the predominant 
involvement of T cells in various biological processes, including 
structural constituents of ribosome, rRNA binding, cadherin binding, 
translation factor activity, RNA binding, and phosphatase binding 
(Figure 6D). Moreover, KEGG pathway enrichment analysis revealed 
the participation of T cells in pathways such as Ribosome, Primary 

Immunodeficiency, TCR signaling pathway, Th17 cell differentiation, 
Th1 and Th2 cell differentiation (Figure 6E). The expression profiles 
of DEGs in T cells are graphically depicted, with red indicating 
upregulation and blue indicating downregulation, while the top five 
genes exhibiting the most significant changes are highlighted 
(Figure 6F).

3.7 Characterization of B cells

To characterize the modifications in B lymphocytes subsequent to 
the initiation of HERS, a comprehensive examination of B lymphocytes 

FIGURE 5

Characteristics of Innate Immune Cells in the HC and HFRS Groups. (A) The bubble plot illustrates the expression levels and expression percentages of the 
top 70 differentially expressed genes (DEGs) in each cell subtype. The size of each bubble corresponds to the percentage of expression in the cell, while 
the color represents its expression level. (B) Box plots are used to visualize the cell state scores of genes associated with innate immune response 
regulation in various cell subtypes. The box plots are divided into two different groups: HC and HFRS. They describe the comparison of cell state scores 
between the two groups. Each condition is represented by a different color, and the y-axis represents the median. (C) The plot illustrates the differentially 
expressed genes (DEGs) between the two groups in various cell subtypes, and marks the top five upregulated or downregulated genes based on the 
absolute value of Log2Foldchange. (D) KEGG enrichment analysis of the DEGs in CD16 monocytes and NK cells was conducted using the KEGG database.
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within PBMCs was conducted. By employing the expression of 
canonical B lymphocyte markers, a UMAP visualization generated a 
total of two distinct B lymphocyte subpopulations (Figures 7A,B). 
Through an exploration of DEGs in monocytes from both cohorts, an 
extensive gene ontology was established, highlighting noteworthy 
disparities in the expression of 70 genes related to immune response 
between the two groups (Figure 7C). The outcomes of the functional 
enrichment analysis, utilizing GO, elucidated the prominent role 

played by B lymphocytes in diverse biological processes including the 
structural constituent of ribosome, rRNA binding, MHC class II 
protein complex binding, MHC protein complex binding, and 
ribonucleoprotein complex binding (Figure 7D). Additionally, the 
KEGG pathway enrichment analysis indicated the involvement of B 
lymphocytes in various pathways such as the Ribosome, Epstein–Barr 
virus infection, Spliceosome, and Intestinal immune network for IgA 
production (Figure  7E). The expression profile of DEGs in T 

FIGURE 6

DEGs in T cells in the HC and HFRS groups. (A) The UMAP visualization of distinct populations of Central memory CD4 + T cells, Effector CD4+ T cells, 
Effector CD8+ T cells (GNLY), Effector CD8+ T cells (GZMH), Effector CD8+ T cells (GZMK), Naive CD4+ T cells, Naive CD8+ T cells Effector memory 
CD4+ cells, Tissue resident memory CD8+ T cells and Type 1 helper T like cells depicted. Additional cell clusters are denoted as “other cells.” Each data 
point represents an individual cell, and its color signifies the cell type. (B) The UMAP visualization of T cell subset acquired from the HC group (n = 2) and 
the HFRS group (n = 6) is depicted. Each data point corresponds to a distinct cell, with its color denoting the specific cell type. (C) The bubble plot illustrates 
the expression levels and expression percentages of the top 70 differentially expressed genes (DEGs) in each cell subtype. The size of each bubble 
corresponds to the percentage of expression in the cell, while the color represents its expression level. (D) Enrichment analyses of the DEGs were 
performed using the BP database within the GO. The GO terms are annotated with their respective names and IDs, and are arranged in descending order 
based on the logarithm of the reciprocal of the p value (−log10). The top 20 enriched GO terms are displayed. (E) Enrichment analyses of the KEGG were 
performed. The top 20 enriched GO terms are displayed. (F) The plot illustrates the differentially expressed genes (DEGs) between the two groups in 
various cell subtypes, and marks the top five upregulated or downregulated genes based on the absolute value of Log2Foldchange.
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lymphocytes is depicted, with red indicating upregulation and blue 
indicating downregulation. The figure showcases the top five genes 
demonstrating the most substantial alterations (Figure 7F).

3.8 hdWGCNA identifes the hub genes of T 
cell related to HFRS

Employing high-dimensional weighted gene co-expression 
network analysis, we unveiled the primary molecular characteristics 

of T cells. Utilizing a soft threshold of five, we constructed an unscaled 
network to optimize connectivity, resulting in the discernment of six 
gene modules (depicted in Figures 8A–C). Remarkably, modules T 
cells -M1 and T cells -M2 exhibited significant enrichment in T cells. 
Upon juxtaposition of the HFRS and healthy control cohorts, a 
conspicuous reduction in the enrichment of the T cells – M1 module 
within the HFRS group was noted (as illustrated in Figures 8D,E). 
Ucell scores were calculated across all cells for each of the seven 
modules, with modules T cells -M1 displaying the highest scores 
among T cells (as portrayed in Figure  8F). Subsequently, 

FIGURE 7

DEGs in B cells in the HC and HFRS groups. (A) The UMAP visualization of distinct populations of Naive B lymphocytes and Pre-B lymphocytes is 
depicted. Additional cell clusters are denoted as “other unidentified cells.” Each data point represents an individual cell, and its color signifies the cell 
type. (B) The UMAP visualization of B cell subset acquired from the HC group (n  =  2) and the HFRS group (n  =  6) is depicted. Each data point 
corresponds to a distinct cell, with its color denoting the specific cell type. (C) The bubble plot illustrates the expression levels and expression 
percentages of the top 70 differentially expressed genes (DEGs) in each cell subtype. The size of each bubble corresponds to the percentage of 
expression in the cell, while the color represents its expression level. (D) Enrichment analyses of the DEGs were performed using the Biological Process 
(BP) database within the GO. The GO terms are annotated with their respective names and IDs, and are arranged in descending order based on the 
logarithm of the reciprocal of the p value (−log10). The top 20 enriched GO terms are displayed. (E) Enrichment analyses of the KEGG were performed. 
The top 20 enriched GO terms are displayed. (F) The plot illustrates the differentially expressed genes (DEGs) between the two groups in various cell 
subtypes, and marks the top five upregulated or downregulated genes based on the absolute value of Log2Foldchange.
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we constructed a protein–protein interaction (PPI) network, revealing 
interactions among pivotal genes within the T cells -M1 modules 
(depicted in Figure 8G). These pivotal genes participate in processes 
pertinent to T helper 1 (Th1) cell-specific transcription factors, protein 
synthesis, and more, encompassing EEF1A1, RPL13, and RPS27, and 
they occupy central positions within the network. Furthermore, GO 
enrichment analysis on genes within the T cells – M1 module revealed 
their involvement in pathways associated with SRP − dependent 
cotranslational protein targeting to membrane (as shown in 
Figure 8H). In summary, our investigation delved into gene expression 
modules within T cells and identified pivotal hub genes implicated in 
the pathogenesis of HFRS.

3.9 hdWGCNA identifes the hub genes of B 
cell related to HFRS

Utilizing hdWGCNA, we elucidated the principal molecular 
features characterizing B cells. Employing a soft threshold of eight, 

we constructed an unscaled network tailored for B cells to optimize 
connectivity, effectively identifying twenty modules (illustrated in 
Figures  9A–C). Particularly noteworthy, modules B cells -M20 
exhibited notable enrichment within B cells. Upon comparison with 
the healthy control cohort, a significant reduction in the enrichment 
of the B cells – M20 module was evident in the HFRS group (as 
illustrated in Figures 9D,E). Assessing the Ucell scores across all 
cells for these seven modules, we observed module B cells -M20 
achieving the highest score within B cells (depicted in Figure 9F). 
Subsequently, we established a Protein–Protein Interaction (PPI) 
network, revealing the interplay among pivotal genes within module 
B cells -M20 (depicted in Figure 9G). These pivotal genes participate 
in processes concerning respiratory chain NADH dehydrogenase 
synthesis and mediation of pre-mRNA alternative splicing 
regulation, exemplified by MT − ND3 and MBNL1, occupying 
central positions within the network. Furthermore, GO enrichment 
analysis conducted on genes within the B cells – M20 module 
unveiled their involvement in pathways associated with negative 
regulation of cell cycle phase, cotranslational protein targeting to 

FIGURE 8

Identification of gene co-expression modules among T cells. (A) Unsupervised clustering and annotation of cell types in Healthy and HFRS samples. 
(B) Power value equal to 5 when the network reached a scale-free distribution. (C) Highly variable genes were clustered into 6 modules through 
hdWGCNA. (D) Dot plot for enrichment of modules in different cell types. (E) Dot plot for enrichment of modules in different groups. F. UMAP of the 
expression of T cells -M1 among all cells. (G) The protein–protein interaction network illustrates the interactions within the T cell module M1, with the 
top three hub genes showing the most interactions highlighted in the graph. (H) Dot plot of the GO functional enrich analysis of the module T cells 
-M1.
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membrane, and nuclear−transcribed mRNA catabolic process 
(Figure 9H). In conclusion, our investigation adeptly explored gene 
expression modules within B cells, ultimately pinpointing pivotal 
hub genes contributing to the pathogenesis of HFRS.

3.10 Cell-cell interaction analysis related to 
T cells in scRNA-seq

In our investigation, we employed the CellChat (version 1.6.1) R 
package to delve into cell–cell communication intricacies. This tool 
facilitated the exploration of ligand-receptor interactions on the cell 
surface, offering insights into intercellular information transmission 
(12). Leveraging gene expression data, we deduced protein expression 
and established a comprehensive cell interaction network. Extracting 
the expression matrix and cell classification information, we utilized 
the “createCellChat” function to generate a cell chart object, from 
which we computed the communication probability to infer the cell 
interaction network. To ensure data fidelity, we  filtered out 
communication relationships involving low-quality cells, setting a 

threshold of a minimum of three cells. Additionally, we scrutinized 
cell communication at the signal pathway level, enabling us to deduce 
communication pathways between cells. By aggregating cells, 
we  computed the communication network for this higher-level 
analysis. The communication results showed that in the HC group, 
the number and intensity of communication were 193 and 17.773, 
respectively, while in the HFRS group, they were 237 and 16.861, 
respectively (Figures 10A,B). Furthermore, we observed significant 
variations in the CD70, MIF, and GALECTIN signaling pathways 
between the two groups, emphasizing the critical role of CD70, MIF, 
and GALECTIN signaling pathways in HFRS (Figure 10C). Next, 
through pattern recognition using CellChat, we  predicted 
coordinated responses between cells. In the HC group, naive CD8+ 
T cells and Tissue resident memory CD8+ T cells belong to pattern 
3, coordinating outward signaling pathways of CD70 and 
GALECTIN, while naive CD8+ T cells and Tissue resident memory 
CD8+ T cells belong to pattern 1, coordinating receiving pathways of 
CD70 and PARs signaling. Conversely, in the HFRS group, effector 
CD8+ T cells (GNLY) belong to pattern 1, coordinating outward 
signaling pathways of CD70 and GALECTIN, while naive CD8+ T 

FIGURE 9

Identifcation of gene co-expression modules among B cells. (A) Unsupervised clustering and annotation of cell types in Healthy and Sepsis samples. 
(B) Power value equal to 8 when the network reached a scale-free distribution. (C) Highly variable genes were clustered into 20 modules through 
hdWGCNA. (D) Dot plot for enrichment of modules in different cell types. (E) Dot plot for enrichment of modules in different groups. (F) UMAP of the 
expression of B cells -M20 among all cells. (G) The protein–protein interaction network illustrates the interactions within the B cell module M20, with 
the top three hub genes showing the most interactions highlighted in the graph. (H) Dot plot of the GO functional enrich analysis of the module B cells 
-M20.
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FIGURE 10

CellChat analysis of the communications between T cell subsets. (A) Circle plots illustrating the number and strength of interactions between T cell 
subsets in HC and HFRS group. (B,C) Identification of singling roles for cells using network centrality analysis. (D) The Sankey diagram of signaling 

(Continued)
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cells and Tissue resident memory CD8+ T cells belong to pattern 1, 
coordinating receiving pathways of PARs signaling (Figure 10D). 
Hence, it can be inferred that the communication patterns among 
cells undergo alteration in the diseased condition. It is noteworthy 
that the expression signals of MIF signaling pathway in each cell 
group were not significantly different (Figure  10E). These results 
reveal the coordination of functions among multiple cell groups and 
signaling pathways, as well as variations in the number and intensity 
of signals.

3.11 Pseudo-time analysis and transcription 
factor prediction of T cells

To elucidate the developmental stages of T cell subsets with 
greater certainty, we employed the Monocle2 package to conduct 
pseudotime series analysis. The trajectory analysis unveiled that 
the majority of cell subsets progress through a singular 

developmental stage. Notably, within these clusters, Effector CD8+ 
T cells (GZMH) were positioned at the initial phase of the 
trajectory, subsequently differentiating into Central memory CD4+ 
T cells, Effector CD4+ T cells, Effector CD8+ T cells (GNLY), 
Effector CD8+ T cells (GZMK), Naïve CD4+ T cells, Type 1 helper 
T (Th1)-like cells, and Tissue resident memory CD8+ T cells 
(Figures 11A,B). Furthermore, we observed a progressive increase 
in the expression levels of EFHD2, RPL11, and SH3BGRL3 during 
the course of cell differentiation (Figure  11C). Subsequently, 
we  employed SCENIC analysis to predict transcription factors 
(TFs) in T cells, visualizing the results using R. The findings 
indicated elevated expression levels of transcription factors in 
Effector CD8+ T cells (GZMH), Effector CD8+ T cells (GZMK), 
and Naïve CD4+ T cells (Figures 12A–C). Notably, transcription 
factors NFKB and JUN, implicated in the regulation of immune 
inflammation, exhibited heightened expression in Naive CD4+ T 
cells from the HFRS group compared to healthy controls. These 
observations shed light on the mechanisms underlying the 

pathways in different patterns for various cell types in the HC and HFRS groups. The left panel illustrates how cells coordinate with each other as signal 
senders and how they coordinate with certain signaling pathways to drive communication under outgoing patterns. The right panel illustrates how 
cells coordinate with each other as signal receivers and how they coordinate with certain signaling pathways to respond to incoming signals under 
incoming-patterns. The thickness of the flow indicates the contribution of the cell group or signaling pathway to each latent pattern. (E) Violin plot 
showing the expression distribution of signaling genes involved in the inferred signaling network between normal and HFRS group.

FIGURE 10 (Continued)

FIGURE 11

Characterization of the landscape of T cells and developmental trajectories of T cells in HFRS. (A) The pseudo-time distribution of different T cell 
subtypes, the left panel depicts each cell subtype marked with a different color along the pseudo-temporal trajectory, the middle panel illustrates five 
temporal states of annotated cell development, the right panel represents the trend trajectory of development, where deeper shades of blue indicate 
earlier developmental time points. (B) Cell density variation of T cell subtypes during the pseudotime. (C) Pseudo-scatter plots showing the expression 
variation and distribution of some specific genes during the pseudotime, color-coded by cell types.
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inflammatory activation of Naive CD4+ T cells in the context of 
the disease (Figure 12D).

3.12 Pseudo-time analysis and transcription 
factor prediction of B cells

We conducted pseudotime trajectory analysis of B cell clusters 
using Monocle2 to delineate the developmental trajectory of B cells, 
as well as to characterize the branching distribution and cell density 
of each cluster. Within these clusters, naïve B cells were situated at the 
initial segment of the trajectory, subsequently differentiating into 
Pre-B cells (Figures 13A,B). As the B cell subsets progressed through 
differentiation, we observed a progressive rise in the expression levels 
of genes associated with the LYZ and S100A families (Figure 13C). 
The SCENIC analysis facilitated the prediction of transcription 
factors (TFs) in B cells, with visualization conducted using R. The 
findings indicated a notable expression of transcription factors in 
Naïve B cells (Figures 14A–C). Particularly, immune-inflammation 
regulators NFKB and JUN exhibited heightened expression primarily 
in Naive B cells within the HFRS group compared to the healthy 
group, elucidating the mechanism of inflammatory activation of B 
subset cells in the context of the disease (Figure 14D).

4 Discussion

In this investigation, we have uncovered significant insights into 
the gene expression disparities associated with HFRS. Initially, 
leveraging extensive RNA sequencing data and TRUST4 analysis, 
we  constructed comprehensive TCR and BCR repertoires. The 
pronounced variability observed in the CDR3 and the divergences in 
amino acid sequences stem from the recombination of Variable (V), 
Diversity (D), and Joining (J) genes in T-cell and B-cell receptors (13). 
This V(D)J gene recombination stands as a hallmark of adaptive 
immunity, empowering the immune system to mount effective 
responses against a myriad of antigens. Prior investigations have 
postulated that the attributes of TCR and BCR repertoires might 
furnish insights into the etiology of autoimmune disorders (14, 15).

Our findings have unearthed notable disparities in the diversity of 
CDR3 amino acid sequences between the HFRS cohort and the HC 
cohort. This further supports our previous hypothesis positing that 
autoimmune maladies may precipitate an upsurge in specific CDR3 
amino acid sequences. Moreover, our analysis has pinpointed 
substantial alterations in the TRBV, TRBJ, IGHV, and IGHJ genes, a 
revelation scarcely documented in previous studies. These findings 
help fill gaps in our understanding of the attributes of TCR and BCR 
repertoires, suggesting that HFRS patients might mount immune 

FIGURE 12

The T cells of TF predicted by SCENIC analysis. (A) RANK plot of T cell subgroups TFs. (B) Dimplot of T cell subgroups main TFs. (C) Heatmap of 
expression levels of selected TFs in T cell subgroups. (D) Dimplot of T cell of TFs in the differential analysis between HFRS and HC.
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responses against commonplace autoantigens. Such discernments 
hold profound implications for the refinement of targeted biologics 
and the diagnostic strategies employed in managing HFRS.

We integrated multiple scRNA-seq datasets using currently 
popular single-cell sequencing techniques (16, 17). Comparative 
analysis revealed notable alterations in the composition of immune 
cell subsets between the HFRS and HC groups. Specifically, the HFRS 
group exhibited a significant decrease in the proportion of CD8+ T 
cells compared to the HC group, while the proportion of CD16 
monocytes was notably elevated in the HFRS group. These findings 
are consistent with previous studies (18, 19). It is speculated that 
targeting CD8+ T cells and CD16+ monocytes could potentially 
alleviate the pathogenesis of HFRS. We examined genes differentially 
expressed in T cells and B cells between the HC and HFRS groups and 
found that their functional and enrichment analyses illustrate 
immune-related pathways. The signaling pathways involved in T cells 
and B cells, including Epstein–Barr virus infection, Spliceosome, 
Intestinal immune network for IgA production, Primary 
immunodeficiency, TCR signaling pathway, Th17 cell differentiation, 
and Th1 and Th2 cell differentiation, may indicate a synergistic effect 
between all immune cells in the peripheral blood of HFRS patients.

To elucidate the related genes involved in disease regulation in T 
and B cells further, we  analyzed the characteristics of gene 
co-expression regulatory modules during the development of HFRS 
using the hdWGCNA method. The results revealed a significant 

decrease in the enrichment of the T cell-M1 module in HFRS patients, 
primarily involving the regulation of ribosome biogenesis and 
immune cell activation. Additionally, the B cell-M2 module was 
predominantly associated with cell proliferation and RNA 
transcriptional regulation, highlighting the crucial roles of T cells and 
B cells in the pathogenesis of HFRS (20, 21). Furthermore, immune 
cell activation heavily relies on the cell’s intrinsic transcriptional 
regulatory state. Therefore, changes in cellular transcriptional levels 
may be both a cause and a consequence of alterations in immune 
function. Consistent with our findings, our study suggests that the 
core genes in the T cell-M1 module are involved in Th1 cell 
transcriptional activation. Therefore, transcriptional regulation that 
promotes immune activation may be a key mechanism leading to 
immune dysfunction in HFRS patients.

Next, we used the “CellChat” software package to investigate the 
specific signaling roles played by each cell group, the intricate cellular 
communication network within complex tissues, and to explore the 
relevance to HFRS by calculating communication probabilities (22). 
Our results reveal a key role in MIF signaling in HFRS. Macrophage 
migration inhibitory factor, a proinflammatory cytokine encoded 
within a functional polymorphic genetic locus, has been identified as a 
multipotent key cytokine secreted by many other cell types involved in 
immune responses and physiological processes (23, 24). Studies have 
shown that high expression levels of MIF are associated with the severity 
of clinical phenotypes in a variety of autoimmune and inflammatory 

FIGURE 13

Characterization of the landscape of B cells and developmental trajectories of B cells in HFRS. (A) The pseudo-time distribution of different B cell 
subtypes, the left panel depicts each cell subtype marked with a different color along the pseudo-temporal trajectory, the middle panel illustrates five 
temporal states of annotated cell development, the right panel represents the trend trajectory of development, where deeper shades of blue indicate 
earlier developmental time points. (B) Cell density variation of B cell subtypes during the pseudotime (top). (C) Pseudo-scatter plots showing the 
expression variation and distribution of some specific genes during the pseudotime, color-coded by cell types.
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diseases such as rheumatoid arthritis, asthma, and systemic sclerosis 
(25). MIF interacts with its receptors CD74/CD44, CXCR2, CXCR4, 
and CXCR7 in an autocrine and paracrine manner (26). The important 
thing to note is that there was no significant change in MIF in our 
results, which could be attributed to the small sample size resulting in 
the lack of noticeable differences. In addition, recent in vivo studies have 
revealed multiple unique properties of CD70, a member of the tumor 
necrosis factor receptor superfamily that interacts with ligand CD27. 
First, CD70 is only transiently expressed on activated T and B 
lymphocytes, mature killer cells, and mature dendritic cells, with limited 
expression on normal non-immune cells. Second, the interaction 
between CD70 and CD27 acts as a costimulatory signal in T and B 
lymphocyte activation and induces lymphocyte proliferation (27, 28). 
Therefore, activation of the CD70-CD27 interaction may play a 
pro-proliferative activity in viral infection. Another player of interest in 
the complex network of intercellular communication is GALECTIN, a 
β-galactosidase binding protein that is present in both the nucleus and 
cytoplasm. GALECTIN is involved in the control of phagocytosis and 
macropinocytosis (29, 30). In summary, our study suggested that CD70 
and GALECTIN may be  potential biomarkers or targets for the 
diagnosis and treatment of HFRS.

In order to further elucidate the developmental stages of T/B cell 
subpopulations, we  conducted pseudotime series analysis using 

Monocle2 software. The trajectory analysis results show that T cells 
develop along a major branch, originating from effector CD8+ T 
cells (GZMH), then differentiating into central memory CD4+ T 
cells, effector CD4+ T cells, effector CD8+ T cells (GNLY), effector 
CD8+ T cells (GZMK), naive CD4+ T cells, type 1 helper T (Th1)-
like cells, and tissue-resident memory CD8+ T cells. Additionally, 
we observed that with cell differentiation, the expression levels of 
EFHD gradually increase. EFHD2 is a crucial regulatory factor for 
T cell cytotoxicity, activating T cell-mediated pro-inflammatory 
effects (31). On the other hand, B cells exhibit a bifurcating 
trajectory, with naive B cells positioned at the starting point of one 
branch, then differentiating into pre-B cells. In the differentiated 
state of B cell subpopulations, we found that the expression levels of 
the S100A gene family gradually increase. S100A proteins belong to 
a group of low molecular weight proteins that play a crucial role in 
the regulation of inflammation-related processes in many diseases 
(32). Moreover, previous studies have indicated a correlation 
between the expression of the S100A gene, increased immunopositive 
cells, and stimulation of the nuclear factor NFKB signaling pathway 
(33). In transcription factor analysis, we  observed a significant 
activation of the NFKB transcription factor, which participates in 
the regulation of immune inflammation, in the diseased state. 
Therefore, Naive CD4+ T cells and Naive B cells are crucial target 

FIGURE 14

The B cells of TF predicted by SCENIC analysis. (A) RANK plot of B cell subgroups TFs. (B) Dimplot of B cell subgroups main TFs. (C) Heatmap of 
expression levels of selected TFs in B cell subgroups. (D) Dotplot of B cell of TFs in the differential analysis between HFRS and HC.
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cells mediating inflammation activation in the progression of the 
disease, a process that relies on the involvement of the NFKB 
transcription factor.

In conclusion, the study delineates the immunological 
characteristics of the TCR and BCR repertoires in HFRS disease. 
We detected abnormal changes in the composition of immune cells 
and the transcriptional profiles of individual clusters in HFRS, 
highlighting the immune infiltrative influence of the peripheral 
immune environment in the diseased state. Furthermore, 
we predicted the roles of cell communication signals at the single-
cell level in the pathogenesis of HFRS, as well as identified the core 
genes responsible for disease development. These findings 
contribute to our understanding of the molecular and cellular basis 
of peripheral immune cells in HFRS. Overall, this study may 
contribute to the future development of diagnostic methods and 
biological therapies for HFRS patients. Additionally, our next steps 
include expanding the sample size of the study and conducting 
supplementary experiments to further validate our current 
research findings.
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