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Introduction: Sepsis poses a serious threat to individual life and health. Early and 
accessible diagnosis and targeted treatment are crucial. This study aims to explore 
the relationship between microbes, metabolic pathways, and blood test indicators in 
sepsis patients and develop a machine learning model for clinical diagnosis.

Methods: Blood samples from sepsis patients were sequenced. α-diversity and 
β-diversity analyses were performed to compare the microbial diversity between 
the sepsis group and the normal group. Correlation analysis was conducted on 
microbes, metabolic pathways, and blood test indicators. In addition, a model 
was developed based on medical records and radiomic features using machine 
learning algorithms.

Results: The results of α-diversity and β-diversity analyses showed that the microbial 
diversity of sepsis group was significantly higher than that of normal group (p < 0.05). 
The top 10 microbial abundances in the sepsis and normal groups were Vitis vinifera, 
Mycobacterium canettii, Solanum pennellii, Ralstonia insidiosa, Ananas comosus, 
Moraxella osloensis, Escherichia coli, Staphylococcus hominis, Camelina sativa, and 
Cutibacterium acnes. The enriched metabolic pathways mainly included Protein 
families: genetic information processing, Translation, Protein families: signaling 
and cellular processes, and Unclassified: genetic information processing. The 
correlation analysis revealed a significant positive correlation (p < 0.05) between IL-6 
and Membrane transport. Metabolism of other amino acids showed a significant 
positive correlation (p < 0.05) with Cutibacterium acnes, Ralstonia insidiosa, 
Moraxella osloensis, and Staphylococcus hominis. Ananas comosus showed a 
significant positive correlation (p < 0.05) with Poorly characterized and Unclassified: 
metabolism. Blood test-related indicators showed a significant negative correlation 
(p < 0.05) with microorganisms. Logistic regression (LR) was used as the optimal 
model in six machine learning models based on medical records and radiomic 
features. The nomogram, calibration curves, and AUC values demonstrated that LR 
performed best for prediction.

Discussion: This study provides insights into the relationship between microbes, 
metabolic pathways, and blood test indicators in sepsis. The developed machine 
learning model shows potential for aiding in clinical diagnosis. However, further 
research is needed to validate and improve the model.
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1 Introduction

Sepsis is a severe organ dysfunction endangering life, resulting from 
impaired host function triggered by infection (1, 2). Epidemiological 
survey data show (3) that sepsis is characterized by a high incidence and 
mortality, and its incidence has been increasing in recent years. Each 
year, sepsis impacts over 30 million individuals globally and leads to 
around 6 million deaths (4). According to domestic statistics, around 
20.6% of ICU patients experience sepsis, the 90-day overall mortality is 
35.5%, and the rate is as high as 51.94% combined with septic shock (5). 
Sepsis is a serious threat to physical health.

Sepsis has a variety of clinical manifestations, including fever, 
increased heart rate, shortness of breath, hypotension, changes in 
consciousness, etc. (6). Additionally, patients may experience systemic 
multiple organ dysfunction such as pneumonia, acute respiratory 
distress syndrome (ARDS), renal impairment, and cardiac 
insufficiency. Severe sepsis can lead to shock and even death. Therefore, 
an early diagnosis is particularly important for the treatment of sepsis. 
It is diagnosed based on the evidence of infection and manifestations 
of systemic inflammation (7). Currently, the diagnosis of sepsis is 
mainly based on blood culture (8), and white blood cell (WBC) count, 
classification, C-reactive protein (CRP), and procalcitonin precursor 
(PCT) are determined for auxiliary diagnosis (9).

With the advancement of big data analysis, genomics research, 
and biomarker research, the pathogenesis of sepsis will be further 
clarified (10), which will facilitate molecular biology-oriented 
diagnosis of sepsis, improve the sensitivity and specificity of 
diagnosis, and formulate more appropriate diagnostic criteria to 
reflect the infection and uncontrolled response of the body, thereby 
further contributing to the early identification and diagnosis of 
sepsis. It can also reflect the characteristics of dynamic changes in 
the disease, provide conditions for accurate treatment of sepsis, and 
improve patient survival. This project aimed to obtain a 
comprehensive bacterial infectious sepsis-specific pathogenic 
microorganism through comparative research and whole genome 
sequencing technology on the metagenomic next-generation 
sequencing (mNGS) platform, and to establish a prediction model 
of sepsis integrating radiomics and machine learning algorithms, 
hoping to provide an implication for its clinical diagnosis.

2 Materials and methods

2.1 Data analysis

Metagenomic sequencing was performed on 25 patients with 
sepsis, and nine samples from the normal group were used for 
metagenomic sequencing. After the raw data were exported, 
low-quality reads were filtered out and the obtained valid data were 
used for subsequent analyses. The host sequences were first removed, 
and sequence alignment was used to infer the species composition and 
relative abundance of the microbial community, followed by plotting 
of the species abundance profile. The function, consanguinity, and 
metabolic pathways of each gene were determined by comparing and 
annotating the genes to a known database. Through integration and 
statistical analyses of the annotated results, functional modules and 
metabolic pathways involved in the microbial community were 
identified, and their roles in the ecosystem were explored.

2.2 Radiomics analysis

The region of interest (ROI)/volume of interest (VOI) usually 
refers to a lesion that was manually segmented using 3D Slicer v5.1.0. 
Quantitative features were extracted from the digital images, which 
were stored in a shared database. The data were mined, and hypotheses 
were generated or validated. A plugin of the 3D Slicer v5.1.0 software 
PyRadiomics was used to perform radiomic feature extraction from 
each ROI. The plugin automatically extracted 851 radioactive features 
from each ROI. It includes first-order statistical features (energy, 
entropy, mean, standard deviation, maximum, etc.), shape-and size-
based features (maximum 3D diameter, volume, superficial area, etc.), 
texture features (grayscale co-occurrence matrix GLCM and grayscale 
run matrix GLRLM), and wavelet-based transform features.

2.3 Construction of a machine learning 
model

In the training set, the selection was made by 10-fold cross-validation 
and grid search 10 times, and six classification algorithms (LR: logistic 
regression; RF: random forest; adaboost: adaptive enhancement; SVM: 
support vector machine; NB: naive Bayes; GBDT: gradient enhancement 
decision tree) of the corresponding cohort were obtained. The six 
classification algorithms completed by the training were called to train the 
data and build the model, and the prediction results of the different 
models were obtained. The average value of the multiple accuracies was 
used as the final model score, and the final model was generated 
simultaneously. A receiver operating characteristic (ROC) curve was 
plotted for each training model and test result, and the area under the 
curve (AUC), accuracy, sensitivity, recall rate, and specificity 
were calculated.

2.4 Statistical analysis

Statistical analyses were performed using R software (V4.2.2). The 
measured data were tested for homogeneity and normality of variance. 
For measurement data following a normal distribution, the 
mean ± standard deviation was utilized, with t-tests employed for 
inter-group comparisons. Count data were presented as percentages, 
and differences between groups were assessed using χ2 tests, with 
significance set at p < 0.05. Correlation analysis of microorganisms, 
metabolic pathways, and blood test-related indicators was performed 
using the Spearman’s correlation coefficient. Based on R software 
(version 4.0.3) and R studio platform, Lasso feature dimensionality 
reduction, logistic regression model construction, ROC curve 
plotting, calibration curve plotting, nomographic chart and clinical 
decision analysis curve were performed using the corresponding 
software package.

3 Results

3.1 Microbiome composition analysis

The α-diversity analysis showed that ACE, Chao1, Shannon, and 
Simpson indices of sepsis patients were significantly higher than 
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those of normal group (p  < 0.05), indicating that the microbial 
abundance and diversity of sepsis patients were elevated (Figure 1A). 
The β-diversity results showed small sample differences between the 
two groups (Figure 1B). Based on the species annotation results, the 
top 20 species in terms of abundance were selected at the species 
level for each sample in the sepsis and normal groups to plot the 
relative abundance histogram (Figure 2A). The top 10 microbial 
genera in both groups included Vitis vinifera, Mycobacterium 
canettii, Solanum pennellii, Ralstonia insidiosa, Ananas comosus, 
Moraxella osloensis, Escherichia coli, Staphylococcus hominis, 
Camelina sativa, and Cutibacterium acnes. The enriched metabolic 
pathways were mainly protein families: genetic information 

processing, translation, protein families: signaling and cellular 
processes, and unclassified: genetic information processing 
(Figure 2B).

3.2 Correlation analysis

The analyses revealed (Figures  3A–C) a correlation between 
metabolic pathways, blood detection indicators, and pathogenic 
microorganisms, with a significant positive correlation (p  < 0.05) 
between IL-6 and membrane transport. Metabolism of other amino 
acids showed a significant positive correlation (p  < 0.05) with 

FIGURE 1

Diversity and abundance analyses of pathogenic microorganisms. (A) α-diversity analyses showed that ACE, Chao1, Shannon, and Simpson indices of 
sepsis patients were significantly higher than those of normal group (p  <  0.05). (B) β-diversity analyses showed that the sample difference between the 
two groups was small.
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FIGURE 2

Species annotation results and KEGG metabolic pathway enrichment. (A) Bar chart of the relevant abundance of the top 20 species in the sepsis and 
normal groups. (B) Enriched metabolic pathways.
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FIGURE 3

Correlation analysis. (A) Correlation between blood test indicators and metabolic pathways. (B) Correlation of pathogenic microorganisms and 
metabolic pathways. (C) Correlation between blood test indicators and pathogenic microorganisms.
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Cutibacterium acnes, Ralstonia insidiosa, Moraxella osloensis, and 
Staphylococcus hominis. Ananas comosus showed a significant positive 
correlation (p  < 0.05) with poorly characterized and unclassified: 
metabolism. Escherichia coli showed a significant positive correlation 
(p  < 0.05) with protein families: signaling and cellular processes, 
amino acid metabolism, and carbohydrate metabolism. WBC showed 
a significant positive correlation (p < 0.05) with Ralstonia insidiosa, 
and Staphylococcus hominis. Camelina sativa showed a significant 
negative correlation (p  < 0.05) with NEU%, CRP, WBC, and 
NEU. Solanum pennelli showed a significant negative correlation 
(p < 0.05) with NEU%, CRP, PCT, WBC, and NEU. Ananas comosus 
showed a significant negative correlation (p < 0.05) with NEU%, CRP, 
SAA, PCT, WBC, and NEU. Vitis vinifera showed a significant negative 
correlation (p  < 0.05) with NEU%, PCT, WBC, and 
NEU. Mycobacterium canettii showed a significant negative correlation 
(p < 0.05) with CRP, PCT, and WBC.

3.3 Construction of a machine learning 
model

Based on radiomics, five important image features were 
finally  screened using LASSO-Cox regression and 10-fold cross 
validation including original-shape-sphericity, original-firstorder-
10Percentile, wavelet-HHL-glcm-InverseVariance, wavelet-HHH-
glszm-ZoneEntropy, and wavelet-LLL-gldm-LargeDependenceLow
GrayLevelEmphasis (Figure 4A). Utilizing the previously outlined 
features, model performance was assessed through the ROC curve, 
revealing an AUC = 0.791 for the model’s ROC curve (Figure 4B). 
Significant features were extracted from the medical records using 
LASSO, including occupancy, inflammation, blood lipids, 
prognosis, advention, and discharge (Figure 5A). Drawing from the 
characteristics outlined earlier, the model’s performance was 
analyzed via the ROC curve, indicating an AUC = 0.873 for the 
model’s ROC curve (Figure 5B).

The model performance was evaluated and compared using the 
following seven metrics: AUC, sensitivity, specificity, accuracy, 
precision, recall (F1), and prAUC. In comparison, among all the 
machine learning models, the LR model performed the best in 
classification (AUC value was 0.897  in the training set), and the 
sensitivity, specificity, accuracy, precision, F1, and prAUC values were 
also the highest in the LR model (Table 1); therefore, the optimal 
model was LR. We visualized the LR model and plotted the nomogram 
for easy clinical application (Figure 6). A calibration curve was utilized 
to assess the model’s performance, and it can be seen that the error 
between the predicted values and the real values of the prediction 
model was small, and the result was highly accurate. The AUC = 0.879 
for the model’s ROC curve, demonstrating that LR had the best 
predictive power (Figure 7).

4 Discussion

Sepsis is a serious infectious disease, and its pathogenesis 
involves multiple factors such as the immune system, 
inflammatory mediators, and vascular endothelium. The clinical 
manifestations of sepsis are diverse and it is necessary to 
comprehensively consider infection control, inflammation 
regulation, and organ support during treatment. Studies have 
shown that there may be potential benefits in the treatment and 
prevention of sepsis through the regulation of intestinal flora and 
the use of microbial preparations. The microbiota in the 
gastrointestinal tract of the human body is composed of trillions 
of bacteria that form the mucosal barrier of the intestine and are 
present in different proportions and numbers in different parts 
of the intestine, thus playing a defensive and protective role (11). 
Dysregulation of the microbiome or a reduction in microbial 
diversity is associated with altered immune responses. Sepsis 
affects the composition of the intestinal microbiome, which is 
characterized by loss of diversity, reduced abundance of key 

FIGURE 4

Machine learning model establishment based on radiomics. (A) Five important image features screened using LASSO-Cox regression and 10-fold cross 
validation. (B) The AUC value of the model ROC curve is 0.791.
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symbiotic bacteria such as Faecium and Gastrococcus, weakened 
colonization capacity of Proteus and other conditioning 
pathogens, and overpropagation, growing as a dominant bacterial 
group (12). A prospective cohort study of over 200 preterm 
infants in 2019 found that increased bacterial diversity and 
anaerobic colonization of the neonatal gut microbiome protected 
newborns from sepsis (13). The results of metagenomic 
sequencing technology in this study showed that the microbial 
abundance and diversity in patients with sepsis were significantly 
higher than those in the normal group (p  < 0.05). The top  10 
microbial abundances in the sepsis and normal groups were Vitis 
vinifera, Mycobacterium canettii, Solanum pennellii, Ralstonia 
insidiosa, Ananas comosus, Moraxella osloensis, Escherichia coli, 
Staphylococcus hominis, Camelina sativa, and Cutibacterium 
acnes, which mainly include protein families: genetic information 
processing, translation, protein families: signaling and cellular 
processes, and unclassified: genetic information processing.

Nowadays, traditional biomarkers such as CRP, PCT and IL-6 
are widely used in the diagnosis and evaluation of sepsis (9). 
Inflammation serves as a defensive reaction aimed at eliminating 
invading pathogens, mitigating detrimental stimuli, and initiating 

tissue healing. The inflammatory response is activated when 
innate immune cells detect antigenic structures via pattern 
recognition receptors that identify molecular patterns associated 
with pathogens or damage-related molecular patterns (14). 
Excessive inflammatory response contributes to tissue damage 
and organ dysfunction in individuals with sepsis. Neutrophils 
produce reactive oxygen species through chemotaxis and 
phagocytosis, leading to widespread inflammation and increased 
microvascular permeability. Excessive inflammation causes a 
large number of neutrophil degranulation and proteolytic enzyme 
release, resulting in systemic and local endothelial damage (15). 
Therefore, neutrophils reflect the inflammatory response and 
immune status of the body during sepsis. IL-6 not only activates 
neutrophils but also delays phagocytosis of senescent and 
dysfunctional neutrophils, thereby exacerbating the production 
of post-traumatic inflammatory mediators and promoting the 
onset of post-traumatic systemic inflammatory response 
syndrome (16). Normal human serum IL-6 levels are very low, 
but when the body has an inflammatory response, IL-6 levels are 
significantly increased, and its level are increased earlier than 
other acute stage proteins, so it is helpful for the early diagnosis 

FIGURE 5

A machine learning model based on medical record data. (A) Lasso extraction of seven features from the medical records. (B) The AUC value of the 
model ROC curve is 0.873.

TABLE 1 Model construction and evaluation.

Model AUC Sensitivity Specificity Accuracy Precision F1 prAUC

adaboost 0.659 0.635 0.630 0.632 0.665 0.695 0.622

GBDT 0.559 0.410 0.685 0.547 0.613 0.609 0.742

LR 0.897 0.800 0.850 0.825 0.842 0.820 0.776

NB 0.775 0.600 0.845 0.723 0.824 0.751 0.615

RF 0.801 0.670 0.670 0.670 0.711 0.716 0.602

SVM 0.785 0.645 0.655 0.650 0.692 0.713 0.620
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of emergency infection patients and can reflect the change in the 
disease condition (17). CRP is an acute phase protein produced 
by hepatocytes under the action of IL-6, and the serum CRP level 

in healthy people is very low; however, it can be  significantly 
increased during bacterial infection, tissue damage, or stress, and 
it is significantly increased at the early stage of inflammation, 

FIGURE 6

The LR model based on the features extracted from medical records and radiomics is visualized using nomogram.

FIGURE 7

Performance evaluation of the LR model. (A) The calibrate calibration curves. (B) The ROC curve.
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which is a sensitive indicator of bacterial infection (18, 19). PCT 
is a hormone-free calcitonin peptide. Under normal physiological 
conditions, serum PCT levels are extremely low (20). However, 
under the action of inflammatory cytokines, the liver, kidneys, 
muscles, adipose tissue, and other solid organs of septic shock 
patients produce a large amount of PCT, resulting in a significant 
increase in the blood PCT levels of patients (20). Therefore, it can 
be used to diagnose, evaluate, and predict infectious diseases by 
measuring serum PCT levels in patients. Serum amyloid A (SAA) 
can be used as a sensitive indicator to reflect body infection and 
inflammation management, playing a crucial role in the adjunct 
diagnosis of infectious diseases (21). WBC is a common indicator 
of systemic inflammation, and relevant studies have reported that 
WBC count can diagnose early sepsis and is closely related to its 
prognosis (22). By analyzing the correlation between sepsis 
detection indicators and pathogenic microorganisms, it is 
possible to improve the diagnostic accuracy of sepsis, formulate 
more effective treatment options, and evaluate the prognosis of 
patients, which can help improve the recovery and survival rates 
of patients with sepsis. In this study, the correlation between 
sepsis-related inflammatory indicators, pathogenic 
microorganisms, and metabolic pathways was analyzed. The 
correlation analysis revealed a significant positive correlation 
(p < 0.05) between IL-6 and membrane transport. Metabolism of 
other amino acids showed a significant positive correlation 
(p  < 0.05) with Cutibacterium acnes, Ralstonia insidiosa, 
Moraxella osloensis, and Staphylococcus hominis. Ananas comosus 
showed a significant positive correlation (p < 0.05) with poorly 
characterized and unclassified: metabolism. Blood test-related 
indicators showed a significant negative correlation (p < 0.05) 
with microorganisms.

Radiomics is the high-throughput extraction of a large amount 
of information from medical images to achieve lesion segmentation, 
feature extraction, and model establishment. It assists clinicians in 
making the most accurate diagnosis by conducting deeper mining, 
prediction, and analysis of massive amounts of image data 
information. It can also be  intuitively understood as converting 
visual image information into deep quantitative features (23). In 
recent years, with the enhancement of computer data processing 
capabilities, improvement of image recognition technology, and 
continuous improvement of machine learning algorithms, in-depth 
data information of massive medical images can be  mined and 
analyzed (24, 25). This capability has been applied to assess the 
severity of diseases (26), construct disease monitoring systems 
(automated alerting system) (27), and enable early prediction of 
diseases (28–31). Zhang et al. (32) found that the establishment of 
an XGBoost prediction model can predict sepsis-associated 
delirium earlier and is suitable for patients who are difficult to 
evaluate using traditional methods. Ge et  al. (29) developed a 
machine learning model to accurately predict the occurrence of 
sepsis-associated acute brain injury and provide a basis for early 
intervention and treatment. In this study, the AUC value of the 
model based on the features extracted by radiomics was 0.791, the 
AUC of the medical record data features is 0.873; the AUC value of 
the logistic regression model based on the features extracted from 
medical records and radiomics was 0.879. It is proven that the 
model prediction ability is better when the two features 
are combined.

In this study, the blood samples of patients with sepsis were 
metagenomically sequenced to explore the complex relationship 
between microorganisms, metabolic pathways and blood test 
indicators, which provided a new idea and method for the 
diagnosis of sepsis. At the same time, a machine learning model 
based on medical records and radiomic features was developed 
for clinical diagnosis of sepsis, which filled some gaps in this 
field. The sample size of this study was small; the results may 
have been affected by sample selection, and further expansion of 
the sample size is required to verify the stability of the 
conclusions. Although the establishment of machine learning 
models has achieved certain prediction capabilities, they still 
need to be verified and optimized on larger datasets.

5 Conclusion

Taken together, microbial abundance and diversity were 
elevated in the sepsis group. Correlation analysis of blood test-
related indicators with microbial and metabolic pathways showed 
significant correlations, which might contribute to further 
clinical diagnosis and treatment. The LR prediction model based 
on radiomics and medical record data had good diagnostic 
efficacy and calibration for identifying patients with sepsis, 
which is a potential auxiliary tool for clinical decision-making.
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