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Exploring the pathogenesis of 
pulmonary vascular disease
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Pulmonary hypertension (PH) is a complex cardiopulmonary disorder impacting 
the lung vasculature, resulting in increased pulmonary vascular resistance that 
leads to right ventricular dysfunction. Pulmonary hypertension comprises of 5 
groups (PH group 1 to 5) where group 1 pulmonary arterial hypertension (PAH), 
results from alterations that directly affect the pulmonary arteries. Although 
PAH has a complex pathophysiology that is not completely understood, it is 
known to be a multifactorial disease that results from a combination of genetic, 
epigenetic and environmental factors, leading to a varied range of symptoms in 
PAH patients. PAH does not have a cure, its incidence and prevalence continue 
to increase every year, resulting in higher morbidity and mortality rates. In 
this review, we discuss the different pathologic mechanisms with a focus on 
epigenetic modifications and their roles in the development and progression 
of PAH. These modifications include DNA methylation, histone modifications, 
and microRNA dysregulation. Understanding these epigenetic modifications will 
improve our understanding of PAH and unveil novel therapeutic targets, thus 
steering research toward innovative treatment strategies.
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Introduction

Pulmonary vascular disease refers to disorders affecting the lung vasculature, including 
the pulmonary artery, pulmonary vein, and pulmonary capillaries, leading to elevated 
pulmonary vascular pressure (i.e., pulmonary hypertension) with subsequent right ventricular 
failure. This chronic cardiopulmonary disorder is grouped into five classes depending on the 
etiology and conditions, as summarized in Figure 1. Pulmonary Arterial Hypertension (PAH) 
represents a subset of PH characterized by precapillary involvement from the hyperproliferation 
of pulmonary smooth muscle cells (PASMCs) and pulmonary artery endothelial cells 
(PAECs) (1).

PAH is defined by a mean pulmonary arterial pressure (mPAP) greater than 20 mmHg 
and a pulmonary capillary wedge pressure (PCWP) equal to or below 15 mmHg (2). It is 
progressive, debilitating and associated with adverse outcomes and increased mortality (3, 4). 
PAH primarily affects the pulmonary capillaries, with pulmonary veins largely unaffected, 
except in cases of pulmonary veno-occlusive disease. According to the Registry to Evaluate 
Early and Long-term Pulmonary Arterial Hypertension Disease Management in PAH 
(REVEAL), the largest US-based registry, the estimated seven-year survival rate is 50% (4). A 
similar trend was also observed in the Pulmonary Hypertension Association Registry (PHAR), 
where intermediate and high-risk PAH patients had 2- and 3-year mortality rates ranging from 
18–20% to 28–55%, respectively (5). Additionally, recent epidemiological studies suggested an 
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increase in PAH, with 5.8 cases per million for PAH incidence and 
PAH prevalence ranging from 47.6 to 54.7 cases per million (2, 6).

PAH pathophysiology involves a complex multifactorial interplay 
of genetic alteration, epigenetic modifications and environmental 
factors. This dynamic interplay results in significant variability in 
disease expression and progression among patients (7). Given the 
diverse etiologies and heterogeneity of PAH, understanding the 
molecular mechanisms underlying the development of PAH becomes 
essential. Recent evidence emphasizes the importance of epigenetics 
in the pathogenesis of PAH (7–9). Epigenetic modifications, including 
DNA methylation, histone modifications, and microRNA 
deregulation, have been identified as contributors to the pathogenesis 
of PAH in humans and animals (10). These epigenetic modifications 
are a critical area of investigation as they may provide more insight 
into the molecular mechanisms underlying PAH and are potential 
targets for treatment.

Pathogenesis of PAH

The progression of pulmonary vascular disease often begins with 
the interplay between an initial pathogenic state and one or more 
triggering stimuli, referred to as the “multiple-hit hypothesis.” Two 
or more hits could comprise a genetic prediction coupled with an 
extra genetic factor (such as a mutation or polymorphism), epigenetic 
modification, comorbidity, stress, or environmental factors 
(Figure 2). When these factors align, a cascade of effects is set in 
motion, initiating vascular constriction, cellular proliferation, and a 

prothrombotic state to varying extents (11, 12). This intricate process 
culminates in PAH and its associated clinical manifestations. In PAH, 
pathological vascular remodeling results in distortions in 
macroscopic and microscopic structures of the pulmonary arterial 
vasculature. Studies indicate that PAH originates from the abnormal 
hyperproliferation of pulmonary vascular cells, resulting in 
neointima formation and narrowing of small distal pulmonary 
arterioles (13, 14). This luminal narrowing elevates pulmonary 
vascular resistance, exerting strain on the right ventricle, leading to 
right heart failure.

Various cell types present in the pulmonary arterial wall 
contribute to PAH vascular remodeling. Three distinct pathological 
vascular remodeling processes have been identified as contributors: 
the muscularization of distal pulmonary arterioles, medial 
hypertrophy, and neointima formation in proximal muscular arteries, 
along with the development of plexiform lesions (13, 15, 16).

The muscularization of distal pulmonary arterioles occurs due to 
the differentiation of progenitor cells into PASMCs, followed by 
subsequent proliferation (17–19). Progenitor cells involved in this 
process include stem cells, fibrocytes, or PAECs. Medial hypertrophy 
and neointima formation also result from differentiating progenitor 
cells into SMCs, followed by migration and replication in the proximal 
muscular arteries (20–22). Following muscularization and 
hypertrophy, there is also abnormal PAEC replication, and the 
formation of irregular endothelial channels results in plexiform 
lesions within the narrowed vessel lumen. The PASMCs and PAECs 
become more resistant to apoptosis, worsening the pathologic vascular 
remodeling and forming plexiform lesions (23–25).

FIGURE 1

The five WHO classifications of pulmonary hypertension (PH), the hemodynamics, and conditions associated with each group.
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Another cell type identified in the pathogenesis of PAH is the 
pulmonary pericyte. Located in perivascular regions, these cells play 
a crucial role in endothelial cell maturation, immune signaling, and 
modulation of vascular tone through their impact on cellular 
remodeling and immune responses (26). The involvement of pericytes 
in the pathogenesis of PAH has garnered significant research interest. 
A 2014 study by Ricard et al. revealed an increase in pericytes within 
the distal pulmonary arteries of human idiopathic PAH (IPAH) 
endothelial cells compared to in vitro control cells. This research 
underscored the significance of transforming growth factor-β in 
promoting the differentiation of pericytes into contractile smooth 
muscle-like cells in distal pulmonary arterioles (27).

Additionally, Yuan et al. demonstrated that PAH pericytes isolated 
from the lungs of PAH patients exhibited defective association with 
endothelial tubes in vitro, leading to smaller vascular networks as well 
as narrower endothelial tubes. This defect was attributed to an 
intrinsic issue in cell motility and polarization, impairing the ability 
of PAH pericytes to migrate toward vascular tubes and resulting in 
fewer endothelial-pericyte interactions. The study demonstrated that 
PAH pericytes are involved in in the loss of small vessels in PAH and 
suggested that therapeutic approaches targeting the restoring Wnt/
PCP activity in these cells could help prevent vessel loss and promote 
small vessel regeneration in patients with this severe condition (28).

Furthermore, pyruvate dehydrogenase kinase 4 (PDK4) gene and 
protein expression were found to be significantly elevated in PAH 
pericytes. This elevation is associated with decreased mitochondrial 
metabolism, increased glycolysis rates, and hyperproliferation. 
Notably, lowering PDK4 levels restored mitochondrial function, 

decreased cell proliferation, and enhanced endothelial-pericyte 
interactions in PAH models (29).

Metabolic dysregulation

Metabolic dysregulation plays a central role in PAH, marked by a 
transition from oxidative phosphorylation to glycolysis, a 
phenomenon termed the “Warburg effect” (30, 31). This shift leads to 
notable metabolic alterations, including increased cytoplasmic 
glycolysis and glutaminolysis, decreased oxidation of fatty acids and 
disrupted biogenesis of mitochondria (32, 33).

In PAH patients, the increase in cytoplasmic glycolysis, observed 
in PAEC and PASMCs, compromises the efficiency of ATP generation 
via the mitochondrial tricarboxylic acid cycle (34–37). Further, PAH 
is characterized by reduced mitochondrial metabolism, evidenced by 
reduced mitochondrial abundance, oxygen consumption and 
mitochondrial DNA in PAEC and PASMC (38–41). This metabolic 
imbalance leads to compromised mitochondrial respiration elevated 
reactive oxygen species production, and a reduction in antioxidants 
like superoxide dismutase 1 and 2, exacerbating the progression of 
PAH (35, 38, 42).

The “Warburg effect” refers to the inhibition of pyruvate 
dehydrogenase, leading to decoupled glycolysis and decreased 
utilization of mitochondrial pyruvate in PAH (41, 43–45). 
Additionally, various cell types in PAH, such as PAECs, PASMCs, 
fibroblasts, macrophages, and myocytes of the right ventricle, exhibits 
reduced mitochondrial glucose oxidation and increased glycolysis 

FIGURE 2

Illustration of the multifactorial mechanisms involved in the pathogenesis of pulmonary arterial hypertension (PAH). The phenotypic expression of PAH 
results from a combination of genetic, epigenetic, and environmental changes, leading to an increase in pulmonary smooth muscle cell hypertrophy 
and apoptosis.
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(46). The altered metabolism in PAH, affecting glucose homeostasis 
and vascular remodeling, is associated with the downregulation of the 
transcription factor PPARγ , a downstream target of BMPRII (47). 
Considering the regulatory role of mitochondrial products on 
transcription factors and epigenetic mechanisms, targeting the 
epigenetic and metabolism pathway holds promise as a strategy that 
could be used for PAH therapy (43, 48).

Although less understood, disturbances in fatty acid metabolism 
are observed in the pulmonary vascular system and right ventricle, 
resulting in PASMC proliferation, right ventricular steatosis, and 
lipotoxicity. This is attributed to triglyceride metabolites and reactive 
oxygen species resulting from elevated fatty acid delivery and 
synthesis, coupled with diminished oxidative mitochondrial capacity 
(49, 50).

Inflammation and immune modulation

Inflammation is a frequently noted phenomenon in PAH (51). 
Both the innate and adaptive immune systems are impacted by 
imbalances in inflammatory and immunological responses, which 
may be influenced by genetic and environmental factors. This anomaly 
is demonstrated by the perivascular infiltration of dendritic cells, mast 
cells, T and B lymphocytes, or macrophages situated in close proximity 
to pulmonary arteries (52).

PAECs and inflammatory cells play crucial roles as both are 
sources and targets of chemokines and cytokines, contributing to 
pulmonary vascular remodeling. Proinflammatory cytokines, 
interleukin 6 and interleukin 1β, directly influence smooth muscle, 
immune cells, and PAEC migration, proliferation, and differentiation 
(51, 53–55). In PAH, autoantibodies and local lymph follicles promote 
inflammation and immunological activation (56, 57). The alterations 
observed in PAECs and PASMCs in PAH patients create a synergistic 
effect, intensifying inflammation. Various cell types, including PAECs, 
PASMCs, myofibroblasts, and fibroblasts, exhibit a significant 
pro-inflammatory state, evident in the increased expression and 
release of inflammatory cell-associated cytokines, chemokines, and 
adhesion molecules, such as E-selectin, vascular cell adhesion 
molecule 1, and intercellular adhesion molecule 1, are seen. 
Deactivation of the Forkhead box O1 pathway and elevated levels of 
interleukins-1 and -6, leukotriene B4, leptin receptors, or tumor 
necrosis factor all contribute to harmful changes in the pulmonary 
vasculature via different signaling pathways (58–63).

Similarly, mutations in BMPRII result in heightened levels of 
proinflammatory cytokine levels, including interleukin 1β and 
interleukin 6 (51, 53, 64). The BMPR II loss of function results in an 
increase in fibroblast growth factor 2, enhanced mitogen-activated 
protein kinase activity, and elevated levels of interleukin 1β, and 
interleukin 6 and a reduction of vasoprotective peptide apelin in 
PAECs (53, 54, 65, 66). These cytokines can induce PAECs to produce 
more fibroblast growth factor 2 (55). They are also essential in 
coordinating proliferative responses in PASMCs and pulmonary 
artery fibroblasts because they secrete fibroblast growth factor 2 and 
interleukin-6 (53, 54, 66). Comparably, as demonstrated by both 
experimental PH models and human PAH, a disrupted signaling 
pathway of BMPR 2 can lead to the improper production of growth 
factors and proinflammatory responses in vascular cells (51, 64, 65, 
67, 68).

Epigenetic mechanisms in PAH

The term “epigenetics” derived from the Greek word “Epi,” 
meaning on or above, refers to factors beyond the genetic code that 
modify DNA sequences, inducing phenotypic changes without 
altering the DNA base pair. Essentially, epigenetic factors influence the 
transmission and expression of traits not encoded in the genetic 
material. In humans, mounting evidence highlights the crucial role of 
epigenetic factors in cellular differentiation, survival, apoptosis, tumor 
suppression, and genomic imprinting. These factors are induced by 
environmental exposures and the complex interplay of gene–
environment interactions, contributing to various disease states (69, 
70). This emphasizes the essential role of epigenetic modifications in 
the formation of various pathological processes, including 
tumorigenesis, metabolic disorders, vasculopathy and PAH (71–75).

PAECs depend on expressing and silencing specific genes to 
maintain homeostasis. Epigenetic modifications can lead to 
alterations in these pathways, resulting in dysregulation of PAECs, 
increased proinflammatory cells, and ultimately, the formation of 
PAH (76). In PAH, these inheritable changes manifest via three 
major epigenetic mechanisms: DNA methylation, histone post-
translational modification, and non-coding RNA regulation 
(Figure 3). These modifications are composed of writers, erasers, 
and readers, directly impact DNA transcription, chromatin packing, 
mRNA, and protein expression, thereby activating or inhibiting 

FIGURE 3

Illustration of some major epigenetic modifications involved in the 
pathogenesis of pulmonary vascular diseases, their epigenetic marks, 
and the outcomes that lead to PAH.
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genes (77, 78). We will explore the major epigenetic modifications 
to understand their roles in the pathophysiology of PAH.

DNA methylation

DNA methylation involves the covalent addition of a methyl 
group (-CH3) to adenosine or cytosine residues in CpG islands. The 
CpG sites are regions in the DNA with specific base pairing, 
commonly in the promoter regions, that can undergo methylation. 
Methylated cytosines act as attachment sites for methylated 
CpG-binding proteins (MeCP) that recognize and bind to methylated 
CpGs (79). Through the methylation of the CpG islands, proteins 
involved in gene expression and repression can be directly recruited. 
CpG methylation also promotes a dense winding of DNA around the 
histone core, resulting in a structural change (80). Methylation and 
demethylation are crucial for the regulation of gene expression, 
cellular differentiation, organ morphogenesis, cell reprogramming, 
X-chromosome inactivation, RNA splicing, transposon silencing, 
and DNA repair (79, 80). DNA methylation is mediated by a group 
of enzymes known as the DNA methyltransferases (DNMT), 
including DNMT 1, DNMT 2, DNMT3A, DNMT3B and DNMT 3 L 
(81, 82). In mammalian cells, DNMT1 is the primary 
methyltransferase implicated in the inheritance of DNA methylation. 
DNA methylation pattern from parents is copied into newly 
produced offspring DNA by DNMT1, which interacts with partly 
methylated DNA during DNA replication (79). DNMT1 exists in an 
inhibitory state, requiring binding with another protein, E3 
ubiquitin-protein ligase (UHRF1). The UHRF1-DNMT complex 
attaches during the S phase of DNA replication (78). On the other 
hand, de novo DNA methylation requires Dnmt3a and Dnmt3b. They 
act directly on the CpG sites, adding methyl groups to form new 
genetic transcription. Methylated CpG islands also interact with 
methyl-CpG binding proteins (MBDs) via histone deacetylation, 
playing an essential role in gene silencing (83). Transcriptional 
repression happens through three mechanisms: (i) nucleosome 
compaction that obscures transcription factor binding sites, (ii) the 
recruitment of repressor proteins, and (iii) interaction with histone 
modification processes (84, 85). Hyper-or hypo-DNA methylation is 
susceptible to alteration by environmental factors. This phenomenon 
is noteworthy as it is the “second hit” required to unmask numerous 
disease conditions by creating a distinct synergistic effect with 
pathologic genetic mutations (86).

Ten eleven translocation

The ten eleven translocation (TET) proteins play a crucial role in 
regulating gene expression by promoting locus-specific reversal of 
DNA methylation. TET methylcytosine dioxygenases oxidizes 
5-methylcytosine (5-mc) to 5-hydroxymethylcytosine (5-hmC), 
5-formylcytosine (5-fC), and 5-carboxycytosine (5-caC). These 
oxidized forms of cytosine enable DNA methylation through both 
active and passive mechanisms (87–89).

Tet-methylcytosine-dioxygenase-2 (TET2), an essential enzyme 
involved in DNA demethylation, has recently been linked to 
pathologic vascular remodeling, inflammation, and clonal 
hematopoiesis. In IPAH and other PAH-related conditions, TET2 

expression was found to be  significantly reduced in peripheral 
blood cells of these patients, making it a potential biomarker for 
PAH (90).

A study by Potus et al. reported an association between germline 
mutations in TET2 and PAH (91). Analyzing a PAH biobank of 2,572 
cases, the study revealed numerous harmful germline and somatic 
variants of TET2. The data showed that 0.39% of PAH cases had TET2 
abnormalities, with 75% being attributed to germline mutations and 
25% to somatic mutations (91). Moreover, 86% of PAH patients 
exhibited significantly downregulated circulating TET2. These 
patients were typically older and responded to vasodilatory therapy.

Furthermore, the study revealed that TET2 depletion led to 
spontaneous development of PAH, as demonstrated by elevated right 
ventricular systolic pressure, increased total pulmonary resistance, 
reduced pulmonary artery acceleration time, adverse remodeling of 
the pulmonary vasculature, and inflammation (91). Further analysis 
of Tet2 hematopoietic conditional knockout (KO) mice and 
heterozygous Tet2+/− mice revealed that even partial Tet2 deletion 
could induce PAH, indicating a gene dose-effect response (91).

D’Addario et al. (92), examined differences in leukocyte expression 
of DNMT and TET and the severity of PAH among various ethnic 
groups. Their findings revealed that PAH patients had higher 
expression levels of DNMTs (3a and 3b) and TETs (2 and 3) compared 
to healthy controls, with notable ethnic variations (92). Specifically, 
the study found that TET2/TET3 expression levels were higher in 
Hispanic and African American patients diagnosed with scleroderma-
associated and IPAH compared to Caucasians, whereas DNMT1 
expression was downregulated in these patients (92). Additionally, the 
study found higher levels of inflammatory cytokines IL6 and CCL5 in 
Caucasian PAH patients compared to Hispanic/African American 
patients. The altered DNA methylation and reduced TET expression 
may be  associated with elevated inflammatory cytokines and 
hematological disorders or malignancies.

DNA methylation in PAH
In PAH, DNA methylation in PAEC influences the regulation and 

function of endothelium-specific expression, mediated by VEGF 
signaling pathways (93–95). The eNOS enzyme is crucial for 
producing nitric oxide within the vascular endothelium cells, which 
is essential for facilitating vasodilation and preserving endothelial 
homeostasis (95). Methylation of the DNA at the eNOS proximal 
promoter can impair its functional activity, affecting vascular tone and 
angiogenesis (93).

Research showed that fawn-hooded rats exhibited heightened 
levels of DNMT1 and DNMT3B, along with hypermethylation of the 
CpG island of the superoxide dismutase (SOD)2 promoter, in both 
lung tissue and isolated PASMCs (8). This silencing of SOD2 
transcription activates hypoxia-inducible factor (HIF)1, leading to 
hyperproliferation, apoptosis resistance, and the subsequent 
spontaneous development of PAH (8). Notably, the DNA 
methyltransferase inhibitor 5-aza-2′-deoxycytidine selectively 
reversed DNA methylation, restoring SOD2 expression and the ratio 
of proliferation to apoptosis in the lungs of fawn-hooded rats (8).

Yang et al. found that long-term high-altitude hypoxia in fetal 
lambs led to reduced DNA methylation levels and, subsequently, a loss 
of the cyclin-dependent kinase inhibitor p21  in the pulmonary 
vasculature. These changes are likely responsible for the pulmonary 
arterial remodeling.
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and PH was observed in newborn lambs (96). Furthermore, DNA 
methylation is also implicated in activating or inhibiting inflammatory 
pathways associated with PAH (97–99).

Histone post-translational modification

Since the first histone methyltransferase was discovered in the 
2000s, histone post-translational modification has been a great field 
of research interest in vascular biology (100–103). The nucleosome 
core particle of chromatin is made up of a histone protein octamer 
with 146 base pairs of DNA organized into a superhelix around it. The 
nucleosome is formed by two sets of histone octamers composed of 
H2A, H2B, H3, and H4 proteins, and is further condensed by linker 
DNA (104, 105). Histones are post-translationally modified in the 
histone tail, which consists of 10–30 amino acids at the N-terminal 
domain. Post-translational modification modulates chromatin folding 
and regulatory protein binding within the nucleosome to produce 
histone variants that modulate the transcription and expression of 
genes (106). Various histone post-translational modifications involve 
histone embryonic vascular development, remodeling, and various 
vascular disease pathologies (107).

The primary histone modifications of note include methylation 
and acetylation, processes where small organic molecules are added 
to the histone tail through chemical mechanisms. Other such 
modifications include phosphorylation, deamination, and 
palmitoylation. The second group of histone modifications involves 
the addition of larger organic molecules to the histone tail, including 
ubiquitylation, SUMOylation, biotinylation, glycosylation, and 
ADP-ribosylation (108, 109).

Histone methylation

Histone methylation is a reversible post-translational modification 
involving two enzymes: histone methyltransferase (HMTs) as the 
writer and histone demethylases (HDMTs) as the eraser. Histone 
methylation involves the addition of -CH3 groups to the amino acids 
at the histone tail. This process tightly modulates gene expression 
depending on how many methyl groups and/or which amino acid is 
attached. The HMTs are classified into two groups: protein lysine 
methyltransferases (PKMTs) and protein arginine methyltransferases 
(PRMTs) (110, 111). Multiple methyl groups may be added by this 
post-translational alteration, leading to monomethylation (me1), 
dimethylation (me2), and trimethylation (me3). The most common 
epigenetic modification observed in histone methylation is gene 
silencing via polycomb group proteins (PcG) (112). These proteins 
regulate cellular differentiation by inhibiting inappropriate cellular 
activation and proliferation. In mammals, PcG proteins organize into 
two main complexes: polycomb-repressive complex 1 (PRC1) and 2 
(PRC2). The PRC1 is made up of the BMI1, RING1A/B, CBX, and 
PHC subunits (113). PRC1 functions by binding to nucleosomes, 
resulting in chromatin compaction (114). Conversely, PRC2 is 
composed of EZH2 or EZH1, EED, SUZ12, and RbAp46 (113–115). 
EZH2 is extensively researched as the catalytic subunit of PRC2, 
housing the SET domain crucial for tri-methylation of lysine 27 on 
histone H3 (H3K27me3), resulting in transcriptional inhibition (113). 
PcG-dependent gene silencing involves a synergist effect between 

PRC1 and PRC2 complexes. Once the PRC2 complex forms 
H3K27me3, it recruits PRC1 by binding the chromodomain of the 
PHC subunits (116). Chromodomains found within the HP1 proteins 
recognize di-and tri-methylated histones (H3K9), which results in the 
recruitment of heterochromatin protein 1 (HP1) to sites of repressed 
chromatin. Similarly, CBX proteins, containing a sequence structurally 
similar to the N-terminal of the chromodomain, are recruited to di-or 
tri-methylated H3K27, forming a multi-protein complex that regulates 
genes associated with development and differentiation. The CDY1 
gene encodes a protein that includes both a chromodomain and a 
histone acetyltransferase catalytic domain that binds to H3K9me 
resulting in gene repression (112). Another chromodomain, CHD1, 
has been shown to recognize H3K4me, resulting in gene transcription. 
Independent of H3K27me3, EZH2, and other PRC2 subunits have 
been identified in the cytoplasm, where they modulate actin 
polymerization and cell proliferation of T lymphocytes and 
fibroblasts (117).

Bromodomains and chromodomains are protein domains capable 
of identifying and attaching to modified amino acids on histone tails. 
The bromodomain and extra-terminal (BET) domain family are 
known as epigenetic readers and have been linked to numerous 
diseases, as evidenced by recent studies (118–122). This family 
includes BRD2, BRD3, BRD4, and testis-specific bromodomain 
proteins, all interacting with other proteins and acetylated histone tails 
through their tandem bromodomains 1 and 2. BET proteins regulate 
the transcription of genes involved in various biological processes 
such as cell division, apoptosis, and inflammation (123). Among these, 
BRD4 is extensively studied in current research on PAH.

BRD4 modifies the chromatin structure and facilitates the 
transcriptional activation of target genes by acting as a scaffold for 
transcription factors at promoters and super-enhancers (124). It 
stimulates proinflammatory endothelium genes such as IL-6 
(interleukin-6), tumor necrosis factor-α, and monocyte 
chemoattractant protein-1 and is also linked to vascular remodeling 
(123, 125). This activation is further stimulated through a feedback 
loop (126). These proinflammatory cytokines have been shown to 
damage DNA and found to be increased in PAH (127, 128).

Furthermore, Meloche et al. found that, in comparison to controls, 
BRD4 was upregulated in the lungs, distal pulmonary arteries, and 
PASMCs of patients with PAH, indicating that BRD4 is dependent on 
miR-204 (124). Three key oncogenes overexpressed in PAH were 
reduced in expression by pharmacological suppression of BRD4 using 
JQ1 or siBRD4: nuclear factor of activated T cells, B-cell lymphoma 2, 
and survivin. Inhibiting this oncogenic signature resulted in a BRD4-
dependent reduction in PAH-PASMC proliferation accompanied by 
an elevation in apoptosis, suggesting that BRD4 overexpression is 
pathologically associated with PAH and may be  a target for 
therapy (124).

Therefore, through regulating gene expression, BRD4 is an 
essential regulator of the equilibrium between proliferation and 
apoptosis and is involved in post-DNA damage events, making it a 
potential target for the development of PAH therapy (129).

Histone methylation in PAH
A study by Yang et al. showed that inhibition of histone lysine 

methyltransferase G9a (HMT G9a), an enzyme necessary to generate 
H3K9me2/histoneH3 dimethylation at position lysine-9, by HMT 
G9a inhibitor BIX-01294 resulted in PDGF-induced proliferation, 
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migration, and contractility in ovine pulmonary arterial smooth 
muscle cells (117). Similarly, another study showed that EZH2 
overexpression was correlated with an increase in right ventricular 
pressure and hypertrophy in a hypoxia-induced mouse model (130). 
These studies highlight the possible epigenetic mechanisms of the 
development of PAH through dysregulation of histone methylation. 
This creates an area for advancement in the treatment of PAH by 
targeting protein methyltransferases or demethylases.

Histone acetylation

An additional post-translational modification of histones is the 
histone acetylation. It involves adding negatively charged cofactor 
acetyl groups to activate gene expression (131). Histone acetylation is 
catalyzed by histone acetyltransferase (HAT) enzymes, which transfer 
the acetyl groups to the positively charged lysine residues of the 
histone tail. The neutralization of the lysine residue weakens charge-
dependent interactions between the histone and DNA, allowing for 
transcription. There are two types of HATs: Type A located in the 
nucleus and Type B located in the cytoplasm. They work together to 
acetylate histones for transcriptional activation and replication, 
respectively, before the chromatin is assembled (132). The most active 
HATs in mammals include HIV Tat interactive 60-kDa protein 
(Tip60), p300, CREB binding protein associated factor (PCAF), cAMP 
response-element binding protein (CREB), and CREB binding protein 
(CBP) (133). HATs like histone acetyltransferase 7 (KAT7) have been 
identified to regulate endothelial function in zebrafish embryos by 
initiating the transcription of vascular endothelial growth factors 
(VEGFs) (134).

Conversely, histone deacetylation uses histone deacetylases, or 
HDACs, to control the amount of histone acetylation. The four 
families of histone deacetylases (HDACs) are responsible for removing 
acetyl groups from histone proteins. (i) The nucleus contains class 
I HDACs (HDACs 1, 2, 3, and 8), (ii) The cytoplasm and nucleus 
express class II HDACs (HDACs 4, 5, 6, 7, 9, and 10), (iii) The nucleus 
contains class III HDACs (Sirtuins 1–7), and (iv) both the cytoplasm 
and the nucleus express class IV HDACs (HDAC 11) (135). The 
sirtuins (SIRT) regulate a number of processes, such as aging, stress 
damage, metabolism, transcription, and cell division (136). Overall, 
HDACs silence DNA transcription by tightening chromatin wrapping.

Histone acetylation in PAH
Abnormal histone acetylation and deacetylation, crucial processes 

in the regulation of gene expression, have been identified in 
pulmonary hypertension. Zhao et al. demonstrated that higher levels 
of HDAC1 and HDAC5 were observed in the lungs of IPAH patients 
(7). Similarly, isolated fibroblasts showed an increased expression of 
class I  HDACs (HDAC1, HDAC2, and HDAC3) from the distal 
pulmonary arteries of chronically hypoxic hypertensive calves (137). 
In line with these, another study shows increased H3 and H4 
acetylation at the proximal promoter region of eNOS, resulting in 
elevated levels of eNOS in PAECs isolated from persistent PH of the 
newborn (PPHN) rats, highlighting the significant role of epigenetic 
modification in the pathogenesis of PPHN (138).

Hypoxia, a well-recognized trigger for lung vascular remodeling 
as well as endothelial dysfunction, is crucial for the development of 
PAH (139–144). The hypoxia signaling pathway operates through 

hypoxia-inducible factors (HIFs), which stabilize in cells under low 
oxygen conditions and subsequently activate hypoxia-responsive 
elements (HRE) in the promoters of target genes (145). Humans 
express three HIF isoforms: HIF-1α, HIF-2α, and HIF-3α, each 
exhibiting distinct cell-specific functions (146). Under normoxic 
conditions, HIF-1α and HIF-2α are quickly degraded, however, low 
oxygen levels prevent their degradation, which plays a role in the onset 
of PAH (147, 148). HIF-1α plays a pivotal role in the body’s response 
to low oxygen levels by stimulating the transcription of genes involved 
in angiogenesis, vasculogenesis, apoptosis, and energy metabolism 
(149–151). Important targets of HIF-1α include vascular endothelial 
growth factors (VEGFs), which interact with and activate receptors 
that promote angiogenesis, thereby increasing vascular permeability 
(151, 152). Conversely, HIF-2α uniquely promotes endothelial-to-
mesenchymal transition (EnMT), aiding in pulmonary vascular 
remodeling (148). HIF-1α expression increases rapidly with hypoxia, 
while HIF-2α accumulates more gradually (147).

HIF transcription factors impact inflammation and epigenetics by 
activating NF-κB signaling through prolyl hydroxylases that regulate 
HIF activity and degradation (146). Hypoxia and HIFs activate 
significant functional shifts in ECs during PH, including metabolic 
reprogramming, dysfunction of endothelial colony-forming cells, 
compromised angiogenesis, and alterations in estrogen metabolism 
facilitated by HIF-1α (35, 65, 153, 154). Recent findings highlight 
HIF-2α as a significant driver of lung vascular remodeling and PH, 
promoting EnMT, where ECs transform into myofibroblast/SMC-like 
cells (155–157). EnMT promotes remodeling of the lung vascular and 
plays a role in the development of dysfunctional endothelial 
phenotypes in PAH (158, 159). Importantly, the regulation of EnMT 
involves epigenetic modifications of numerous target genes. Hypoxia 
and HIFs trigger a range of epigenetic alterations, including histone 
acetylation and methylation (7, 160).

Another study by Paulin et al. demonstrated that a decrease in 
SIRT3, a mitochondrial deacetylase, was linked to the suppression of 
mitochondrial function, prevention of apoptosis, and activation of 
several transcription factors related to pulmonary hypertension. 
HIF1α, signal transducer and activator of transcription 3 (STAT3), 
and nuclear factor of activated T-cells (NFAT)c2 have been identified 
(48, 106).

Given these findings, several compounds targeting these histone 
acetylation and deacetylation mechanisms have been explored as 
possible therapeutic options. In 2010, Cho et  al. evaluated the 
therapeutic effects of valproic acid (VPA), a commonly used mood 
stabilizer with HDAC class 1 inhibitor activity, on rat models with 
monocrotaline (MCT)-induced PAH and right ventricular 
hypertrophy (RVH). The authors found that VPA administration 
effectively inhibited MCT-induced RVH and improved RV systolic 
function (161). Similarly, in 2012, Zhao et  al. mitigated the 
development and pulmonary vascular remodeling of hypoxia-induced 
pulmonary hypertension using both VPA and suberoylanilide 
hydroxamic acid (vorinostat), an inhibitor of class I, II, and IV HDAC 
(7, 162).

Conversely, a study by Boggard et al. using a different broad-
spectrum HDAC inhibitor, trichostatin A (TSA), did not prevent RVH 
but resulted in increased myocardial cell death, RV dysfunction, and 
fibrosis in rat models (163). This discrepancy in findings about the 
effects of broad-spectrum HDAC inhibitors is likely due to side effects 
from other pharmacological activities. This led to further evaluation 
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of selective HDAC inhibitors as a better therapeutic option for PAH 
treatment to mitigate side effects and limit the target of additional 
genes. So far, Kim et  al. showed that selective HDAC class IIa 
inhibition augmented MEF2 activity, a factor that regulated the 
expression of various transcriptional targets, including microRNAs 
424 and 503, connexins 37 and 40, and Krűppel Like Factors 2 and 4, 
involved in pulmonary vascular homeostasis, and protected against 
RV dilatation (9). Relatedly, Cavasin et  al. demonstrated that a 
benzamide HDAC inhibitor, MGCD0103, a selective inhibitor of class 
I  HDACs 1, 2, and 3, reduced pulmonary arterial pressure and 
vascular remodeling more dramatically than tadalafil (164). Abnormal 
histone acetylation and deacetylation have been identified in PH. Zhao 
et  al. illustrated that higher levels of HDAC1 and HDAC5 were 
observed in the lungs of IPAH patients (7). Similarly, isolated 
fibroblasts showed an elevated expression of class I HDACs (HDAC1, 
HDAC2, and HDAC3) from distal pulmonary arteries of chronically 
hypoxic hypertensive calves (137).

Ubiquitination and proteasome activity

The Ubiquitin Proteasome System (UPS) is essential for several 
cellular processes, such as protein transport and breakdown, 
transcription control, and DNA repair. All tissues of eukaryotic 
organisms have the 76-amino acid protein known as ubiquitin (165). 
The ubiquitination process involves adding a C-terminal group of 
ubiquitin to a lysine residue of the substrate, for example, the histone 
tail, resulting in epigenetic modification. Ubiquitination is a multistep 
ATP-dependent process mediated by three essential enzymes, E1, E2, 
and E3 enzymes, facilitating the attachment of ubiquitin monomers 
or chains to proteins (166). Similarly, the proteasome system, which 
is made up of the 20S core proteasome (CP) and the 19S regulatory 
particle (RP), is part of this process. The RP governs substrate protein 
binding and ubiquitination into the CP through its primary structure 
containing ATPase and its cap structure without ATPase. The process 
of ubiquitination and de-ubiquitination is reversible and highly 
controlled, as dysregulation in this complex has been linked to 
numerous medical conditions (167).

Ubiquitin proteasome system in PAH
Under stress conditions, like oxidative stress, these proteasomes 

can be mobilized to increase ubiquitination rates to remove damaged 
proteins (168). Numerous studies highlight the close association 
between the UPS and the initiation and progression of PAH. While 
the mechanism is not fully understood, research indicates that several 
E3 ubiquitin ligases, including SMURF1, NEDD4, and SIAH2, are 
implicated in PAH development in patients or experimental models, 
particularly related to altered protein ubiquitination. In HPAH with 
BMPRII gene mutations, SMAD ubiquitination regulator 1 
(SMURF1), a member of the HECT family of E3 ubiquitin ligases, 
targets BMPR, resulting in degradation and downregulation of the 
downstream cascade (169). This reduction in BMP levels induces 
endothelial cell apoptosis and SMC proliferation (170, 171). 
Additionally, pulmonary vascular cells from PAH patients and animal 
models have elevated levels of SMURF1, suggesting a role of 
SMURF1 in the pathogenesis of PAH (172).

Furthermore, NEDD4-1, a PTEN E3 ligase involved in cell 
migration and tumorigenesis, was found to have increased levels in 

MCT-induced PAH rat models (173, 174). These increased levels activate 
the PI3K/AKT signaling pathway, which is involved in the proliferation 
of human smooth muscle cells and vascular remodeling (173). Research 
on the UPS has been crucial in developing potential PAH treatment 
targets. Bortezomib (BTZ), an FDA-approved proteasome inhibitor, 
demonstrated efficacy in reversing pulmonary vascular remodeling in 
PAH rats (175). Unfortunately, its use is limited as it causes global 
apoptosis in both right and left ventricles in the PAH rat model, limiting 
its clinical use. Carfilzomib (CFZ), another proteasome inhibitor, was 
effective in treating PAH in human pulmonary vascular cells when used 
in combination with vasodilators. It effectively reversed pulmonary 
vascular remodeling and induced apoptosis (176). However, the reports 
are mixed, as other studies suggest CFZ may induce PAH in cancer 
patients. Even though none of these are being used in clinical settings, 
they do point to a possible target for PAH treatment.

Non-coding RNAs

Another layer of epigenetic modifications is through non-coding 
RNAs (ncRNAs). They are typically classified into two groups based 
on size: small ncRNAs (<200 nucleotides) and long non-coding RNAs 
(lncRNAs) (>200 nucleotides). The small ncRNAs are made up of 
microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), and small-
interfering RNAs (siRNAs). Conversely, LncRNAs, consist of small 
nucleolar RNAs (snRNAs) and natural antisense transcripts. LncRNAs 
are gene transcripts that directly bind to non-coding regions of 
mRNAs to modify the expression of those genes (177).

MicroRNAs

miRNAs are small non-coding genetic transcripts with ~25 base 
sequence that regulate gene expression. Numerous miRNA genes have 
been found in eukaryotic organisms, making them one of the largest 
gene families (178). The regulatory network of miRNA activity is 
intricate, given that an individual miRNA can bind to and control the 
expression of numerous genes. Conversely, multiple miRNAs can bind 
to and regulate a single mRNA target (179). The RNA polymerase III 
(pol III) transcribes pri-miRNA, a long primary transcript from the 
nucleus to pre-miRNA. The pre-mRNA maturation occurs through a 
sequential process. The pre-mRNA, which is several hundred base 
pairs long, is processed by the RNAse III endonuclease Drosha into a 
smaller fragment of 60–70 nucleotides, which is then transported to 
the cytoplasm (180, 181). The pre-miRNA is then processed by 
another RNA endonuclease, Dicer, to produce a mature double-
stranded miRNA. The mature miRNA is separated and incorporated 
into a ribonucleoprotein complex known as the RNA-induced 
silencing complex (RISC) (182). The incorporated miRNA plays a 
crucial regulatory role in various cellular processes, such as 
hematopoietic cell differentiation, cell proliferation, apoptosis, and 
organ development (179, 180). miRNAs have been shown to regulate 
critical signaling pathways involved in the proliferation and migration 
of both PASMCs and PAECs necessary in the pathogenesis of PAH.

MicroRNAs in PAH
Epigenetic modifications of miRNAs have been implicated in 

several key signaling pathways associated with PAH. These pathways 
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include BMPRII/TGβ, the H1F-signaling axis, the PPAR-γ signaling 
axis, IL-6/STAT3 and others. The dysregulation of the BMPRII/ALK1 
signaling pathway is implicated in the development of HPAH and 
IPAH. Numerous signaling proteins in the BMP/SMAD pathway are 
influenced by different miRNAs. For example, miR-140-5p targets the 
SMURF1 protein, activating of the BMP/SMAD signaling and 
promoting migration and proliferation of PASMCs in vitro (172). 
Similarly, miR-23a promotes hypoxia in PASMCs by suppressing the 
expression of BMPRII, which causes PASMC hyperproliferation and 
formation (172, 183).

miR-98-5p targets ALK1, a transmembrane serine/threonine 
receptor kinase that suppresses BMPRII. In hypoxia, ALK1 
suppression by miR-98-5p led to the downregulation of BMPR2 
signaling in PASMC (184). miR-17-5p and miR-20a also repress 
BMPRII expression, influencing its regulation in the IL-6/STAT3 
signaling axis, an important inflammatory pathway implicated in PAH 
pathology (184, 185).

Several miRNAs target tyrosine kinase receptors are the target of, 
which activate downstream cascades and affect cell survival and 
proliferation. MicroRNA analysis revealed microRNA-193-3p and 3p 
and miRNA-328 were significantly downregulated in the lung tissue 
of patients and rodents with PH, leading to posttranslational 
inhibition of Type 1 insulin-like growth factor receptor (IGF1R) 
(186, 187).

Additionally, hypoxia is a prominent inducer of proliferative 
vasculopathy in animal models of PH (188, 189). Cellular oxygen 
sensing is complex and tissue-specific, with hypoxia-inducible 
transcription factors, HIF-1α and HIF-2α, playing crucial roles in 
pulmonary vascular cells. Chronic hypoxia stabilizes HIF-1α, leading 
to upregulation of various miRNAs including miR-1, miR-9, 
miR-17/92, miR-21, miR-27a, miR-27b, miR-138, miR-190, 
miR-199-5p, miR-210, miR-322, miR-361-5p and miR-23a (183, 185, 
190–200). These miRNAs influence multiple signaling pathways, 
including transmembrane ion channel function and BMP/SMAD 
signaling. HIF-1α also regulates various metabolic genes. Hence, the 
upregulation of HIF-1α induces metabolic shifts favoring aerobic 
glycolysis in pulmonary vascular cells (201). The significance of 
endothelial HIF-2α subunits has also been demonstrated in animal 
PH models. Similarly, miRNA upregulation of Hif2a increasing the 
expression of arginases, including endothelial Arg 1, resulting in the 
dysregulation of the eNOS pathway (202, 203).

The PPAR-γ signaling axis is another miRNA target for epigenetic 
modification. Many miRNAs target PPARγ, and vice versa. Hypoxia 
stimulates the downregulation of PPARγ in vitro. Conversely, research 
indicates that exposure to hypoxia leads to the elevation of miR-27a, 
promoting increased proliferation of PAEC, increased expression of 
endothelin-1 (ET-1), and a reduction in PPARγ expression. These 
outcomes were counteracted through the inhibition of miR-27a (193). 
Similarly, hypoxia upregulates the miR-130/301 family, targets PPARγ 
resulting in the modulation of STAT3-miR-204 axis and an increase 
in SMC proliferation (204).

Vascular remodeling and PASMC enlargement are further 
characteristics of PAH. Voltage-dependent potassium channels: 
KCNA5 is also a target of miRNAs. Increased expression of miR-190 
represses KCNQ5, resulting in PASMC cell hypertrophy and reducing 
its activity and expression (190, 196).

miRNA-138, a significant microRNA, plays a crucial role in the 
proliferation, differentiation, and apoptosis of PASMCs, signifying its 

contribution to the advancement of PAH. miRNA-138 specifically 
targets the potassium channel subfamily K member 3 (TASK-1) and 
is expressed in PASMCs, resulting in its downregulation under 
hypoxic conditions in PAH.

Long non-coding RNAs

Like miRNA, lncRNAs are processed by the RNA processing 
apparatus after being transcribed by RNA polymerase II or III. They 
may be multiexonic, 5′-capped, or polyadenylated. LncRNAs are in 
the nucleus or cytoplasm, where they regulate transcriptional and 
posttranscriptional gene expression (205). In the cytoplasm, lncRNAs 
compete with mRNAs for miRNA binding and hence reduce the 
mRNA-destabilizing potential of miRNAs (206). On the other hand, 
inside the nucleus, lncRNAs regulate gene expression at the epigenetic 
level by modulating transcription (205).

Long non-coding RNAs in PAH
Similar to miRNAs, hypoxic stress upregulates or downregulates 

the expression of lncRNAs. Among the lncRNAs expressed in PAECs 
in PAH, metastasis-associated lung adenocarcinoma transcript 1 
(MALAT1) plays a crucial role by modulating the inflammatory 
cytokines IL-6 and TNF-a (207). Studies demonstrate that hypoxia 
increases MALAT1, which controls the phenotypic transition and 
promotes PAEC proliferation in PAH (208).

Hypoxia also stimulates the expression of lncRNA H19. It 
enhances the proliferation of pulmonary artery smooth muscle cells 
via AT1R by sequestering let-7b in monocrotaline-induced PH rat 
models (209). Similarly, hypoxia triggers the expression of urothelial 
carcinoma-associated protein 1 (UCA1), which acts to bind ING5 
away from hnRNP I. This leads to increased proliferation of PASMCs 
and resistance to apoptosis (210).

Hypoxia upregulates the expression of PAXIP1-AS1, which 
interferes with the focal adhesion, affecting multiple IPAH-specific 
transcriptional genes (211).

Finally, hypoxia triggers the upregulation of the long non-coding 
RNA (lncRNA) HOXA-AS3, facilitating the proliferation and 
migration of PASMC. HOXA-AS3 stimulates the expression of 
HoxA3, resulting in heightened levels of cyclins A, E, and D, as well as 
PDE5A, achieved by the downregulation of miR-675-3p (212).

Hypoxia causes the downregulation of several additional 
lncRNAs. For example, MEG3 is markedly downregulated in PAH 
patients’ lungs and pulmonary arteries. Decreased expression of 
MEG3 leads to increased cell cycle proliferation from the G0/G1 phase 
to the G2/M + S phase and PASMC proliferation. Notably, this 
implicates p53 in MEG3-induced smooth muscle cell proliferation 
(213, 214). Under hypoxic conditions, MEG3 expression is suppressed 
due to the activation of Cyclin A, PCNA, and Cyclin E, prompting the 
transition of PASMCs from the G0/G1 phase to the G2/M + S phase 
through multiple pathways (214). The inhibition of MEG3 leads to the 
increased expression of miR-21 and the inhibition of PTEN expression 
(215, 216).

Similarly, lncRNA GAS5 is downregulated in hypoxia-induced 
PH PASMCs in vitro. The study showed that miR-23b-3p directly 
interacted with Gas5 by targeting its miRNA-binding site, modulating 
KCNK3 expression. The Gas5/miR-23b-3p/KCNK3 axis provides 
further insight into hypoxia-induced PASMC proliferation and 
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migration providing potential avenues for future PH treatment 
(217, 218).

Estrogen signaling and epigenetics

The impact of sex disparities on PAH is substantial, leading to 
influencing its prevalence, pathogenesis and treatment responses. 
Strikingly, there is epidemiological variation, with a 4:1 ratio of 
females to males, generating curiosity in how estrogen and its 
metabolites function in the pathogenesis of PAH. Therefore, exploring 
the therapeutic implications of estrogen inhibitors has gained 
attention (219–222).

Through estrogen receptors, estrogen signaling decreases 
BMPRII expression and increases PASMC proliferation in 
experimental models (223). Although females exhibit a higher 
incidence of PAH, paradoxically, a worse prognosis is associated 
with males. This discrepancy is likely attributed to the 
advantageous effects of estrogen on the right ventricle, commonly 
known as the “estrogen paradox,” thus making it more challenging 
to use drugs that target estrogen signaling therapeutically 
(224–226).

Estrogen is one of the sex hormones that directly affects the 
mitochondria’s functional dynamics in tissues related to PAH 
development. Estrogen-receptor-equipped mitochondria contribute 
to PAH by promoting nuclear respiratory factor-1 (NRF-1) 
transcription, which increases the amount of mitochondrial 
transcriptional factors (TFAM) (227). These mitochondrial processes 
are essential to the pathogenic mechanisms of PAH, since they affect 
vascular function and cause pulmonary vasoconstriction (228, 229). 
The role of mitochondria in vascular cells is, at least partially, 
responsible for the proliferative and antiapoptotic features seen in 
PAH (229).

Moreover, mitochondria possess the capacity to control the 
dispersion of reactive oxygen species originating from the 
mitochondria, impacting their distribution to the cytoplasm and 
plasma membrane. This, in turn, stimulates redox-sensitive targets like 
Hif-1 or the NFAT signaling pathway, ultimately resulting in the 
contraction of pulmonary arterial smooth muscle cells (229).

The transmission of mitochondrial DNA to offspring suggests that 
female mitochondria are responsive to the changes in their 
environment that are subsequently inherited by the next 
generation (230).

Emerging evidence indicates that estrogen may influence the 
epigenetic modifications involved in the pathophysiology of PAH 
through mechanisms involving miRNA and lncRNA. Research 
indicates that estradiol engages in various genomic and non-genomic 
processes via estrogen receptor alpha (ERα) and beta (ERβ) (231). 
ERα binds to regulatory regions of target genes, recruiting 
co-regulatory proteins, and inducing chromatin modifications that 
can enhance or suppress gene transcription. This enables estrogen to 
regulate the expression of various miRNAs implicated in PAH (232). 
In a study by Wallace et  al., the researchers examined whether 
miRNAs expressed in PASMCs are affected by estrogens and play a 
role in PASMC proliferation. They found that estradiol 
downregulates the expression of miR-96, which regulates the 
5-hydroxytryptamine 1B (5-HT1B) receptor, a mediator of 
pulmonary artery SMCs. Decreased miR-96 expression was observed 

in PASMCs of female BMPR II mutant mice and female PAH 
patients, leading to increased 5-HT1B expression and 5-HT-driven 
proliferation (233).

Additionally, a study by Mair et  al. explored the role of sex, 
estrogen, and BMPR-II protein mutation in PAH. The study 
demonstrated that estrogen-driven suppression of mRNA, BMPR-II, 
and Smad1 signaling in PASMCs of non-PAH females contributed to 
a pro-proliferative phenotype in hPASMCs, potentially predisposing 
women to PAH. Furthermore, small interfering RNA (siRNAs) 
silencing of Smad1 revealed proliferative responses to BMP4 in male 
PASMCs, with estrogen decreasing messenger RNA and protein 
expression of Id genes, which are involved in BMPR-II signaling (234). 
While the role of estrogen in PAH pathophysiology is well-
documented, the extent to which estrogen influences PAH and the 
right ventricle remains unclear.

DNA damage and repair in PAH epigenetic
Recent studies have emphasized the crucial role of DNA damage 

and repair mechanisms in the epigenetic regulation of PAH. These 
processes can trigger epigenetic changes linked to DNA repair and 
DNA damage response (DDR) activation. DNA damage, including 
single-stranded DNA breaks (SSBs), modified bases, double-stranded 
DNA breaks (DSBs), and inter-and intra-strand crosslinks, can 
influence the epigenetics of PAH (235). Continuous exposure to 
cellular metabolites and environmental agents can compromise the 
integrity of the DNA structure (236). For instance, the DNA damage 
response can alter histone modifications and DNA methylation 
patterns, impacting gene expression profiles involved in vascular 
remodeling and inflammation. Epigenetic modifications, such as 
hypermethylation of specific genes, have been implicated in the 
pathogenesis of PAH, contributing to the proliferative and anti-
apoptotic phenotype of PASMCs (237). Furthermore, in most 
plexiform lesions microdissected from idiopathic PAH lung tissues, 
PAECs were monoclonal, indicating each lesion originated from the 
proliferation of a single EC (238, 239). Similar findings were observed 
in patients with PH associated with appetite suppressant, whereas 
lesions in patients with congenital heart disease-associated PAH 
(CHD-PAH) or connective tissue disease-associated PAH (CTD-
PAH) exhibited polyclonality (238, 239). Subsequently, a study 
confirmed microsatellite instability within the PAECs of plexiform 
lesions in PAH patients, supporting this hypothesis (240). Patients 
with PAH showed microsatellite instabilities in genes such as 
transforming growth factor-β receptor II (TGFBR2), and BCL-2 
associated X, apoptosis regulator (BAX) genes, which play essential 
roles in controlling cell proliferation and apoptosis.

A study by Perez et  al., using whole-exome sequencing, 
identified genes implicated in IPAH and revealed that 
topoisomerase-II binding protein 1 (TOPBP1), which is crucial for 
DNA damage response and replication, was downregulated in 
pulmonary microvascular endothelial cells (PMVECs) from IPAH 
patients, resulting in increased DNA damage and apoptosis (241). 
The most direct link between environmental agents and the 
development of PAH comes from studies on pulmonary veno-
occlusive disease (PVOD), a rare and severe form of PH. Perros 
et al. demonstrated a significantly higher annual incidence of PVOD 
in cancer patients treated with mitomycin-C (MMC) compared to 
the general population (242). In vivo experiments on rats treated 
with MMC showed significant pulmonary vascular resistance, right 
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ventricular hypertrophy, vascular remodeling, and EC proliferation 
within the capillary bed, accompanied by a reduction in 
GCN2 (242).

Research has also indicated an increased susceptibility of PAH 
cells to mutagens such as etoposide, bleomycin, and hydroxyurea (241, 
243). Even though chromosomal abnormalities are prevalent in PAH 
PAECs, examination of endothelial colony-forming cells showed that 
their genomes remained stable through up to 15 passages. This 
suggests there may be  no significant defects in DNA repair 
mechanisms and hints at potential enhancements in PAH cells (244). 
Most studies on DNA repair have focused on PASMCs, with limited 
information on PAECs.

The peroxisome proliferator-activated receptor γ (PPAR-γ), a 
nuclear receptor responsible for regulating fatty acid storage and 
glucose metabolism, has been linked to various diseases, including PH 
under hypoxia (245). In both PAECs and PASMCs, PPAR-γ supports 
cell survival and suppresses proliferation through its interaction with 
Apelin (246). Li et al. showed that PPAR-γ interacts with the MRN 
complex to facilitate ATM signaling, and it plays a crucial role in 
UBR5 activity, which targets ATMIN (247). Dysfunction in this 
pathway in PAH-PAECs leads to reduced PPAR-γ-UBR5 interaction, 
increased ATMIN, progressive DNA damage, and impaired 
repair (247).

A study by Meloche et al. reported decreased levels of microRNA 
miR-223 and increased Poly [ADP-ribose] polymerase 1 (PARP-1) 
expression in PAH, causing an imbalance in proliferation and 
apoptosis (248). PARP-1 is a key protein in detecting DNA damage. 
Treatment with PARP-1 inhibitor ABT-888 increased DNA damage in 
PASMCs but also induced anti-proliferative and pro-apoptotic 
signaling by reversing miR-204-dependent NFAT and Hif1-α levels 
(128). This was confirmed in vivo, where ABT-888 treatment reduced 
pulmonary artery pressure and right ventricular hypertrophy in PAH 
models (128, 248).

Another study by Bourgeois et al. demonstrated elevated levels of 
CHK-1 in PAH-PASMCs and distal pulmonary arteries, correlated 
with increased DNA damage markers like γH2AX and RPA32. This 
elevation in CHK-1 was linked to an increase in its upstream activator, 
phospho-ATK, and a decrease in miR-424, which increased CHK-1 
levels, resulting in anti-proliferative and pro-apoptotic effects (24, 249, 
250). In vitro experiments with the CHK1 kinase inhibitor, MK-8776, 
exacerbated DNA damage while controlling proliferation and 
promoting apoptosis (251).

Lampron et al. investigated the role of PIM1, a regulator of the 
non-homologous end joining (NHEJ) repair pathway, in PAH. They 
found increased PIM1 expression in PAH lungs and PASMCs. 
Inhibition of PIM1 did not increase DNA damage but reduced KU70 
expression, crucial for stabilizing double-strand break ends, thereby 
impairing DNA repair (252). PIM1 inhibitors improved 
hemodynamics, reduced vascular remodeling, and enhanced 
apoptosis in PAH models without additional genetic insults (252).

Studies also highlighted the role of H2AX in the DNA damage 
response. Wang et  al. found elevated EYA3 protein levels in 
PAH-PASMCs, suggesting increased repair mechanisms in PAH 
(253). EYA3 dephosphorylates H2AX, enabling repair complex 
assembly. Inhibition of EYA3 improved pulmonary hemodynamics 
and vascular remodeling in PAH models (253). These findings 
underscore the importance of DNA repair mechanisms in PAH 
pathogenesis and potential therapeutic targets. Understanding the 

interplay between DNA damage, repair, and epigenetics offers insight 
into potential therapeutic approaches for managing PAH.

Current PAH therapies and epigenetics 
implications

Considering the heightened severity of PAH due to the interaction 
of intricate genetic and epigenetic factors, identifying novel 
therapeutic avenues by investigating the epigenetic mechanisms 
involved in PAH pathogenesis is of growing interest (86). Over the 
years, studies have highlighted the role of epigenetic modifications, 
such as altered DNA methylation and histone modification, in the 
pathogenesis of PAH (7–9). Most research on the epigenetics of PAH 
has been conducted in vivo, necessitating further studies to understand 
their implications in the clinical management of PAH. Current 
therapies for PAH target the imbalance between vasoactive and 
vasodilatory mediators in PAEC, aiming to mediate vasoconstriction 
through vasodilatory properties. These therapies target three key 
pathways and are classified into four classes: endothelin receptor 
antagonists, phosphodiesterase type 5 inhibitors, soluble guanylate 
cyclase stimulators, and prostacyclin analogs. These therapies are 
summarized in Figure  4, and some of are believed to modulate 
epigenetic modifications observed in PAH.

Endothelial nitric oxide synthase pathway
Endothelial cells regulate pulmonary vascular tone by producing 

and releasing nitric oxide (NO), a potent vasodilator and key regulator 
of vascular homeostasis. Evidence of reduced NO production has been 
the rationale for using phosphodiesterase type 5 inhibitors and soluble 
guanylate cyclase stimulators in treating PAH (254, 255). Sildenafil, a 
selective and potent phosphodiesterase 5 inhibitor, can relax distal 
pulmonary arterioles via the classic iNO/cGMP/PKG pathway, 
addressing PH (256–259).

Reactive oxygen species (ROS), including free radicals like 
superoxide (O2-), hydrogen peroxide (H2O2), and hydroxyl anion 
(OH-), along with reactive nitrogen species, such as nitric oxide (NO) 
and peroxynitrite (ONOO-), are biologically important oxygen 
derivatives. They play crucial roles in vascular biology due to their 
oxidation/reduction potential (260, 261). All vascular cell types, 
including endothelial cells, smooth muscle cells, and adventitial 
fibroblasts, generate ROS, mainly via cell membrane-associated 
nicotinamide adenine dinucleotide phosphate oxidase. ROS regulates 
vascular function by modulating cell growth, apoptosis, migration, 
inflammation, secretion, and extracellular matrix protein production 
(260). ROS act as important intracellular and intercellular second 
messengers in regulating various downstream signaling pathways via 
reactions with protein residues (260–262).

Epigenetic changes, particularly histone modification, play a role 
in ROS-mediated epigenetic changes. Abnormal epigenetic alterations 
in the pathogenesis of PAH showed no mutation in the SOD2 gene. 
However, tissue-specific deficiency of SOD2 induced by methylation 
has been observed to increase proliferation and decrease apoptosis in 
PASMC, consequently disrupting redox signaling. Conversely, 
increasing SOD levels has been shown to ameliorate experimental 
PAH, highlighting the therapeutic potential of targeting epigenetic 
modifications (8). Epigenetic suppression of the superoxide dismutase 
(SOD)-2 gene through DNA methylation compromises cellular 
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antioxidant pathways and activates hypoxia-inducible factor (HIF)-
1α, contributing to mitochondrial dysfunction (263).

The impact of sildenafil on PH was assessed in vitro, revealing 
alterations in peroxisome proliferator-activated receptor γ (PPARγ), 
transient receptor potential canonical (TRPC)1, TRPC6, and Ki67 
expression levels in hypoxic conditions in neonatal rats. PPARγ, a key 
transcription factor influencing BMP/TGF signaling, is highly 
expressed in cell types within the pulmonary vascular wall, including 
vascular endothelial cells and smooth muscle cells (264). It plays a 
crucial role in regulating lung and alveolar development, maintaining 
pulmonary vascular tone, and reducing PASMC proliferation, thereby 
preventing vascular remodeling. Research has demonstrated that 
PPARγ can inhibit smooth muscle cell proliferation and migration by 
suppressing the expression of platelet-derived growth factor 
expression (265, 266).

In a study, sildenafil was observed to decrease pulmonary 
vasoconstriction by activating PPARγ and reducing the expression of 
TRPC1 and TRPC6. This mechanism contributed to the reduction of 
pulmonary hypertension and the prevention of the thickening in the 
distal pulmonary arteriole wall (267). This intervention also reversed 
hypoxia induced elevation in right ventricular mean pressure and 
right ventricular hypertrophy index, reduced pulmonary arterial 
remodeling, and inhibited PASMC proliferation in neonatal rats 
exposed to hypoxia (264). Sonneveld et  al. suggested that 

sildenafil-induced increases in cGMP levels lead to the activation of 
PKG-1 and, subsequently, PPARγ (259). Sildenafil’s inhibition of 
TRPC expression and PASMC proliferation were diminished by the 
PPARγ inhibitor GW9662 and PPARγ small interfering RNA (264, 
265). Although sildenafil is believed to modulate the epigenetic 
regulation of the PPARγ pathway, the exact mechanism remains 
unclear (265, 266).

BMP signaling pathway
The bone morphogenetic protein (BMPs) signaling pathway is 

another important pathway implicated in the PAH pathogenesis BMPs 
belong to the transforming growth factor-β (TGF-β) family, which 
consists of cytokines secreted by epithelial cells and fibroblasts (64) 
BMPs are essential in regulating growth, differentiation, and apoptosis 
in various cell types, including pulmonary vascular endothelium and 
fibroblasts (65).

BMPR-II is highly expressed in PAEC and, to a lesser extent, in 
PASMC and fibroblasts (267). However, regardless of the presence of 
BMPR-II mutations, there is a significant reduction in BMPR-II 
expression in the pulmonary vasculature, a critical factor in the 
development of PAH.

Dysfunction of BMPR-II is well documented in the pathogenesis 
of PAH, with 14–42% of individuals with known BMPR-II mutations 
developing detectable PAH in their lifetime (268–270). Heritable PAH 

FIGURE 4

Illustration of the current therapies available in managing pulmonary hypertension and the specific mechanisms of action.
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(HPAH), a subtype of PAH, exhibits germline mutations in the 
BMPR-II gene in 70–80% of cases (270, 271). Additionally, 11–40% of 
IPAH patients without a family history also harbor BMPR-II 
mutations, highlighting the significant role of BMP signaling in PAH 
pathogenesis (272, 273).

Additionally, mutations related to PAH have been identified in 
other TGF-β family members that functionally interact with 
BMPR-II in PASMCs and PAECs. Mutations in BMPR-II 
transcriptional mediators, such as SMAD1, SMAD4, SMAD5, 
SMAD8, and the scaffolding protein caveolin-1, predispose 
individuals to PAH (274–276). In rare cases, HPAH patients 
especially those with hereditary hemorrhagic telangiectasia, exhibit 
germline mutations in activin receptor-like kinase type 1 (ACVRL1 
or ALK1) or endoglin genes (74). Other genes associated with PAH 
include EIF2AK4, BMP10, ENG, KCNK3, ABCC8, AQP1, CAV1, 
TBX4, GDF2, SOX17, G6PD, KDR, and ATP13A3 (277–279). 
These findings indicate a complex interplay of genetic, 
environmental, and epigenetic factors resulting in varied 
phenotypic expressions.

Within the TGF-β family, ligands bind to constitutively active 
TGFβ type II serine/threonine kinase receptors (TβRII), forming 
stable receptor complexes that activate downstream signals (280). The 
ligand specificity for distinct receptor complexes is crucial for the 
tissue-specific nature of BMP signaling (281, 282). BMPs form 
complexes with TβRII, leading to phosphorylation and recruitment of 
TGFβ type I serine/threonine kinase receptors (TβRI). Activated type 

I receptors phosphorylate cytoplasmic signaling proteins known as 
Smads, facilitating TGF-β superfamily signal transduction (69, 280, 
283–285).

The Smad signaling cascade begins with phosphorylated TβRI 
binding to receptor-mediated Smads (R-Smads), specifically Smads-1, 
−5, and-8, forming complexes with the co-Smad, Smad4. 
Phosphorylated Smads, having a higher affinity for Smad-4, 
translocate to the nucleus (Figure  5). BMP9, identified as a BMP 
ligand, signals by binding to the endothelial receptor BMPR-II and 
ALK1, along with the co-receptor endoglin. This signaling pathway is 
crucial for maintaining pulmonary vascular integrity (73). This 
mechanism also explains the rare occurrence of severe PAH in families 
with hereditary hemorrhagic telangiectasia due to ALK-1 
mutations (74).

BMP/Smad signaling disruption by BMPR-II mutation is 
heterogeneous and mutation-specific (286). Missense mutations 
involving cysteine substitution within the ligand-binding or kinase 
domain of BMPR-II reduce the trafficking of the mutant protein to the 
cell surface (287). The activity of the BMPR-II pathway depends on 
the specific BMPR-II ligands for each vascular cell type. BMP9 and 
BMP10 primarily influence PAECs in pulmonary arteries (288), while 
BMP2 and BMP7 facilitate PASMC apoptosis, and BMP4 promotes 
SMC proliferation (289–291).

A decrease in BMPR-II in PASMCs may diminish BMP2/4/7 
signaling, leading to the accumulation of hyperproliferative SMCs that 
are resistant to apoptosis, which is characteristic of muscularization in 

FIGURE 5

BMP/TGF-β signaling cascade at the cellular level.
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the distal arterial of PAH patients. Non-cysteine mutations within the 
kinase domain allow the protein to reach the cell surface but do not 
activate Smad-responsive luciferase reporter genes. Additionally, 
many mutations result in the degradation of the mutant transcript via 
nonsense-mediated mRNA decay, resulting in haploinsufficiency 
(292, 293).

Researchers have proposed that chronic loss of BMPR-II involves 
epigenetic modifications of the promoter regions of genes (294). Soon 
et al. found that the loss of SOD3 expression in Bmpr2+/− cells was 
reversed by treating the cells with the histone deacetylase inhibitor 
trichostatin A. Various microRNAs, histone deacetylases, and abnormal 
DNA methylation modifications have been linked to PAH, with some 
specifically implicated in the downregulation of BMPR-II (8, 295, 296).

Various other mechanisms of the BMPR-II signaling pathway have 
emerged as promising targets for new PAH therapies. One consequence 
of BMPR-II insufficiency is the shift from downstream SMAD1/5/8 
activation to SMAD2/3/4 activation via the activin receptor type IIA 
(ACTRIIA), reducing BMPR-II/SMAD1/5/8 antiproliferative signaling 
and promoting pulmonary vascular remodeling through increased 
ACTRIIA/SMAD2/3 signaling (297). The recently FDA-approved 
PAH therapy Sotatercept, consisting of a fusion protein combining 
activin receptor type IIA with the Fc domain of human IgG1, operates 
by binding free activins, the ligands for ACTRIIA/B, thereby 
rebalancing SMAD signaling and promoting antiproliferation.

Although a recognized connection exists between BMPR-II 
mutations and pathological epigenetic modifications, further research 
is needed to determine the role of sotatercept and the mechanisms of 
epigenetic modification in these complex signaling pathways (298).

Current research gaps

The complexity of PAH etiopathogenesis cannot be overstated, 
with its disease state involving multifactorial pathogenesis 
contributing to its variable expression. In recent years, growing 
attention has been directed toward the role of epigenetic mechanisms 
in PAH through both experimental and clinical studies. These 
investigations illuminate pathogenic mechanisms and uncover 
potential therapeutic and curative targets.

Epigenetic modifications are emerging as a critical factor in the 
pathogenesis of PAH, integrating various risk factors, including 
environmental exposures and modulating genetic expression (114). 
Despite significant progress in understanding epigenetics, the 
identification of clinically therapeutic epigenetic treatments remains 

challenging. Most of the identified epigenetic therapeutic targets have 
been tested in animal models.

Further research is crucial to enhance our understanding of 
epigenetic mechanisms, as robust data suggest that epigenetic modulators 
hold great promise as emerging targets for PAH therapy. Additionally, 
ongoing research will contribute to a better understanding of the safety 
profile of new treatments and their impact on other gene targets.
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