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Introduction: Segmentation of lung structures in medical imaging is crucial 
for the application of automated post-processing steps on lung diseases like 
cystic fibrosis (CF). Recently, machine learning methods, particularly neural 
networks, have demonstrated remarkable improvements, often outperforming 
conventional segmentation methods. Nonetheless, challenges still remain when 
attempting to segment various imaging modalities and diseases, especially 
when the visual characteristics of pathologic findings significantly deviate from 
healthy tissue.

Methods: Our study focuses on imaging of pediatric CF patients [mean age, 
standard deviation (7.50  ±  4.6)], utilizing deep learning-based methods for 
automated lung segmentation from chest magnetic resonance imaging (MRI). 
A total of 165 standardized annual surveillance MRI scans from 84 patients with 
CF were segmented using the nnU-Net framework. Patient cases represented 
a range of disease severities and ages. The nnU-Net was trained and evaluated 
on three MRI sequences (BLADE, VIBE, and HASTE), which are highly relevant 
for the evaluation of CF induced lung changes. We utilized 40 cases for training 
per sequence, and tested with 15 cases per sequence, using the Sørensen-Dice-
Score, Pearson’s correlation coefficient (r), a segmentation questionnaire, and 
slice-based analysis.

Results: The results demonstrated a high level of segmentation performance 
across all sequences, with only minor differences observed in the mean Dice 
coefficient: BLADE (0.96  ±  0.05), VIBE (0.96  ±  0.04), and HASTE (0.95  ±  0.05). 
Additionally, the segmentation quality was consistent across different disease 
severities, patient ages, and sizes. Manual evaluation identified specific 
challenges, such as incomplete segmentations near the diaphragm and dorsal 
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regions. Validation on a separate, external dataset of nine toddlers (2–24  months) 
demonstrated generalizability of the trained model achieving a Dice coefficient 
of 0.85  ±  0.03.

Discussion and conclusion: Overall, our study demonstrates the feasibility and 
effectiveness of using nnU-Net for automated segmentation of lung halves in 
pediatric CF patients, showing promising directions for advanced image analysis 
techniques to assist in clinical decision-making and monitoring of CF lung disease 
progression. Despite these achievements, further improvements are needed to 
address specific segmentation challenges and enhance generalizability.

KEYWORDS

deep learning, magnetic resonance imaging, cystic fibrosis, lung segmentation, 
pediatric

1 Introduction

Cystic fibrosis (CF) is an inherited multi-organ disease, which 
largely effects the lungs. Repeated bacterial infections and 
inflammation can result in lung damage, causing most of the 
morbidity and mortality seen in CF (1, 2). The early detection and 
monitoring of CF-related lung disease is a prerequisite for optimized 
care and improved long-term outcomes (3–7).

Recently, chest magnetic resonance imaging (MRI), a radiation-
free modality, has shown great promise in assessing structural and 
functional CF lung abnormalities. Studies have shown chest MRI can 
detect changes as early as in infancy, and is capable of monitoring 
disease progression and therapeutic response throughout 
adulthood (7–14).

To semi-quantitatively assess the severity of lung abnormalities in 
CF patients, a morpho-functional chest MRI scoring system, also 
referred to as the Eichinger Score, was developed in 2012 (15). This 
scoring system includes items for morphological lung abnormalities, 
as well as perfusion abnormalities (8–11, 15, 16). To automate this 
scoring process, a critical step is automating the lung 
segmentation process.

In medical imaging, segmentation refers to identifying an organ 
or specific tissue of interest by extracting the boundaries and the inner 
region. This process allows for downstream analysis and extracting 
important quantitative information within that region. Precise 
segmentation may support accurate decisions on diagnosis, treatment 
plans, disease monitoring, and guiding of interventions (17). In the last 
decade, automated segmentation methods improved in performance 
and precision, resulting in the possibility of fully automated 
segmentation in different medical disciplines and imaging modalities 
(18). Machine learning methods, particularly neural networks, have 
demonstrated remarkable performance, often outperforming 
conventional methods, especially when analyzing large datasets (19–
21). The nnU-Net, an advanced deep learning framework tailored for 
medical applications, stands out in its performance (22). It permits the 
training of networks to perform semantic segmentation with high 
accuracy and performance, eliminating the need for numerous 
configuration steps due to its self-configuring training parameters and 
layer settings. However, difficulties arise when attempting to adapt the 
nnU-Net to a variety of imaging modalities and diseases. This is 
particularly challenging when the visual characteristics of pathologic 

findings deviate significantly from healthy tissue, indicating a change 
in tissue composition within the same organ (23).

Automated lung segmentation in MR images, especially in the 
CF population, also have inherent challenges. In MRI, difficulties 
arise due to the limited spatial resolution and the low contrast 
between the lungs and the adjacent tissue. In CF patients, breathing 
artifacts, most notably in young children; cardiac pulsation 
artifacts; chest growth in children, lung abnormalities displacing air 
contents, and the deformation associated with disease progression, 
all contribute to the complexity of the segmentation task (8, 24).

Despite these challenges, many studies are beginning to show 
promising results incorporating neural networks to automate MRI 
lung segmentation, even in different underlying pathologies, replacing 
conventional segmentation approaches (25, 26). Zha et al. applied 
convolutional neural networks (CNNs) on 3D radial ultra-short echo-
times (UTE) oxygen-enhanced MRI in a dataset of 45 subjects (age 
10+ with CF, asthma, or healthy) and achieved Dice coefficients of 
0.97 and 0.96 for the right and left lung, respectively (27). Furthermore, 
researchers tested other MRI sequences, such as fast UTE with stack-
of-spirals trajectory and matrix pencil decomposition MRI, in CF 
patients (age 5+) yielding Dice coefficients of 0.96 for children and 
0.89 for adults (28, 29).

Notably, Astley et  al. tested 2D and 3D nnU-Nets for lung 
segmentation of patients with varying pulmonary pathologies. In their 
patient cohort (median age 34 yrs.), analysis of a dataset comprising 809 
spoiled-gradient-recalled and UTE MRI scans, even across different 
vendors, demonstrated a remarkable performance, reaching a median 
Dice coefficient of 0.96 internally and 0.97 on an external test set (30). To 
enhance the accuracy of automated lung segmentation, by inclusion of 
artificially generated images with consolidations, Cristoso et al. reached 
a Dice coefficient of 0.94 on a cohort of healthy volunteers and patients 
(31). In a 2023 study of neonates, either healthy or suffering from 
bronchopulmonary dysplasia, the authors employed CNNs for lung 
segmentation on quiet-breathing MRI and achieved a Dice coefficient of 
0.908 on an internal test set and 0.88 on an independent test set (32). 
Most recently, a new approach for lung segmentation on healthy adults 
using thresholding and clustering on an enhanced deep-inspiration-
breath-hold reached a Dice coefficient of 0.94 (33, 34). A high benchmark 
for lung lobe segmentation using pseudo-MRI images derived from CT 
and three concatenated CNNs achieved a Dice coefficient of 0.95 on a 
dataset of 100 CF patients over the age of 4.7 years old (35).
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To the best of our knowledge, we are the first to demonstrate 
pediatric lung half segmentations for patients across the entire 
pediatric age range with different stages of cystic fibrosis using chest 
MRI on the commonly used sequences BLADE, VIBE, and 
HASTE. We selected a total of 165 MRI examinations from 84 patients 
in our internal monocentric CF database. This database contains 1,312 
highly standardized annual surveillance MRIs, acquired over more 
than a decade from 266 patients. Segmentations were created manually 
by three observers.

2 Materials and methods

2.1 Study population

This ongoing prospective longitudinal observational study 
(clinicaltrials.gov identifiers NCT00760071, NCT02270476) was 
approved by the institutional ethics committee and informed written 
consent was obtained from the parents or legal guardians of all 
patients. The CF diagnosis was confirmed by increased sweat 
chloride (Cl-) concentrations (≥60 mmoL/L) and cystic fibrosis 
transmembrane conductance regulator (CFTR) mutation analysis. In 
pancreatic-sufficient patients with borderline sweat test results (sweat 
Cl- 30–60 mmoL/L), the diagnosis was further supported by 
assessing CFTR function in rectal biopsies, as previously described 
(36). We included 165 cases in the study. Some patients were included 
in our previous reports on morpho-functional MRI (8, 37–39).

2.2 Magnetic resonance imaging

We performed standardized chest MRI after the initial CF diagnosis 
or after referral to our center as early as at the age of 3 months. 
We repeated exams annually using two 1.5 T scanner models from the 
same manufacturer (Magnetom Symphony and Magnetom Avanto, 
Siemens Healthcare, Erlangen, Germany). We  kept the scanning 
protocol constant during the study period, apart from minor updates to 
new software versions as previously described (8–16, 24). We acquired 
T1-weighted sequences before and after intravenous application of 
contrast material and T2-weighted sequences before contrast. Children 
aged 5 years and younger were routinely sedated with oral or rectal 
chloral hydrate (100 mg/kg body weight, maximum dose of 2 g).

2.3 Staging CF lung disease

One observer (MOW) with more than 15 years of experience in 
chest MRI, who also evaluated all previous studies, assessed all MRI 
examinations using the established chest MRI scoring system (8–11, 
13–15, 40). The MRI scoring system assigns a numerical disease 
severity score to each lobe (e.g., 0 = no presence, 1 = <50% of a lobe 
affected, and 2 = ≥50% of a lobe affected) for each of the morphological 
score items bronchiectasis/wall thickening, mucus plugging, 
sacculation/abscess, consolidation, and special finding/pleural lesion, 
as well as for perfusion abnormalities. The sum of morphological 
findings becomes the MRI morphology score, perfusion abnormalities 
create the MRI perfusion score, and the sum of both results in the MRI 
global score, ranging from 0 to 72.

2.4 Image sequence selection

Three MRI sequences in coronal orientation were used (Table 1):

 1 Balanced Steady State Free Precession Line Acquisition with 
Undersampling (BLADE): This is a T2-weighted turbo spin 
echo-based 2D sequence designed to reduce motion artifacts 
in MRI. It is particularly useful for imaging areas of the body 
that are prone to movement, like the lungs, or for imaging 
patients who have difficulty remaining still (41). Its acquisition 
can be split among multiple breath-holds (i.e., slices are not 
necessarily at the same depth of inspiration) or triggered using 
a navigator signal.

 2 Volumetric Interpolated Breath-Hold Examination (VIBE): 
This is a T1-weighted 3D gradient echo sequence acquired after 
injection of a contrast agent. It was acquired in a single breath-
hold and allows for high spatial resolution (42).

 3 Half-Fourier Acquisition Single-Shot Turbo Spin-Echo 
(HASTE): This is a T2-weighted turbo spin echo 2D sequence 
that acquires each slice from a single echo train, minimizing 
motion effects at the cost of noticeable blurring in the phase 
encoding direction (43).

2.5 Dataset composition

From our database with 1,312 CF examinations from 266 patients, 
we selected 55 examinations for each MRI sequence (BLADE, VIBE, and 
HASTE), resulting in an overall 165 examinations from 84 patients 
(Figure 1). All cases were chosen to ensure an even distribution of age 
and gender, and to include varying levels of disease severity based on the 
global MRI score. To achieve this, the overall distribution of age, gender 
and disease severity was visualized and cases were then selected 
manually. From this overall dataset with 165 cases, 45 cases (15 for each 
sequence) were selected in a stratified manner, to represent the 
underlying distribution of age, gender, and global MRI score for the 
creation of the internal test set. This internal test set was not used for 
training, and solely utilized to test the final performance of the networks. 
In the internal test set, the median age was 9 years (± 4.92) (range 
2 months–17 years) (Table 2, internal test set) with 46.7% male cases. The 
remaining cases were used for training the neural networks in the 
so-called training set. The training set had a median age of 9 years (± 
4.78) (range 2 months–17 years) and 49.1% male cases (Table  3; 

TABLE 1 MRI sequence details.

BLADE VIBE HASTE

Slice thickness 

(mm)
4 4 6

Pixel spacing 

in plane (mm) 

(min-max)

0.9375*0.9375

-

1.25*1.25

0.78125*0.78125

-

0.879*0.879

0.839*0.839

-

1.875*1.875

Matrix (min-

max)

320*320

-

384*384

512*512 512*512

Since image acquisition protocols changed slightly over the years, pixel spacing and matrix 
size have different min/max values.
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Figures  1, 2). Selecting the cases in such a way may allow good 
segmentations over all age and disease classes. We included cases only if 
relevant image data were available. No cases were excluded due to 
artifacts or poor quality. With regard to similarity, no notable differences 
were observed in the global MRI score across the three utilized sequences 
(p = 0.78). A notable difference in age was observed between the three 
sequences (p = 0.006). Patients undergoing imaging using HASTE were 

notably younger, as HASTE is a contrast agent-free alternative to 
VIBE. The comparison between the internal training and test data 
revealed no statistically significant changes in either age (p = 0.06) or 
global MRI score (p = 0.97). The available data from all three sequences 
resulted in 6,010 2D slices. The training set comprised a total of 4,290 
slices, with an average of 34 slices for BLADE, 49 slices for VIBE and 24 
slices for HASTE per MRI. In the internal test set, a total of 1,720 slices 
were used, with an average of 36 slices for BLADE, 52 slices for VIBE, 
and 27 slices for HASTE.

Additionally, we collected an external dataset from two different 
centers (Center A: one case, Center B: eight cases) comprising nine 
HASTE acquisitions from nine cases (Table 2) (44). Compared to the 
internal dataset, the age distribution of the external test set was 
dominated by very young patients (Table 2). This was reflected in the 
statistically significant difference in age between the internal and 

FIGURE 1

Patient selection flowchart internal dataset.

TABLE 2 Overview of the internal and external test sets.

Internal test set External test set

Cases, n 45 9

Age (years) median 

[range] (std)
9 [0.13–17.1] ± 4.92 0.79 [0.16–2.0] ± 0.63

Sex (m/f) 21 / 24 4/5

Height (cm) median 

[range] (std)

133.45 [93.0–

174.8] ± 24.43
75.16 [62.0–83.0] ± 7.73

Weight (kg) median 

[range] (std)
28.03 [12.4–55.9] ± 14.65 9.2 [6.0–10.6] ± 1.73

CFTR genotype, n (%) 38 (84) 4 (44)

  F508del/F508del 18 (40) 2 (22)

  F508del/other 15 (33) 3 (33)

  Other/other 4 (9)

Pancreatic insufficiency, 

n (%)
31 (67) 9 (100)

Spirometry, n (%) 29 (65) 0 (0)

ppFEV1 median [range] 

(std)
97.7 [62.2–123.7] ± 15.8 -

Multiple breath washout, 

n (%)
26 (58) 6 (67)

LCI N2 median [range] 

(std)
7.74 [4.74–10.57] ± 1.4 7.8 [6.58–9.05] ± 1.2

Global MRI Score 

median [range] (std)
12 [0–43] ± 9.8 10.22 [7–16] ± 2.72

TABLE 3 Patient characteristics of the internal dataset (training set).

Internal training set

Cases, n 120

Age (years) median [range] (std) 9 [0.16–17.0] ± 4.78

Sex (m/f) 59/61

Height (cm) median [range] (std) 135 [52.7–175.3] ± 24.80

Weight (kg) median [range] (std) 28.2 [12.8–70.9] ± 16.05

CFTR genotype, n (%) 108 (90)

  F508del/F508del 44 (37)

  F508del/other 48 (40)

  Other/other 12 (10)

Pancreatic insufficiency, n (%) 90 (75)

Spirometry, n (%) 46 (38)

ppFEV1 median [range] (std) 91.58 [42.8–108.5] ± 16.3

Multiple breath washout, n (%) 45 (37.5)

LCI N2 median [range] (std) 8.28 [3.91–15.3] ± 2.46

Global MRI score median [range] (std) 12 [0–39] ± 7.83
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external datasets (p < 0.0005). Regarding disease severity, however, the 
external patients were similar to those of the internal dataset. A 
comparison of the global MRI score exhibited no notable differences 
(p = 0.86). The external test set had an overall number of 174 2D slices 
with an average of 19 slices per MRI.

2.6 Segmentation ground truth generation

We manually segmented all MRIs using three independent 
observers with 1 (JM), 2.5 (FGR), and 5 years (LW) experience in lung 
MRI segmentation, respectively. They created reference segmentations 
of the lung halves using the open-source software Medical Imaging 
Interaction Toolkit (MITK, version 2021.10) in combination with a 
Wacom Cintiq 16 tablet and pen. In the event of disagreement among 
observers, agreement was reached by individual comparison, 
collective discussion and consensus among the observers.

2.7 Segmentation questionnaire

In cooperation with the experienced radiologists, we designed a 
qualitative questionnaire for fine-grained evaluation of the 
segmentations (Supplementary Figure 1). The questionnaire evaluated 
the overall segmentation quality on an 11-point Likert-scale (45), 
ranging from 0 (worst quality) to 10 (best quality). Furthermore, the 
questionnaire included a detailed evaluation of the lung segmentation 
and specific information regarding the segmentation performance in 
specific anatomical regions (ventrally, dorsally, mediastinum, 
periphery, apex, and diaphragm). Information on incomplete 
segmentation or over-segmentation in specific areas could 
be provided. Lastly, the observer was given the opportunity to provide 
an open text response to the segmentation.

2.8 Slice based qualitative analysis

To gain further insight into the segmentation quality, all lungs 
from the internal test set were subjected to a detailed examination by 
a radiologist to identify any instances of incorrect segmentation. For 
each lung, the number of slices requiring correction was annotated. In 
conjunction with the data on the overall slices, this provides an 
indication of the quantity of usable slices. The number of slices 
requiring correction is reported as a mean percentage, with standard 
deviation and maximum.

2.9 nnU-Net implementation

The latest implementation of the 2D nnU-Net (Version 2) was 
utilized in its default configuration. It is a self-configuring 
framework, which automatically adapts its architecture, 
pre-processing, and training pipeline to a given dataset. The 
nnU-Net framework employs a U-Net-based architecture 
comprising an encoder-decoder structure. On the encoder path, 
the spatial dimensions of the input image are successively reduced 
through convolutional layers and max-pooling, thereby capturing 
increasingly abstract feature representations. On the decoder path, 
upsampling is applied to restore the spatial dimensions, 
concatenating feature maps from the corresponding encoder 
layers. This allows for high-level semantic information and precise 
localization. For further details to the nnU-Net, please refer to 
(22). Three individual nnU-Net configurations were trained, one 
for each sequence using the following steps: based on the 55 study 
cases per sequence, the data were partitioned into 58% as training 
set, 14% as validation set, and 27% as test set. This resulted in 32 
cases being used for training, eight cases for validation and 15 
cases for testing per sequence. The training and validation sets 
were utilized for the initial and fine-tuning training of the neural 

FIGURE 2

Violin plot of age and gender distribution for the three MRI sequences.
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network, while the test set was withheld for final evaluation. To 
ensure an average performance, we validated the models utilizing 
5-fold cross-validation with different training and validation set 
partitions as per default nnU-Net configuration. All calculations 
were performed on two Tesla V100S PCIe 32GB with 1,000 epochs 
and an average run time of 33 h per fold. The batch size was subject 
to variation during the training phase, with values of 14, 32, and 
33, respectively, being applied to BLADE, VIBE, and 
HASTE. Stochastic gradient descent was employed for 
optimization purposes, with a weight decay of 3e−5 and an initial 
learning rate of 0.01. Z-score normalization was utilized as the 
normalization method. For inference and producing the final 
predictions the nnU-Net uses an ensemble of all five folds, 
reporting one final result for the test set. For external validation a 
separate dataset was utilized. This external dataset was chosen to 
simulate real-world scenarios and challenges, ensuring a 
comprehensive examination of the model’s performance across 
diverse imaging conditions.

2.10 Statistical analyses

A one-way ANOVA test was used to determine if there were 
statistically significant differences in global MRI score and ages among 
the different datasets. Results were considered significant at p < 0.05.

Furthermore, the Sørensen-Dice-Score (DSC), calculated from 
the spatial overlap between the ground truth segmentation (GT) and 
predicted segmentation (PS), was utilized to evaluate the entire MRI 
sequence (46). The DSC ranges from 0 to 1, evaluating the quality of 
the segmentation indicated by the overlap and is defined as follows:

 

2 PS GT
DSC

PS GT
∩

=
+

First, the Dice coefficient was calculated between each manual 
segmentation and predicted mask, and subsequently, the mean value 
was obtained for the entire stack of slices. This process was conducted 
for both the right and left lungs, as well as for the combination of both 
lung halves.

Data were analyzed with Python (Version 3.9) using the package 
SciPy (Version 1.11.4) (47). The Pearson correlation coefficient, 
indicating strength of linear relationship, was calculated for the DSC 
vs. age and DSC vs. the global MRI score (48). In general, the Pearson 
correlation coefficient measures the linear correlation of two sets of 
data and is defined as:

 

( )( )
( ) ( )² ²

i i

i i

x x y y
r

x x y y

∑ − −
=

∑ − ∑ −

Since the Sørensen-Dice-Score does not provide any indications 
regarding the location of incorrect segmentations or crucial errors, 
we deployed an additional questionnaire, which was filled out once for 
each internal case. To assess the generalizability and robustness of lung 
segmentation, we conducted an evaluation using an external dataset 
distinct from the training and validation sets. Due to data availability, 
only the HASTE model was tested.

3 Results

3.1 Internal and external test set 
demographics

A total of 45 cases were utilized for the internal test set, while the 
external test set consisted of nine cases from two distinct centers. The 
cases from the external dataset are notably younger, with a median age 
of 0.79 years, whereas the internal test set had a median age of 9 years 
(Table 2). With regard to the global MRI score, the external dataset 
exhibited a slightly lower median of 10.22, as compared to the internal 
test set, which had a median global MRI score of 12.

3.2 BLADE, HASTE, and VIBE are equally 
well suited for nnU-Net training

Using VIBE and BLADE, the nnU-Net achieved a mean DSC of 
0.96 (Table  4; Figures  3, 4). HASTE demonstrated comparable 
performance with a mean DSC of 0.95. For the BLADE sequence, the 
right lung exhibited slightly superior segmentation, whereas both 
lungs demonstrated equivalent performance in the VIBE sequence. 
On the HASTE sequence, the left lung reached a higher DSC 
compared to the right lung with a DSC of 0.96 and 0.93, respectively 
(Table 4).

3.3 Questionnaire confirms segmentation 
quality

Our analysis of the questionnaire for the 45 internal test cases 
showed similar results to the overall high Dice coefficients. The 
segmentations derived from all three sequences were evaluated with 
a median score of nine out of 10 points (9/10) on the Likert Scale, with 
a standard deviation of 2.02, 1.48, and 1.18 for BLADE, VIBE, and 
HASTE, respectively (Figure 5). Additional information can be found 
in Supplementary Figures  2, 3. In addition to the quality of the 
segmentation, the observer provided information about 
inconsistencies or errors in the segmentations. Three general trends 
were identified (Supplementary Figure 3):

 1. missing ventral segmentations;
 2. missing segmentations near the costodiaphragmatic recess; and
 3. incorrect segmentation of the lower mediastinum.

Further, in some cases, segmentations were incomplete in the lung 
periphery, leaving a small space unaccounted for close to the edge of 
the lung (Figure 6).

TABLE 4 Sørensen-Dice-Score (DSC) results for three sequences, 
showing mean (stdv).

DSC BLADE VIBE HASTE

Whole lung 0.96 ± 0.05 0.96 ± 0.04 0.95 ± 0.05

Left lung 0.95 ± 0.09 0.96 ± 0.04 0.96 ± 0.03

Right lung 0.97 ± 0.03 0.96 ± 0.04 0.93 ± 0.10
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3.4 nnU-Net performance is independent 
of age and disease severity

Anatomy such as form and size of the chest change with age, and 
lung disease severity alters anatomy and signal of the lungs. Thus, 
we correlated DSC with the patient age and DSC with disease severity. 
Age as well as the MRI global score did not show an association with 
nnU-Net performance r = 0.09 and r = −0.12, respectively 
(Supplementary Figures 4, 5).

3.5 nnU-Net shows acceptable 
performance on external validation data

Nine cases with corresponding HASTE MRI from two external 
centers, with ages ranging from 3 months to 2 years were segmented 
using the network trained on the HASTE imaging data. The average 
DSC across all validated cases was 0.85 (± 0.03) with a range from 0.82 
to 0.92 for both lung halves combined (Figure  3, external data). 
Regarding lung halves, the left lung was segmented better, with a DSC 
ranging from 0.79 to 0.92, compared to the right lung with a DSC of 
0.70 to 0.92. This indicates acceptable, but not perfect performance.

3.6 Slice based analysis highlights 
segmentation quality

A visual inspection was conducted on all data from the internal 
test set to ascertain the quantity of slices that would require manual 
correction. A total of 1,720 slices from the 45 internal test cases were 
subjected to quality control. The results are consistent with the 
responses provided in question 1 of the questionnaire. The CF case 
with the lowest score assigned by the radiologist (2/10) exhibited the 
highest number of slices requiring correction. Specifically, 79% of 
slices in the right lung and 29% of slices in the left lung were of 

insufficient quality. Overall, the mean percentage of slices in the right 
lung and left lung that required correction was 10.60% (±16.46) and 
8.75% (±9.39), respectively (Supplementary Figure 6).

4 Discussion

Segmentation can play a vital role as a pre-processing step before 
applying machine learning-based image analysis methods. In our 
work, lung half segmentation of pediatric MRIs of CF patients using 
three different sequences, BLADE, VIBE, and HASTE were created 
utilizing the nnU-Net neural network. A dataset comprising 165 cases, 
with 55 cases for each of the three sequences, was employed for the 
training, validation, and testing of the nnU-Net. For each sequence, 
the nnU-Net was trained individually using a training set of 40 cases 
and a testing set of 15 cases. For evaluation, the Sørensen-Dice-Score 
was used in combination with a tailored questionnaire and a slice-
based analysis to provide a more detailed insight into the quality of 
the segmentations.

Overall, the segmentation performance achieved a mean Dice of 
0.95 or higher for all sequences and lung halves except for the right 
lung on the HASTE sequence, which reached a mean Dice of 0.93. 
With the patient’s age ranging from just a few months to 17 years, the 
segmentation performance was correlated with age. Generally, it was 
visible that the segmentation quality stayed constant across all 
pediatric age classes, further supported by Pearson correlation 
coefficient r = 0.09. Due to the different disease status of the patients, 
the global MRI score was correlated with the Dice coefficient. Patients 
with both lower and higher global MRI score were segmented equally 
well, which is supported by the Pearson correlation coefficient of 
r = −0.12. This demonstrates the excellent performance of the 
nnU-Net for lung lobe segmentation in pediatric chest MRIs within 
our cohort. The high mean DSC indicates robust segmentation 
performance, independent of the underlying pathological changes 
induced by CF in the pediatric stage. An improvement in segmentation 

FIGURE 3

Box plots with dice coefficient of internal test sets from BLADE, VIBE, and HASTE and the external test set.
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performance might be expected with an increased amount of training 
data (49). However, in segmentation tasks that require precise ground 
truth annotations, which are extremely time-intensive to generate, 
necessary trade-offs must be made.

For a qualitative analysis, we  provided a questionnaire to the 
observers for the purpose of evaluating the segmentations manually 

in addition to the Sørensen-Dice-Score. Consistent segmentation 
errors in the ventral and dorsal areas of the lung, as well as around the 
costodiaphragmatic recess were detected. These errors can be caused 
by the thickness of the image slices, which directly affects the 
appearance of the tissue. When the slice thickness increases, tissue 
other than lung tissue becomes included, which may lead to the partial 

FIGURE 4

Visualization of the three different sequences with ground truth segmentations and good segmentations produced by the nnU-Net. Overall DSC 
corresponds to the dice coefficient of the entire lung and Slice DSC to the dice coefficient of the visualized slice. The segmentation of the right lung is 
indicated in yellow and the left lung segmentation in green. Each column corresponds to one MRI sequence. In the top row, the raw images are 
shown. The second row contains the manually annotated lung halves (ground truth). In the third row, the segmentation calculated by the 
corresponding nnU-Net is depicted. The three shown patients are of ascending age from left to right, thus the different lung sizes. All three patients 
have a global MRI score of 3. The results of the questionnaire indicated that the lungs were rated with a score of 10/10 for BLADE, 9/10 for VIBE, and 
9/10 for HASTE. The different contrasts and gray levels are due to the different sequences. Both the ground truth and the segmentation of the lung 
halves appear to be very similar. Although the right and left lung differ in size and shape, segmentation performance seems to be almost equal. In 
general, the high Sørensen-Dice-Score and corresponding high segmentation performance are evident.
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volume effect (PVE) (50). PVE occurs in volumetric imaging, when 
more than one tissue type is present in a voxel. In cases where the lung 
parenchyma ends in the middle of the slice, the voxel will have a 
different shade of gray compared to voxels completely inside or 
outside the lung. Depending on the patient and amount of non-lung 
area on the entire slice, this gray level complicates manual and 
automated segmentation (Figure 7). Furthermore, even the slightest 
movement in the ventral and dorsal areas may introduce additional 
artifacts or blurring. While the observers annotated certain areas as 
lung tissue, the neural network failed to do so. To overcome this 
challenge, more annotated data could improve the dorsal and ventral 
segmentation performance. In addition to the questionnaire, the 
observer conducted a slice-based analysis annotating which slices 
required manual correction. The analysis revealed that the left lung 
necessitated more corrections than the right lung.

To achieve a more general evaluation of the trained neural 
networks, an external dataset from two other centers was segmented 
and evaluated with the Sørensen-Dice-Score. This was a useful test to 
explore whether generalization had been achieved, allowing the 
processing of data from a different source than the training data. 
Generally, overfitting on the training data is common, leading to very 
good performances on the training and test set from the same 
distribution but poor performance on external data. Despite the fact 
that the Sørensen-Dice-Score for the external dataset did not exceed 
0.92, with a range of 0.7–0.92, it suggests that the trained neural 
network has overall generalizability, given the differences between the 
two test sets regarding age and number of slices. A comparison of the 
number of MRI slices in the internal and external test sets reveals 
notable differences: the internal dataset averages 38 slices per MRI, 
while the external dataset averages only 19 slices. Since the Dice 
coefficient is more sensitive to segmentation errors when the overall 
segmented area is smaller, this difference in slice count and 
corresponding segmentation area must be taken into account when 
interpreting the results (51).

Factors such as different MRI scanner specifications, protocols, 
slice thickness, and resolution affect image quality and therefore 

segmentation performance. The small number of external MRIs 
(n = 9) limited the general interpretability. Efforts to improve 
segmentation performance on the external dataset could include 
retraining the nnU-Net configuration with external MRI data to 
reduce segmentation errors. The overall segmentation performances 
on the three MRI sequences were comparable with existing work in 
literature. Lung CT scans have been segmented fully automated, 
reaching high accuracies for lung lobe segmentations with a mean 
Dice coefficient of up to 0.97 (52). In chest MRI, lung segmentation 
can be achieved using traditional approaches such as thresholding, but 
neural network-based segmentation approaches have recently been 
shown to outperform traditional methods (25). Astley et  al. even 
showed the nnU-Net can be trained to perform well across several 
sequences, diseases, and vendors reaching a median Dice coefficient 
of 0.96 on the internal and 0.97 on an independent test set (30). 
Moreover, their results demonstrated that the 3D-Unet exhibited 
superior performance compared to the 2D version, which, in turn, 
outperformed the conventional segmentation approach, spatial fuzzy 
C-means. In contrast to their work, our study focused on pediatric 
MRIs of the entire pediatric range of patients with varying degrees of 
CF disease severity. Efforts toward improving MRI-based lung 
segmentation include artificially created images to increase robustness 
in case of severe pathologies (31). For hyperpolarized 129Xe MRI, 
segmentation performances with a Dice score of 0.929 and above were 
demonstrated using multiple different methods, highlighting the 
superiority of the nnU-Net over conventional segmentation methods 
(53, 54). Neonatal lung segmentations showed a Sørensen-Dice-Score 
of 0.908 and 0.880 on an independent test set with segmentations 
automatically by a combination of U-Nets (32).

The resulting segmentations for both the internal and external test 
sets of the underlying study exhibited variability, yet never attained a 
Dice coefficient of 1.0. This raises a pivotal question about the criteria 
for determining whether a segmentation is suitable for subsequent 
processing or downstream analyses. While a Dice coefficient of 1.0 
represents perfect segmentation, striving to improve the coefficient 
from an already high mean value such as 0.95, may demand a 

FIGURE 5

Segmentation quality by sequence with the questionnaire evaluating the segmentations from 0 (bad) to 10 (good) of the internal test set.
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disproportionate amount of time, effort and computational resources. 
In practice, the pursuit of marginal improvements—bringing the Dice 
score closer to 1.0—often results in diminishing returns. Such 
refinements may have minimal impact on the overall effectiveness or 
accuracy of downstream tasks, particularly when the current 
segmentation quality is already deemed suitable for clinical decision-
making or research purposes. Therefore, it is critical to assess whether 
the additional time and computational effort invested in further 
optimizing segmentation is justified, or whether the existing 

performance is sufficient for the intended applications. When 
observers segment lungs, they hardly ever reach complete agreement. 
Segmentation tasks are always dependent on the reader, their 
experience in the domain, and the tools used. Literature has shown 
that a Dice coefficient below 0.9 is not uncommon as reader agreement 
(55). Given that the overarching objective is to automate the Eichinger 
score, it can be  argued that segmentation errors that do not 
significantly impact the majority of a lung half might be considered 
acceptable. However, in other research questions, this threshold may 

FIGURE 6

A selection of segmentations with a slightly lower Sørensen-Dice-Score, as well as visual discrepancies between ground truth and nnU-Net 
segmentation is shown. Overall DSC corresponds to the dice coefficient of the entire lung and Slice DSC to the dice coefficient of the visualized slice. 
Segmentation errors are indicated with white arrows in the second row. Three common segmentation mistakes are shown: Incomplete segmentations 
for BLADE, wrong segmentations due to breathing motion or other artifacts for VIBE and pathological changes influencing segmentation performance 
on the patient captured with the HASTE protocol. Based on the results of the questionnaire, the lungs were rated with a score of 2/10 for BLADE, 6/10 
for VIBE, and 7/10 for HASTE.
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have to be  set differently, for example, in the context of tumor 
resection or radiotherapy planning, where segmentations require a 
higher degree of accuracy (56, 57).

In summary, the results obtained in this study are comparable to 
those reported in similar studies. To the best of our knowledge, we are 
the first to demonstrate successful pediatric lung half segmentations 
for patients with different stages of cystic fibrosis on the MRI 
sequences BLADE, VIBE, and HASTE.

Our study has some limitations that require discussion. The 
sample size of 55 cases with corresponding MRIs for each sequence, 
especially in the age group of patients under 1 year, is relatively small. 
Compared to the external dataset, all internal cases have larger lungs 
due to the higher mean age, which could influence the segmentation 
performance. Moreover, the majority of included patients had a global 
MRI score of 20 or less. Therefore, it is unclear whether our results are 
transferable to cohorts of older patients or patients with more 
advanced lung disease. Future work may focus on this aspect as well 
as an extension to other sequences.

Recent advancements in this field of research are driving the 
development of various methods for automated segmentation (19). 
In the future, it may be valuable to explore these approaches on this 
dataset and consider expanding the current model to include the 
remainder of the patients and cases. Especially, since the overall goal 
of automating the Eichinger score, works toward automated lung lobe 
segmentations should be explored. Pusterla et al. showed recently 
that automated lung segmentation with a combination of neural 
networks is possible with high accuracy (35). Earlier studies 
demonstrated that segmentation of perfusion maps with a 3D U-Net 
is an effective approach. However, the evaluation of lung lobes on 
MRI is challenging due to the difficulty in discerning lobe fissures, if 
they are visible at all. A lung atlas-based approach, which is 
independent of age and disease status, may prove advantageous, 
particularly in light of the findings reported by Tutison et  al. 
regarding the segmentation of the lung (58). With the automated lung 
segmentation in place, further complex deep learning-based analysis 
techniques can be  applied to assist radiologists in monitoring 
treatment response, therapy progression, and overall lung health of 
CF patients, potentially saving time. These results reinforce the efforts 

toward automated analysis of chest MRIs of patients with 
cystic fibrosis.

In conclusion, the performance of the nnU-Net in segmenting the 
lung halves of MRIs from pediatric CF patients demonstrated good 
agreement with manual segmentations. The segmentation 
performance of pediatric CF patients does not appear to 
be significantly influenced by age or disease status.
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