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This study aims to evaluate the feasibility of large language model (LLM) in

answering pathology questions based on pathology reports (PRs) of colorectal

cancer (CRC). Four common questions (CQs) and corresponding answers about

pathology were retrieved from public webpages. These questions were input

as prompts for Chat Generative Pretrained Transformer (ChatGPT) (gpt-3.5-

turbo). The quality indicators (understanding, scientificity, satisfaction) of all

answers were evaluated by gastroenterologists. Standard PRs from 5 CRC

patients who received radical surgeries in Shanghai Changzheng Hospital were

selected. Six report questions (RQs) and corresponding answers were generated

by a gastroenterologist and a pathologist. We developed an interactive PRs

interpretation system which allows users to upload standard PRs as JPG images.

Then the ChatGPT’s responses to the RQs were generated. The quality indicators

of all answers were evaluated by gastroenterologists and out-patients. As

for CQs, gastroenterologists rated AI answers similarly to non-AI answers in

understanding, scientificity, and satisfaction. As for RQ1-3, gastroenterologists

and patients rated the AI mean scores higher than non-AI scores among the

quality indicators. However, as for RQ4-6, gastroenterologists rated the AI mean

scores lower than non-AI scores in understanding and satisfaction. In RQ4,

gastroenterologists rated the AI scores lower than non-AI scores in scientificity (P

= 0.011); patients rated the AI scores lower than non-AI scores in understanding

(P = 0.004) and satisfaction (P = 0.011). In conclusion, LLM could generate

credible answers to common pathology questions and conceptual questions on

the PRs. It holds great potential in improving doctor-patient communication.

KEYWORDS

large language model, medical question, pathology report, colorectal cancer,

Generative Pretrained Transformer

Introduction

Large language model (LLM) combines the power of deep learning with transformer

architectures to understand and generate human language, showing potential in answering

medical questions (1, 2). The current LLM has been found to be prone to errors

in the specialty, leading to limited efficacy in clinical practice (3). Nonetheless,

several studies showed LLM can effectively convey health information and generate

answers of higher quality and greater empathy compared to those produced by

doctors (4, 5). Pathology reports (PRs) which contain information for diagnostic

evaluation and clinical decision making are often hard to understand for patients (6–8).
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Incorporating these cost-effective technological solutions into

clinical practice has the potential to mitigate disparities and

provide particular benefits to patients from socioeconomically

disadvantaged backgrounds, who typically exhibit lower levels of

health literacy (9). In this study, we evaluated the ability of LLM

to answer pathology questions based on PRs of colorectal cancer

(CRC). These efforts take a patient-centric approach and aim to

holistically evaluate LLM-based systems’ ability to explain complex

medical reports to patients, which distinguishes our study from

previous works.

Materials and methods

LLM answers common pathology questions

Four common questions (CQs) and corresponding answers

(1 question matches 2 answers) about pathology were retrieved

based on their frequency and relevance from publicly available

medical resources including reputable medical websites, online

health forums, and pathology textbooks. These questions were

input as prompts for Chat Generative Pretrained Transformer

(ChatGPT) (gpt-3.5-turbo) twice on the same day, and the answers

were recorded as artificial intelligence (AI1 and AI2), respectively.

All the answers were anonymized to prevent any identification of

the generation time or sequence, ensuring an unbiased evaluation.

The quality indicators (understanding, scientificity, satisfaction)

of 16 answers were evaluated by six gastroenterologists (three

senior gastroenterologists and three fellows) on a 7-point Likert

scale (10). The answers were randomized before being presented

to the gastroenterologists to avoid potential order effects. The

text similarity among all answers were compared using Jaccard

Similarity (11). The raters were also asked to determine whether

the answers were generated by AI or not.

LLM answers pathology questions based
on PRs

Standard PRs from 5 CRC patients who received radical

surgeries in Shanghai Changzheng Hospital between January 1,

2022, and December 31, 2022 were selected. These patients were

selected based on the criteria of being free from distant metastasis.

The selection of these reports aimed to ensure a diverse yet

representative sample of standard PRs in CRC. Six report questions

(RQs) were developed for each PR, focus on pathological type,

pathological stage, immunohistochemical result, adjuvant therapy,

prognosis, and follow-up. The corresponding answers (1 question

matches 1 answer) were generated by a gastroenterologist and a

pathologist based on National Comprehensive Cancer Network

Guidelines (Version 3. 2023). We developed an interactive PRs

interpretation system which allows users to upload standard PRs

of CRC as JPG images (http://pathology.doctorhealthx.com). We

used optical character recognition to digitalize the uploaded reports

and convert image data into text format and then prompt ChatGPT

questions based on the reports (12, 13). ChatGPT’s responses to

these questions were generated, recorded, and carefully reviewed to

ensure accurate representation of the original reports. The quality

of 60 answers were evaluated by six gastroenterologists and seven

out-patients using the 7-point Likert scale.

Statistical analysis

Data was shown as mean (standard deviation). We used Mann-

Whitney U test to compare the quality indicator and readability

of answers. We used the readability metric from a text analysis

package “cntext” to calculate the text complexity of Chinese,

measured by the average number of characters in each clause and

the proportion of verbs and conjunctions in each sentence (14).

Sensitivity, specificity, positive predictive value, negative predictive

value, and accuracy were calculated to evaluate raters’ performance

in detecting AI-generated answers. All analyses were accomplished

using software SPSS (version 25), and 2-sided P < 0.05 was

considered statistically significant.

Results

Performance of answering CQs

As for CQs, the AI answers had low text similarity (10%-

23%) compared to non-AI answers, and the text similarity

ranged from 30% to 42% between the 2 AI answers (Table 1).

The gastroenterologists demonstrated 56.9% accuracy in

identifying AI answers, with 45.8% sensitivity and 62.5% specificity.

Fellows showed 50.0% accuracy and 33.3% sensitivity (Table 2).

Gastroenterologists rated AI answers similarly to non-AI answers

in understanding (AI, 4.5–5.7 vs. non-AI, 4.7–5.3, nonsignificant),

with the AI mean scores higher than non-AI scores in the CQ2

and 4. Scientific adequacy scores were also similar (AI, 4.8–5.7 vs.

non-AI, 4.7–5.3, nonsignificant), with the AI mean scores higher

than non-AI scores, except for the CQ3. AI and non-AI received

similar scores regarding satisfaction with the answers (AI, 5.2–5.7

vs. non-AI, 4.4–5.1, nonsignificant), with the AI mean scores

higher than non-AI scores (Table 3).

Performance of answering questions based
on PRs

As for RQ1-3, gastroenterologists rated the AI mean scores

higher than non-AI scores in understanding (AI, 5.8–6.0 vs. non-

AI, 5.0–5.6, significant in RQ2), scientific adequacy (AI, 6.0–6.2

vs. non-AI, 5.4–5.8, significant in RQ1 and 2), and satisfaction

(AI, 6.2–6.6 vs. non-AI, 5.4–5.8, significant in RQ1-3). Similarly,

patients rated the AI mean scores higher than non-AI scores in

understanding (AI, 4.5–5.3 vs. non-AI, 3.7–4.5, significant in RQ1-

3) and satisfaction (AI, 5.0–5.4 vs. non-AI, 3.7–4.3, significant in

RQ1-3). However, as for RQ4-6, gastroenterologists rated the AI

mean scores lower than non-AI scores in understanding (AI, 5.6–

5.7 vs. non-AI, 6.0–6.3, significant in RQ4 and 6) and satisfaction

(AI, 5.3–5.7 vs. non-AI, 5.9–6.3, significant in RQ4-6). In RQ4,

gastroenterologists rated the AI mean scores lower than non-AI

scores in scientific adequacy (AI, 5.4 vs. non-AI, 6.2, P = 0.011);

patients rated the AI mean scores lower than non-AI scores in
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TABLE 1 Comparison of answers to four common questions about pathological examination.

CQs AI1 vs. AI2 AI1 vs. Hospital1 AI1 vs. Hospital2 AI2 vs. Hospital1 AI2 vs. Hospital2

Words Match,
%

Words Match,
%

Words Match,
%

Words Match,
%

Words Match,
%

CQ1 What is a pathological

examination?

298 vs.

342

42 298 vs.

299

15 298 vs.

321

14 342 vs.

299

16 342 vs.

321

15

CQ2 Why is a pathological

examination performed?

494 vs.

596

30 494 vs.

504

23 494 vs.

252

20 596 vs.

504

22 596 vs.

252

15

CQ3 What to constitute a

pathological report?

618 vs.

409

31 618 vs.

452

23 618 vs.

527

20 409 vs.

452

23 409 vs.

527

21

CQ4 What is an

immunohistochemical

result?

463 vs.

354

31 463 vs. 97 12 463 vs.

268

16 354 vs. 97 10 354 vs.

268

12

TABLE 2 Performance of four interpreters in detecting answers of CQs generated by AI.

Detecting answers of CQs
generated by AI

Sensitivity, % Specificity, % PPV, % NPV, % Accuracy, %

All interpreters (n= 6) 45.8 62.5 37.9 69.8 56.9

Senior gastroenterologists (n= 3) 58.3 66.7 46.7 76.2 63.9

Fellows (n= 3) 33.3 58.3 28.6 63.6 50.0

understanding (AI, 4.6 vs. non-AI, 5.4, P = 0.004) and satisfaction

(AI, 4.5 vs. non-AI, 5.3, P = 0.011) (Table 3).

Performance of readability

Overall, AI answers had more words than non-AI answers (AI,

338.1 vs. non-AI, 179.7). The complexity levels were a little higher

for AI answers, with readability scores lower than non-AI answers

(AI, 18.4 vs. non-AI, 21.5), although no statistical significance was

found. In answering CQs, AI answers had lower readability scores

than non-AI answers (AI, 18.1 vs. non-AI, 29.7, P = 0.005). In

answering RQs, AI had lower readability scores in RQ2, 3, 4, and

6, but no significant statistical differences were found except in

RQ3 (P = 0.008); AI had higher readability scores in RQ1 and 5,

with significant statistical differences (P = 0.021 and 0.008). This

could be attributed to the overall long lengths of the AI answers

(Table 4).

Discussion

The text similarity results suggested the inherent anti-

plagiarism design in LLM and the ability of LLM to create

unique answers. Though raters performed low sensitivity

in identifying AI-generated answers, an out-performing

gastroenterologist considered that AI-generated answer was

more like a structured paragraph. In contrast, answers from

public webpages were more like colloquial responses. Our

evaluation revealed that AI matched human performance in

answering CQs and excelled in conceptual matters on the

PRs (RQ1-3). However, AI struggled with questions requiring

current domain-specific knowledge, such as treatment plans,

prognostic prediction, and follow-up advice (RQ4-6). Despite

AI’s propensity for generating comprehensible responses, it may

contain fabricated or outdated information—a phenomenon

known as “hallucination” (15).

We conducted this study as a proof-of-concept and

performed thorough quantitative and qualitative analyses to

ensure that our findings are statistically rigorous. While the

small sample size and specific type of standard PRs in the

present study are limitations that may impact the universality

of our results, our findings nonetheless reflect the potential

of LLMs for improving doctor-patient communication and

patients’ understanding of complex medical reports. In

future works, we plan to expand the sample size to include

multi-center data in order to more systematically verify

our findings.

As LLMs continue to advance, we have found that more recent

models, such as Anthropic’s Claude 3 Opus, demonstrate improved

readability (Supplementary Table 3) and hold great potential for

driving continuous enhancements in the clarity of explanations.

In future work, we plan to further develop more advanced LLM-

based PRs interpretation systems by integrating external medical

data, such as cancer knowledge graphs and clinical guidelines (16).

By applying techniques like Retrieval Augmented Generation and

tool learning agents, we aim to further enhance the accuracy and

response verifiability of LLM-based systems in answering pathology

questions (17, 18).

In conclusion, LLMs have shown potential to generate

credible answers to common pathology questions. With

further enhancements, LLMs hold great promise in

improving doctor-patient communication regarding

professional PRs.
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TABLE 3 Quality indicators for answers to common question (CQ) and report question (RQ) from AI and from non-AI sources.

Pathology question Source of
answers

“The answers are easy to understand.” “The answers are
scientifically adequate.”

“I am satisfied with the answers.”

Mean (SD)
gastroenterologists

P Mean
(SD)

patients

P Mean (SD)
gastroenterologists

P Mean (SD)
gastroenterologists

P Mean
(SD)

patients

P

CQ1 What is a pathological examination? AI 4.5 (1.2) 0.469 NA NA 5.2 (1.5) 0.704 5.2 (1.8) 0.439 NA NA

Non-AI 5.0 (1.5) 4.9 (1.2) 4.7 (1.4)

CQ2 Why is a pathological examination

performed?

AI 5.3 (1.2) 0.683 5.7 (1.0) 0.208 5.7 (1.0) 0.167

Non-AI 4.9 (1.6) 4.8 (1.3) 4.8 (1.1)

CQ3 What to constitute a pathological

report?

AI 4.8 (1.5) 0.561 4.8 (2.0) 0.712 5.2 (1.8) 0.672

Non-AI 5.3 (1.3) 5.3 (1.5) 5.1 (1.3)

CQ4 What is an immunohistochemical

result?

AI 5.7 (1.5) 0.145 5.5 (0.8) 0.171 5.7 (1.5) 0.054

Non-AI 4.7 (1.2) 4.7 (1.3) 4.4 (1.0)

RQ1 Summary of pathological type of

tumor.

AI 5.8 (0.6) 0.212 5.3 (1.1) 0.002 6.2 (0.5) 0.011 6.6 (0.5) 0.000 5.3 (0.9) 0.000

Non-AI 5.5 (0.6) 4.5 (1.2) 5.8 (0.6) 5.8 (0.5) 4.2 (1.2)

RQ2 Interpretation of pathological stage. AI 6.0 (0.6) 0.000 5.1 (1.2) 0.000 6.0 (0.7) 0.031 6.3 (0.4) 0.000 5.4 (1.1) 0.000

Non-AI 5.0 (0.7) 3.8 (1.2) 5.4 (0.9) 5.4 (0.8) 3.7 (1.6)

RQ3 Interpretation of

immunohistochemical results.

AI 5.8 (0.5) 0.155 4.5 (1.3) 0.009 6.0 (0.0) 0.106 6.2 (0.6) 0.014 5.0 (1.2) 0.015

Non-AI 5.6 (0.5) 3.7 (1.2) 5.8 (0.4) 5.6 (0.8) 4.3 (0.9)

RQ4 How to choose adjuvant therapy? AI 5.6 (0.8) 0.012 4.6 (1.0) 0.004 5.4 (1.0) 0.011 5.3 (0.8) 0.000 4.5 (1.4) 0.011

Non-AI 6.3 (0.6) 5.4 (1.3) 6.2 (0.7) 6.3 (0.6) 5.3 (1.4)

RQ5 Prediction of prognosis. AI 5.6 (0.6) 0.076 5.2 (0.9) 0.220 6.0 (0.8) 0.998 5.5 (0.6) 0.037 5.1 (1.1) 0.901

Non-AI 6.0 (0.6) 5.3 (1.4) 5.9 (0.7) 5.9 (0.6) 4.7 (1.8)

RQ6 Advice for follow-up. AI 5.7 (0.8) 0.017 5.1 (0.9) 0.298 6.2 (0.6) 0.999 5.7 (0.9) 0.005 5.2 (1.2) 0.792

Non-AI 6.3 (0.6) 5.1 (1.4) 6.2 (0.6) 6.3 (0.6) 4.9 (1.5)

Interpreted by 6 gastroenterologists and 7 patients with 7-points Likert Scale (7= Strongly agree, 1= strongly disagree).

Interpretation 1: “The answers are easy to understand.”

Interpretation 2: “The answers are scientifically adequate.”

Interpretation 3: “I am satisfied with the answers.”

Statistical analysis by MannWhitney U test. P < 0.05 as significant.
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TABLE 4 Comparison of readability scores of answers from AI and non-AI.

Sources of answers Words,
mean (SD)

Readability
score,

mean (SD)

P

All pathology

questions

AI 338.1 (156.9) 18.4 (3.5) 0.069

Non-AI 179.7 (180.2) 21.5 (8.7)

CQs AI 447.6 (110.9) 18.1 (2.3) 0.005

Non-AI 340.6 (136.6) 29.7 (9.7)

RQ1 AI 69.4 (36.8) 16.4 (3.0) 0.021

Non-AI 17.8 (2.7) 8.9 (1.4)

RQ2 AI 202.4 (23.5) 15.6 (2.6) 0.094

Non-AI 37.0 (1.8) 18.5 (0.9)

RQ3 AI 524 (79.6) 17.4 (4.9) 0.008

Non-AI 469.8 (119.2) 29.1 (1.1)

RQ4 AI 322.8 (40.7) 19.3 (1.3) 0.140

Non-AI 154.0 (67.4) 21.6 (5.8)

RQ5 AI 319.2 (76.5) 21.6 (3.0) 0.008

Non-AI 47.2 (24.0) 14.4 (1.5)

RQ6 AI 415.4 (26.4) 20.5 (2.0) 0.110

Non-AI 95.0 (0.0) 23.3 (0.0)

Readability is measured by the complexity of the text; a higher score signifies a more complex

text and thus, lower readability. Statistical analyses between the AI and non-AI answers were

done with the Mann-Whitney U test tests.
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