
TYPE Original Research

PUBLISHED 14 May 2024

DOI 10.3389/fmed.2024.1400137

OPEN ACCESS

EDITED BY

Kai Jin,

Zhejiang University, China

REVIEWED BY

Meng Wang,

Agency for Science, Technology and Research

(A*STAR), Singapore

Xiayu Xu,

Xi’an Jiaotong University, China

*CORRESPONDENCE

Fang Yang

yangf@nimte.ac.cn

Yitian Zhao

yitian.zhao@nimte.ac.cn

†These authors have contributed equally to

this work and share first authorship

RECEIVED 13 March 2024

ACCEPTED 15 April 2024

PUBLISHED 14 May 2024

CITATION

Chen T, Bai Y, Mao H, Liu S, Xu K, Xiong Z,

Ma S, Yang F and Zhao Y (2024)

Cross-modality transfer learning with

knowledge infusion for diabetic retinopathy

grading. Front. Med. 11:1400137.

doi: 10.3389/fmed.2024.1400137

COPYRIGHT

© 2024 Chen, Bai, Mao, Liu, Xu, Xiong, Ma,

Yang and Zhao. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

Cross-modality transfer learning
with knowledge infusion for
diabetic retinopathy grading

Tao Chen1,2†, Yanmiao Bai2†, Haiting Mao1,2, Shouyue Liu1,2,

Keyi Xu1,2, Zhouwei Xiong1,2, Shaodong Ma2, Fang Yang1,2* and

Yitian Zhao1,2*

1Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, China, 2Institute of
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Background: Ultra-wide-field (UWF) fundus photography represents an

emerging retinal imaging technique o�ering a broader field of view, thus

enhancing its utility in screening and diagnosing various eye diseases, notably

diabetic retinopathy (DR). However, the application of computer-aided diagnosis

for DR using UWF images confronts two major challenges. The first challenge

arises from the limited availability of labeled UWF data, making it daunting to train

diagnostic models due to the high cost associated with manual annotation of

medical images. Secondly, existing models’ performance requires enhancement

due to the absence of prior knowledge to guide the learning process.

Purpose: By leveraging extensively annotated datasets within the field, which

encompass large-scale, high-quality color fundus image datasets annotated at

either image-level or pixel-level, our objective is to transfer knowledge from

these datasets to our target domain through unsupervised domain adaptation.

Methods: Our approach presents a robust model for assessing the severity

of diabetic retinopathy (DR) by leveraging unsupervised lesion-aware domain

adaptation in ultra-wide-field (UWF) images. Furthermore, to harness the wealth

of detailed annotations in publicly available color fundus image datasets, we

integrate an adversarial lesion map generator. This generator supplements the

grading model by incorporating auxiliary lesion information, drawing inspiration

from the clinical methodology of evaluating DR severity by identifying and

quantifying associated lesions.

Results: We conducted both quantitative and qualitative evaluations of our

proposed method. In particular, among the six representative DR grading

methods, our approach achieved an accuracy (ACC) of 68.18% and a

precision (pre) of 67.43%. Additionally, we conducted extensive experiments

in ablation studies to validate the e�ectiveness of each component of our

proposed method.

Conclusion: In conclusion, our method not only improves the accuracy of DR

grading, but also enhances the interpretability of the results, providing clinicians

with a reliable DR grading scheme.

KEYWORDS

ultra-wide-field image, domain adaptation, diabetic retinopathy, lesion segmentation,

disease diagnosis
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1 Introduction

Diabetic Retinopathy (DR), a typical fundus disease caused

by the high level of blood glucose and high blood pressure, is

one of the leading causes of visual impairment and blindness (1).

The severity of DR can be classified into five stages based

on the presence and quantity of retinal lesions, including

microaneurysms (MAs), hemorrhages (HEs), soft exudates (SEs),

and hard exudates (EXs). These stages encompass normal,

mild non-proliferative DR (NPDRI), moderate non-proliferative

DR (NPDRII), severe non-proliferative DR (NPDRIII), and

proliferative DR (PDR). Accurate grading of DR severity assumes

pivotal importance as it guides clinicians in devising personalized

treatment strategies. However, the precise determination of DR

severity levels can be a time-consuming task for ophthalmologists

and presents a formidable challenge for novice ophthalmology

residents. Therefore, the development of an automated system

for early detection and severity grading of DR holds immense

potential, offering substantial benefits to both patients and

ophthalmologists alike.

Over the past half-century, the diagnosis of DR has

predominantly relied on the utilization of Color Fundus

Photography (CFP), as illustrated in Figure 1A, wherein critical

retinal lesion anomalies are depicted. CFP serves as a reasonably

effective screening tool for early-stage DR. Nevertheless, CFP

exhibits a limited imaging range, typically spanning from 30◦ to

60◦, thereby posing challenges in the identification of anomalies

beyond this range. This limitation results in less ideal automated

DR grading results.

Optos Ultra-Wide-Field (UWF) imaging technology is a novel

non-invasive imaging method with a high resolution and short

acquisition durations of 0.25 s. Compared to CFP images, UWF

images exhibit a wide imaging range of up to 180◦−200◦, covering

approximately 80.0% of the retina in a single frame (2, 3).

This enables UWF images to more effectively detect peripheral

retinal lesions (4, 5), as shown in Figure 1B. This enables UWF

imagesto hold more advantage in diagnosing DR in comparison

to CFP images (6–10). Thus, developing an automated DR grading

algorithm based on UWF images is more meaningful.

Over the last decade, methods for automatic screening or

grading of DR severity using CFP images have been rapidly

developed with remarkable accuracy of ≥ 90.0% (11–17). This

is largely due to the large scale, high quality CFP dataset

that is publicly available, which provide pixel-level annotations

and image-level annotations, such as EyePACS (18), DDR (18),

IDRiD (19) etc. Despite several studies (20, 21) have conducted DR

grading using UWF images, the performance of these methods has

been found to be less satisfactory compared to those using the CFP

iamges. The reasons may be attributed to the following factors: (1)

The scarcity of large-scale annotated data for deep learning training

in UWF imaging poses a significant challenge in training high-

performing grading models using fully supervised methods. The

only public available dataset of UWF contains 256 UWF images

with DR (22). (2) The lesion information is crucial for enhancing

the precision of DR grading. However, the contrast divergence

between lesions and ordinary tissue in UWF images is slight, which

hampers precise grading of DR.

To address these challenges, we aim to utilize a substantial

dataset of well-annotated CFP images along with knowledge

infusion to enhance the performance of DR grading. Recent

studies have explored unsupervised domain adaptation learning

methods to mitigate the domain-shift issue between the source and

target domains (23–25). These methods leverage external labeled

datasets to acquire general knowledge of diseases and transfer this

knowledge to object categories without labels. In this study, we

design a transfer learning model utilizing the rich pixel-level and

image-level annotations available in CFP images to facilitate the DR

grading in UWF images. A preliminary version of this work has

been previously published in conference proceedings (26). In this

paper, we present the following extensions:

1) To enhance the recognition of complex lesions for the lesion

segmentation task, we introduce a novel roll-machine modulated

feature fusion block. To enable comprehensive evaluation, we

construct a new dataset called UWF-seg, which includes 27 images

with annotations of different lesions. We provide evaluations on

UWF-seg and additional result analyses to further validate the

effectiveness of our proposed method.

2) To gain deeper insights into proposed method, we conduct

extensive additional experiments, including evaluations with a

larger set of unlabeled images, exploration of different loss

weights, and analysis of different exemplar images. Moreover, we

carefully examine failure cases to identify potential limitations for

improvement.

3) We enrich the discussion in this study by providing a

more comprehensive analysis of the relationship and comparison

between our work and related studies. Additionally, we offer a

detailed technical description of our proposed method and engage

in an in-depth discussion of its limitations. Finally, we outline

future research directions to address these limitations and extend

the scope of our work.

2 Related works

2.1 Computer-aided diagnosis in UWF

In this section, we survey the current studies that utilizes

UWF imaging to identify a range of retinal diseases, with a

particular emphasis on the computer-aided diagnosis of diabetic

retinopathy. Recently, deep learning models have been applied

to UWF images with the goal of detecting various retinal

diseases. For instance, central retinal vein occlusion (27, 28),

Sickle cell retinopathy (29, 30) and retinal detachments (31, 32),

respectively. These studies have underscored the clinical advantages

of employing UWF imaging in diagnosing various peripheral

retinal pathologies. Nagasawa et al. (33) conducted a study to

assess the accuracy of utilizing UWF fundus images alongside the

VGG16 model for detecting PDR. In a subsequent investigation

(34), they extended their research by comparing the accuracy

of VGG16 using two distinct types of retinal images for DR

grading. These methodologies primarily concentrate on the binary

classification of DR, placing a premium on practical clinical

relevance over architectural enhancements in network design. In

efforts to refine the precision of DR grading, Liu et al. (35) curated
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FIGURE 1

(A, B) are samples of CFP and UWF with DR, respectively. The imaging area of (A) is approximately that of the red circle in (B). Both can show

important lesions associated with DR, but (B) gives a more complete picture of the retinopathy.

a proprietary UWF dataset comprising 101 DR fundus images.

They devised a deep learning-based automatic classification model

integrating a novel preprocessing technique, achieving an average

accuracy of 0.72. However, the utilization of UWF imaging in

detecting DR-related lesions remains relatively underexplored, with

only a few researchers delving into this domain. For example,

Levenkova et al. (36) utilized support vector machine (SVM)

algorithms to identify features of DR lesions, categorizing them

into bright lesions (such as cotton wool spots and exudates)

and dark lesions (including microaneurysms, spots, and flame-

shaped hemorrhages). However, their study exclusively focused on

segmenting bright and dark signs, neglecting the comprehensive

diagnosis of DR grade. The efficacy of these methodologies in

addressing DR challenges largely hinges on the availability of

meticulously annotated data. Nevertheless, the scarcity of UWF

data and the prohibitive costs associated with labeling pose

significant barriers, thus constraining access to this valuable

resource and hindering the broader implementation of deep

learning techniques in this domain.

Furthermore, many current learning-based methods for

grading DR lack interpretability and fail to integrate prior

knowledge to inform the classification process. Thus, there is a

critical need to develop an interpretable approach for DR grading

using UWF images in an unsupervised manner, capitalizing on

inherent lesion features. In particular, Ju et al. (7) introduced

a methodology that incorporates CFP images to aid in training

diagnostic models based on UWF images. They utilized an

enhanced CycleGAN framework to bridge the domain disparity

between CFP and UWF images, thereby generating new data

with UWF image characteristics. Subsequently, these generated

images underwent labeling via pseudo-labeling techniques. While

the model exhibited promising performance across various retinal

disease diagnosis tasks, including DR grading, its reliance primarily

on a GAN-based model for transforming CFP images into UWF

fundus images is notable. This strategy aimed to augment the

limited UWF imaging dataset with additional data. However,

the approach encountered challenges in effectively transferring

knowledge from CFP images to UWF images. Consequently, the

model’s performance remains susceptible to the potential impact of

synthesized UWF images.

2.2 Domain adaptation

Domain adaptation (DA) serves as a crucial paradigm

within the realm of transfer learning in machine learning,

aimed at mitigating the distribution disparity between domains.

Fundamentally, it involves identifying similarities between different

data distributions in related tasks and harnessing these similarities

to facilitate cross-domain recognition problems (37–39). Several

systematic reviews (40–42) offer comprehensive insights into

this method from various perspectives. For instance, domain

adaptation from general to complex situations, including methods

based on domain distribution difference (43, 44), adversarial

learning (45, 46), reconstruction-based methods (47, 48),

and sample generation-based methods (49, 50). Recently,

the efficacy of DA leveraging deep architecture has garnered

empirical support across numerous vision tasks, including textual

emotion (51), object detection (52), and pose estimation (53).

Unsupervised domain adaptation (UDA) represents a notable

advancement, facilitating the prediction of target domain data

without necessitating manual annotation (43). This approach

offers a potential and viable avenue for mitigating the challenges

associated with limited labeled data.

In the realm of medical image analysis, Unsupervised

Domain Adaptation (UDA) stands as a widely explored area

aimed at mitigating disparities between cross-domain datasets

derived from various imaging equipment types, thereby enhancing

image segmentation or classification. Kamnitsas et al. (54)
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introduced UDA techniques to biomedical imaging, presenting

an unsupervised domain-adaptive network tailored for brain

lesion segmentation. Furthermore, Chai et al. (55) delved into

the potential of reducing disparities between Optical Coherence

Tomography (OCT) images captured using Topcon and Nidek

devices, with the aim of achieving more effective segmentation

of the choroid region. Due to the substantial scarcity of data in

certain intricate medical image tasks, there has been widespread

interest in employing unsupervised transfer learning to alleviate

data constraints, leading to notable advancements as evidenced

by works (24, 56, 57). Zhang et al. (58) introduced a cooperative

UDA algorithm tailored for microscopy image disease diagnosis,

demonstrating that the integration of rich labeled data from

relevant domains can effectively enhance learning in cross-

domain detection tasks. In the domain of DR grading, the

predominant focus has been on the transition between DR lesion

detection and grading tasks (59–61). However, these approaches

have primarily been developed based on conventional color

fundus images. In our prior investigation (26), we explored the

application of UDA to train a diagnostic model for UWF images,

leveraging the assistance of CFP images. Our experimental findings

demonstrated that the proposed method effectively transfers

knowledge from CFP images pertaining to DR to UWF images,

consequently leading to enhanced performance in DR disease

recognition tasks.

3 Proposed method

3.1 Problem formulation

Given annotated color fundus photography (CFP) images XS

as the source domain and ultra-widefield (UWF) images without

any annotations XT as the target domain, our objective is to

leverage the high-quality annotated CFP images to train a robust

diabetic retinopathy (DR) grading model for UWF images in

an unsupervised manner. Additionally, we incorporate a lesion

segmentation model G(·) to augment the grading model C(·) with

extra knowledge, mirroring the clinical process of assessing DR

severity and enhancing grading accuracy. To train the segmentation

model, our aim is to minimize the disparity between the predicted

lesion maps from UWF images and the ground truth lesion maps

fromCFP images, as formulated by the following objective function

(Equation 1):

min
G

L∑

l=1

LSeg (G(X
S),G(XT ), sSl , s

T
l ) (1)

where sS
l
denotes the the CFP lesion maps of pixel-level annotated

CFP images and sT
l
is the UWF predicted lesion maps. L is the

total number of lesion varieties related to a particular disease.

The optimization function for the disease grading model is

defined as Equation 2:

min
C

LCls

(
C

(
XT + G(XT )

)
· LEAM

(
G

(
XT

))
, yc

I
)

(2)

where yIc denotes the disease severity classification prediction

for image-level annotated CFP data. Thus, the pivotal aspect in

achieving collaborative learning across different modules lies in the

design and optimization of G(·), C(·), and LEAM(·). The overall

architecture of the proposed framework is illustrated in Figure 2.

3.2 Unsupervised DR grading module

The DR grading module comprises a deep feature extractor

FE(·), a label predictor C, and a domain predictor D, facilitating

unsupervised domain adaptation for knowledge transfer.

Meanwhile, to enhance the extraction of discriminative features

tailored for diabetic retinopathy (DR) classification, we employ

two classifiers, C1 and C2. These classifiers aid the feature extractor

in disregarding domain differences. Given the complexity of

domain adaptation evaluation, we employ the pretrained ResNet50

encoder (62) in the hierarchical module. Compared to ResNet128

and ResNet32, ResNet50 has moderate depth and parameter count,

making it easier to train and fine-tune for feature extraction. Thus,

it can extract n-dimensional feature vectors, denoted as f S and f T ,

corresponding to the source and target domains, respectively.

Subsequently, a class label predictor C and a domain predictor

D follow. The label predictor estimates the probability of DR

severity grading, while the domain predictor ensures learned

feature invariance across domains. The feature vector f is mapped

to d = 0 (for input from the source domain S) or d = 1

(for input from the target domain T) by the domain predictor,

ensuring similar feature distributions across domains. The domain

predictor D comprises two fully connected (FC) layers. The first

FC layer is accompanied by batch normalization (BN) and a ReLU

activation function, while the second layer is followed by BN and

a softmax activation function. The feature vector f is transformed

by D into either d=0 (when the input is XS or d=1 (when the

input is XT), ensuring that the feature distributions from both

domains remain as similar as possible. While the domain predictor

effectively achieves domain alignment, it may not guarantee class

discriminability. To ensure discriminative feature representations,

we maximize the discrepancy between the two classifiers, C1 and

C2, to obtain highly discriminative features. The details of the loss

function are as follows in Equation 3:

Lcd = Extj∼Dt

∥∥∥C1
(
G

(
x̂tj

))
− C2

(
G

(
x̂tj

))∥∥∥
1

+

∥∥∥C
(
G

(
x̂tj

))
− C1

(
G

(
x̂tj

))∥∥∥
1

+

∥∥∥C
(
G

(
x̂tj

))
− C2

(
G

(
x̂tj

))∥∥∥
1

(3)

C, C1, and C2 denote three pre-trained classifiers trained via

supervised learning on the source domain. When G and C are

fixed, maximizing the discrepancy between C1 and C2 in the target

domain enables them to identify target samples not captured by

the support vectors of the source. By training G to minimize this

discrepancy, while C1 and C2 remain fixed, the resulting target

features become highly discriminative. The primary classifier C

defines a decision hyperplane between C1 and C2, optimizing the

distance between the support vectors and the decision boundary.

It’s important to note that the class predictor C is utilized during

both training and testing procedures to obtain grading labels,

while the domain predictor D, C1, and C2 are only employed

during training.
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FIGURE 2

Framework of the proposed method. Our net includes three components: the DR grading module based on transfer learning, adversarial multi-lesion

masks generate network, and lesion external attention module. The input data consists of a very small set of unlabeled target images and a large set

of annotated source images. The adversarial multi-lesion masks generate network is used to learn multi-lesion masks, where target lesion predicted

will with the original images as inputs for training DR grading module based on transfer learning. At the same time, the lesion external attention

module aims to force classification network to pay those lesions for improving the final disease grading performance.

3.3 Adversarial lesion segmentation
module

To mimic the clinical process of assessing DR severity, we

introduce an adversarial domain adaptation (DA)-based UWF

segmentation model. This model serves as an ancillary tool for

UWF lesion segmentation. A schematic diagram of the lesion

segmentation subnet is depicted in the orange section of Figure 2.

As illustrated, the framework comprises two primary components:

the convolutional modulation-based lesion generator G(·) and

the adversarial domain discriminator D(·). We denote pixel-level

lesion annotations as XS, and the target domain data without such

annotations as XT . Here, XS and XT belong to RC×W×H , where

H, W, and C represent the height, width, and number of channels

of the input, respectively. Additionally, MS and MT represent the

lesion prediction results for the source and target domain data,

respectively. The proposed UWF lesion segmentation subnet is

elaborated as follows.

3.3.1 The convolutional modulation-based lesion
generator

Our proposed model is implemented based on a U-shaped

structure, also known as a Res-Unet proposed by Xiao et al. (63).

We extended the Res-UNet with the deeper multi-scale residual

module and modified it to be a lesion generator. Specifically, the

encoder and decoder components for the mask generator comprise

nine feature mapping tuples. Additionally, two convolutional layers

with Sigmoid activation are appended to generate a lesion mask

for the input image. This architecture serves as the segmentation

backbone network (Base) for the lesion segmentation task.

In addition, we introduce a Convolutional Modulation Feature

Fusion block (CMFF) to enhance the model’s ability to learn

complex lesions and achieve accurate segmentation in a larger

receptive field of UWF images. The convolutional modulation

operation (64) encodes spatial features to simplify self-attention

and can better leverage large kernels (≥7 × 7) nested in

convolutional layers. Inspired by U-Transformer (65), we employ

multiple CMFF blocks instead of traditional skip connections,

aiming to fully integrate multi-scale high-level feature maps with

relevant encoding features, as illustrated in Figure 2. A second

CMFF block is positioned at the end of the encoder to assimilate

distant knowledge from the input image and associate each pixel

in the high-level semantic features learned by the encoder. This

approach enables the model to capture the receptive field of the

entire image and achieve accurate lesion segmentation in UWF

images, as depicted in Figure 2. Taking the first CMFF block as

an example, for the feature maps Xi and Yi ∈ RC×W×H from
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the encoder and decoder, respectively, the CMFF operation can be

expressed as follows in Equations 4–7:

Zi = Ai ⊙ Vi (4)

Ai = DConvk×k(W1Yi) (5)

Vi = W2Xi (6)

Fi = Zi ⊙ Xi ⊕ Yi (7)

where ⊙ denotes Hadamard product, W1 and W2 are weight

matrices of two linear layers, DConvk×k denotes denotes a

depthwise convolution with kernel size k× k.

3.3.2 Adversarial domain discriminator
The lesion generator G(·) is trained on images with pixel-

level lesion annotations from the source domain (CFP images) and

unlabeled UWF images from the target domain as input, enabling

automatic lesion segmentation. With pixel-level annotated lesion

masks YS of the source domain, a combination of Dice loss LDice

and cross-entropy loss LCE is employed to minimize the difference

between the predicted lesion map MS and the ground-truths YS.

The trained G(·) is capable of outputting a segmentation result,

which represents a structured output containing feature similarity

between the source and target domains.

To further transfer knowledge from the source domain to

the target domain in the output space, an adversarial domain

discriminator D(·) needs to be introduced. The primary objective

of D(·) is to ensure that the generated sample closely resembles real

data. In our implementation, we consider the source lesion maps

MS predicted by G(·) as the real data branch and the target lesion

maps MT predicted from the UWF data as the fake data branch.

By using MS and MT as inputs for D(·), with an adversarial loss,

we aim to reduce the domain gap between the source and target

domains, thereby enhancing the accuracy of lesion prediction in

the target domain images. The total loss for optimizing the lesion

segmentation task can be defined as in Equations 8–10:

LTotal = LAdv + λLSeg . (8)

LAdv = min
G

max
D

E[log(D(MS)]+ E[log(1− D(MT )]. (9)

LSeg = LDice
(
Ms,Ys) + LCE

(
Ms,Ys) =

σ
2×

∣∣Ms ∩ Ys
∣∣

(|Ms| + |Ys|)
+

E
[
−Ys · logMs −

(
1− Ys) · log

(
1−Ms)] .

(10)

where λ the balance weight of two objective functions, σ the balance

weight of Dice loss and cross-entropy loss.

The domain discriminator consists of four convolutional

tuple maps, as illustrated in the Figure 2. Each tuple comprises

convolutional operations with varying kernel sizes aimed at

progressively encoding contextual information to expand the

receptive field. Specifically, the first tuple conducts convolutional

operations with a kernel size of 7×7 and padding of 3.

Subsequently, the second and third tuples perform convolutional

operations with a kernel size of 5×5 and padding of 2. The final

convolutional operation employs a kernel size of 3×3 and padding

of 1. A stride of 2 is applied for each tuple, with linear ReLU

activation and batch normalization also incorporated. The output

of the last convolutional layer undergoes spatial dimensionality

reduction via an adaptive average pooling layer. Subsequently, a

binary output is generated through a fully connected layer and

Sigmoid activation function, facilitating the distinction of whether

the predicted lesion map output originates from the source domain

or the target domain.

3.3.3 Lesion external attention module
Despite the integration of the generated lesion maps with the

grading module, the independent nature of the lesion generation

module and the grading module hinders the effective utilization

of lesion information to guide the learning process of the grading

module. Furthermore, the disease grading task is confronted with

challenges beyond the diverse lesion types of varying clinical

significance. The disease grading task also encounters challenges

stemming from complex background artifacts (such as eyelash and

eyelid interference) and noise present in ultra-widefield (UWF)

images, particularly when employing unsupervised approaches.

To improve the integration of filtered lesion knowledge into

the grading module, we introduce a Lesion External Attention

Module (LEAM). Unlike previous self-attention mechanisms (66),

we utilize an external module, specifically the lesion generation

module, to generate the lesion attention map. This attention

map is subsequently used to re-calibrate the features within the

grading module. The LEAM acts as a bridge, facilitating the

effective utilization of lesion information obtained from the lesion

generation module to guide the learning process of the grading

module. This mechanism assists the grading module in a human-

like manner for classification, automatically extracting task-specific

lesion regions while ignoring irrelevant information to enhance

grading accuracy.

The details of LEAM are illustrated in Figure 2. We begin

by extracting the feature maps f Li from the lesion generation

module, where i represents the i-th intermediate layer of the

generator GL(·). Max pooling and average pooling are performed

across channels to obtain two spatial lesion descriptors. Max

pooling helps capture locally important features in the image, while

average pooling aids in extracting global features and reducing

noise. Combining both enhances feature representation, enabling

the model to better understand the image. Subsequently, these

concatenated descriptors are fed into a convolutional layer followed

by a sigmoid activation layer to generate the lesion attention map.

In our approach, the disease grading module and LEAM are

intricately integrated. Initially, we utilize GL(·) to extract the lesion

feature maps. Once pre-trained, f L
l=i

(where i denotes the i-th

different intermediate base layer of the U-shaped network encoder)

serves as input to the LEAM. Following maximum pooling, average

pooling, and convolution operations, a lesion attention map mL
l=i

is produced. Subsequently, we multiply the feature maps f Gi from

the grading module (with i denoting the i-th intermediate layer

of the grading module) by mL
i . This is followed by an element-

wise summation operation with f Gi to derive the new feature maps

f̃ Gi . The overall attention process can be summarized as follows in

Equation 11:

mL
i = σ

(
Conv

(
AvgPool

(
f Li

)
‖ MaxPool

(
f Li

)))
,

f̃Gi = (fGi ⊗mL
i )⊕ fGi ,

(11)
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TABLE 1 The summary and distribution statistics in our project image datasets.

Dataset Annotation modes Images Nomal NPDRI NPDRII NPDRIII PDR Tasks

IDRID Pixel-level 81 - - - - - Seg-Source

EYEPACS Image-level 8,000 1,715 1,715 1,714 1,514 1,342 Grad-Source

DeepDRiD Image-level 206 60 57 56 23 4 Grad-Target

Local-UWF
Pixel-level 27 0 6 9 7 5 Seg-Target

Image-level 1212 412 202 193 218 187 Grad-Target

where ‖ denotes the concatenation operation, σ denotes the

sigmoid activation function. ⊗ and ⊕ demote the element-wise

multiplication and element-wise sum, respectively. This design

allows more multi-scale pathological information to be extracted

from UWF images, which helps our unsupervised transfer learning

framework to be more accurate and robust.

4 Experiments

4.1 Data description

In our experiment, two types of datasets were involved: source

domain and target domain. A summary of used datasets related to

this experiment is provided in Table 1.

For the source domain data, publicly accessible datasets with

annotations, such as IDRID and EYEPACS, are available. However,

for the target domain data, there is currently no publicly available

dataset with high-quality lesion segmentation labels. Therefore, one

of the primary objectives of our benchmark is to introduce a fine-

grained lesion annotated dataset to facilitate a more comprehensive

evaluation of the proposed lesion segmentation subnetwork and

enable a more interpretable diagnosis of DR. Additionally, we

assess the grading performance of our DeepMT-DR method on

the public UWF dataset, namely DeepDRiD. Detailed information

about existing datasets and our proposed dataset is provided below.

4.1.1 IDRID
IDRID is the DR dataset providing pixel-level multi-lesion

annotations, is one of the most commonly used public datasets for

DR segmentation tasks. It comprises 81 CFP images depicting DR

symptoms, with 54 allocated for training and 27 for testing. Medical

experts meticulously annotated four types of lesions–MA (80), HE

(80), EX (81), and SE (40)–using binary masks. This dataset serves

as the source domain data to train the lesion generator.

4.1.2 EyePACS
EyePACS sourced from the DR Challenge - Kaggle Diabetic

Retinopathy Detection Competition,1 comprises 88,702 CFP

images and offers image-level grading annotations across five

categories. To maximize the inclusion of diseased samples, we

randomly sampled 8,000 images (approximately 1,600 images per

1 https://www.kaggle.com/c/diabetic-retinopathy-detection/

category) from EyePACS, creating a new subset to serve as the

source domain for training the grading subnetwork.

4.1.3 DeepDRiD
DeepDRiD is the only DR dataset providing multi-grading

annotations, to the best of our knowledge. It contains 256 UWF

images with symptoms of DR and is into UWF Set-A (77 patients,

154 images) for training, UWF Set-B (25 patients, 50 images) for

testing and UWF Set-C (26 patients, 52 images) for validating. We

use the UWF Set-C to evaluate the grading performance of our

DeepMT-DR method.

4.1.4 Local UWF
We have compiled a finely annotated Diabetic Retinopathy

(DR) Ultra-Widefield (UWF) dataset, comprising two distinct

subsets. The first subset, named UWF segmentation subset (UWF-

Seg), consists of 27 images annotated with pixel-level lesion

labels and image-level grading annotations. Lesion annotations

encompass Microaneurysms (MA), Hemorrhages (HE), Exudates

(EX), and Soft Exudates (SE), making this subset specifically

tailored for evaluating segmentation performance. The second

subset, named UWF grading subset (UWF-Grad), comprises 877

images annotated with grading labels by three ophthalmologists,

ranging from 0 to 4. During the segmentation sub-network

training, UWF-Grad served as the target domain, while UWF-

Seg was utilized for testing. For training the grading model, the

person-UWF dataset was partitioned into 60% for training and 40%

for testing. It is noteworthy that our proposed method underwent

training without leveraging any labels.

Dataset construction: The UWF image data were mainly

collected from local partner hospitals. To fully protect patient

privacy, data security regulations was strictly adhered in our dataset

construction. All the images were captured by Optos Daytona

(P200T) UWF canning laser ophthalmoscope with an imaging

resolution of 3900×3072 pixels. To ensure data quality and task

accuracy, three selection principles were adopted: 1. Removal of

images with quality issues and non-standard imaging; 2. Deletion

of images with severe blurriness; 3. Prioritization of images without

laser treatment. For the UWF-seg dataset, images with higher

severity of diabetic retinopathy and a greater diversity of lesion

types were selected.

Dataset annotation: Lesion annotation in the UWF-seg dataset

was conducted using the ITK-SNAP (67) annotation software. The

annotations were based on detailed clinical features. Specifically:

Microaneurysms (MA) were annotated based on obvious borders
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FIGURE 3

Pixel-level annotation examples from UWF-seg, including four di�erent lesions. The blue, yellow, red, and green denote microaneurysm,

hemorrhage, hard exudate, and soft exudate, respectively.

TABLE 2 Values of some key hyper-parameters in the three training

stages.

Initial learning rate Weight Batch

StageI 0.0001 0.0005 8

StageII 0.0005 0.0005 32

StageIII Same as Stage II

and red spots of various sizes distributed at the ends of blood

vessels; Hemorrhages (HE) typically manifested as circular or

patchy red spots distributed throughout the entire fundus image,

often with a relatively large volume; Exudates (EX) were annotated

based on their obvious borders and sediment-like appearance,

which was relatively small and bright white or yellow-white in

color; Soft exudates (SE) usually presented as areas with unclear

borders and a fluffy texture, exhibiting a pale white or pale yellow-

white color, often growing along the direction of the nerve fiber

layer. Partial annotation examples and their corresponding lesion

annotations are illustrated in Figure 3. Additionally, DR grading

annotations strictly adhered to international DR severity scales.

Data pre-processing: The IDRID, EyePACS, DeepDRiD, and

Local-UWF datasets exhibit variations in lighting conditions and

resolutions. Consequently, a preprocessing method based on Van

Grinsven et al. (68) was employed to standardize image quality and

enhance texture details. Moreover, to address class imbalance and

improve model robustness, horizontal and vertical flipping, along

with rotation at consistent angles, were applied to both images and

labels. Notably, UWF images often contain structural artifacts like

eyelids and eyelashes, which can negatively impact tasks such as

lesion segmentation by causing model overfitting. To mitigate this

issue, a preprocessing approach similar to that of Ju et al. (7) was

adopted. Specifically, U-Net segmentation networks were trained

to remove artifacts while preserving essential semantic information.

Subsequently, all images underwent the center-cut method to trim

the edges of the UWF fundus images.

4.2 Evaluation metrics

To quantitatively evaluate the performance of the lesion

segmentation task, we compute several metrics including the Dice

Similarity Coefficient (Dice), Area Under the Curve of the Receiver

Operating Characteristic (AUC-ROC), Area Under the Curve of

the Precision-Recall (AUC-PR), and Mean Absolute Error (MAE).

The MAE is defined as:

MAE =
1

w× h

w∑

x

h∑

y

∣∣Mi(x, y)− Y(x, y)
∣∣

whereMi indicates the final prediction of the DR lesion. To evaluate

the performance of DR grading, we utilize several widely-used

metrics for multi-class classification, including Accuracy (ACC),

Weighted Sensitivity (Sen), Specificity (Spe), and the quadratic

weighted kappa metric. The kappa metric is defined as follows:

kappa =
po − pe

1− pe

where po and pe represent the extent to which raters agree and the

expected probability of chance agreement, respectively.

4.3 Implementation details

The training methodology for the DeepMT-DR model

comprises three stages. In the first stage, we train the auxiliary task

subnet, which focuses on UWF lesion segmentation. The primary

objective of this stage is to extract adequate pathological features to

support the main DR grading task. In the second stage, we pre-train
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TABLE 3 Comparison of unsupervised segmentation of bright lesion based on convolutional modulation adversarial lesion generators.

Lesion Bright lesion (EX+SE)

Methods Dice AUC-ROC AUC-PR MAE

Base1 0.647 + 0.121 0.989 + 0.008 0.712 + 0.143 0.011 + 0.010

Base2 0.318 + 0.165 0.976 + 0.024 0.289 + 0.214 0.010 + 0.003

Base2+Adv 0.416 + 0.166 0.950 + 0.056 0.381 + 0.209 0.004 + 0.002

Base2+Adv+CMFF 0.417 + 0.161 0.970 + 0.032 0.443 + 0.203 0.006 + 0.003

TABLE 4 Comparison of unsupervised segmentation of dark lesion based on convolutional modulation adversarial lesion generators.

Lesion Dark lesion (MA+HE)

Methods Dice AUC-ROC AUC-PR MAE

Base1 0.522 + 0.127 0.963 + 0.037 0.544 + 0.175 0.013 + 0.018

Base2 0.295 + 0.181 0.890 + 0.060 0.289 + 0.203 0.029 + 0.021

Base2+Adv 0.429 + 0.150 0.906 + 0.055 0.435 + 0.199 0.015 + 0.014

Base2+Adv+CMFF 0.451 + 0.154 0.903 + 0.053 0.446 + 0.192 0.017 + 0.017

the DR grading subnet using the CFP DR severity classification

task to enhance UWF performance. In the third stage, we utilize

prior knowledge and the proposed LEAM to fine-tune the DR

grading module, leveraging the models pretrained in the first two

stages. Furthermore, in all training stages, we optimize the model

parameters using the Adam optimizer, augmented with weight

decay. Table 2 presents the values assigned to the critical hyper-

parameters during the training stages. In our implementation,

all images were resized to 512×512 pixels. We implemented the

proposed networks using Python based on the PyTorch package,

and the PC we used contained two GPUs (NVIDIA GeForce GTX

3090 Ti 24GB each).

4.4 Lesion segmentation performances

Before quantifying the impact of lesion information on

grading performance, we first demonstrate the effectiveness of the

adversarial lesion generator based on convolutional modulation for

unsupervised segmentation on the UWF-seg dataset. We evaluate

two different types of lesions: dark lesions and bright lesions,

which are key indicators of diabetic retinopathy (DR), usingmetrics

including Dice similarity coefficient, AUC-ROC, AUC-PR, and

mean absolute error (MAE). Dark lesions such as microaneurysms

(MA), blot hemorrhages, dot hemorrhages, and flame hemorrhages

are clinical signs observed in the early stages of DR. On the

other hand, bright lesions such as hard exudates (EX) and soft

exudates (SE) are characteristic of more severe stages of the

disease. Therefore, detecting both bright and dark lesions without

further subdividing them into specific types is sufficient for initial

DR grading. We investigate each proposed component of the

final model alongside two baselines. Base1: The pre-trained base

segmentation model is trained in a fully supervised manner using

54 CFP images from IDRID and evaluated using the 27 IDRID

test images, aiming to enhance the quality of knowledge learned

from the source domain. Base2: The pre-trained base segmentation

model uses 81 CFP images without an adversarial transfer strategy,

and is directly tested on the UWF-seg dataset.

The detailed segmentation performances of these methods are

reported in Tables 3, 4. For Base1, several metrics such as Dice

and AUC-ROC are already comparable to most segmentation

models trained on the same data, fully demonstrating that

the improved Base possesses good lesion extraction capabilities.

For Base2, applying the model trained on the source domain

directly to the target domain, the Dice value for bright and dark

lesions were only 31.8%, 29.5%, respectively, demonstrating a

significant domain bias problem between the source and target

domain data. On the UWF-seg dataset, a adversarial domain

adaptation based UWF lesion segmentation model consistently

outperforms Base2. the Dice value for bright and dark lesions

increases by 9.8%, 13.4%, respectively, proving that adversarial

domain adaptation can indeed benefit the UWF segmentation

results. It is worth noting that, for bright lesions, the value

of AUC-ROC actually decreased. This may be because AUC-

ROC is more sensitive to the classification boundary between

positive and negative classes, leading to more mis-classifications

on the decision boundary of the classifier. Furthermore, after

improving AUC-ROC, the AUC-PR values tend to be generally

lower. This is because pathological regions related to DR typically

represent only a small portion of the image, while normal regions

constitute the vast majority. Consequently, models often predict

normal regions more easily while neglecting pathological ones. To

address this issue, we can adjust the threshold to strike a balance

between the two. With the CMFF design, which exploits more

contextual information to improve the identification of complex

lesions, a clear improvement is observed. Specifically, significant

improvements were observed for dark lesions, with an average gain

of 2.2% for the Dice value.

Figure 4 compares the subjective segmentation results of two

different lesions for the pre-trained lesion segmentation model

adopting the limited UWF data. As seen, the lesion segmented

masks by our method are more close to the ground-truth.
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FIGURE 4

Qualitative multi-lesion segmentation results. Yellow and blue represent light and dark lesions, respectively.

4.5 DR grading performances

The proposed method was first compared the following

four representative types of UDA methods which were designed

for classification. These methods include: Domain Separation

Networks (DSN) (69), Adversarial Discriminative Domain

Adaptation (ADDA) (70), Maximum Classifier Discrepancy

(MCD) (71), Dynamic Weighted Learning (DWL) (72), and the

(ULTRA) (26), As in the top half of Table 5. Note, ULTRA is

a model specifically proposed for DR grading in UWF image.

Furthermore, although our approach is unsupervised, fully

supervised training can also be performed when the labels of

the UWF images are available, which we define as Ours⋆. So,

we also compared the proposed method to the state-of-the-art

deep-learning-based methods for UWF image DR classification,

for example, VGG-16 (73), ResNet50 (62), and CycleGAN (7).

Notably, CycleGAN method is the only method that uses CFP

images to aid the training of UWF images. As in the lower

part of Table 5.

4.5.1 Classification performance of local-UWF
In general, deep learning methods trained in a fully supervised

manner tend to yield superior classification results compared to

unsupervised DA methods, and the difference in performance is

relatively significant. This fact further underscores the significant

challenges associated with leveraging CFP images to aid in
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TABLE 5 The DR grading results over the Local-UWF dataset.

Methods Acc PRE F1 Kappa

DSN (69) 0.5027 0.3582 0.6097 0.3287

ADDA (70) 0.5396 0.5513 0.5447 0.4142

MCD (71) 0.5523 0.4816 0.5377 0.4874

DWL (72) 0.5646 0.5160 0.6049 0.4282

ULTRA (26) 0.5832 0.5210 0.5518 0.4903

VGG-16 (73) 0.6417 0.6496 0.6411 0.5370

Resnet50 (62) 0.6563 0.6423 0.6734 0.5478

CycleGAN∗ (7) 0.6292 0.6278 0.6389 0.5159

Ours 0.5912 0.5240 0.6423 0.4648

Ours∗ 0.6813 0.6743 0.6889 0.5861

∗Indicates the method is fully supervised, i.e., the grading labels of UWF images are used in

the training phase.

the diagnosis of UWF images. However, the proposed method

outperforms these UDA methods in most metrics.

For example, our method demonstrates a significant advantage

over the DWL method, with an increase in accuracy and Kappa

of approximately 2.66% and 3.66%, respectively. Furthermore,

despite incorporating a reconstruction loss in the DSN method

to capture more generalized features, this also introduces a

tendency for the model to disregard image-specific details, such as

lesions present in CFP and UWF images, resulting in suboptimal

performance of the DSN approach for this particular task. When

trained in a supervised manner, most of the models perform

well, demonstrating the feasibility of grading UWF images with

DL methods. Compared with the state-of-the-art deep learning

method, Ours⋆ demonstrated competitive performance across all

metrics. For example, our method exhibits a significant advantage

over the CycleGAN method, with increases in accuracy, precision,

F1 score, and Kappa of approximately 5.21%, 4.65%, 4.99%, and

7.02%, respectively. The main reason for this is that the CycleGAN

method generates UWF images from CFP images by style transfer,

and the performance of the grading model depends on the quality

of the synthesized images.

To analyze the performance of the proposed model for UWF

DR grading, we have provided the confusion matrix in Figure 5.

This matrix displays the recognition results of the model across

different categories. Overall, the proposed model performs well in

all classes except for class 1.

4.6 Ablation study

In this section, we perform an ablation study to analyze the

effectiveness of each key component. Our Net employs three main

components to form its classification framework: unsupervised

DR grading module, adversarial lesion segmentation module and

Lesion external attention module, so we analyze and discuss the

network under different scenarios to validate the performance

of each key component of our model. The results of different

combinations of these modules are reported in Table 6.

4.6.1 The e�ectiveness of unsupervised DR
grading module

To explore the impact of the UDA DR grading sub-network,

we employed a ResNet-50 grading model as the backbone, denoted

as MCFP, which was trained solely on the EyePACS subset and

tested on the UWF dataset. It’s important to note that the backbone

model achieves an accuracy of 26.47% (as shown in Table 6),

indicating the significant domain gap between CFP images and

UWF images.

Furthermore, we explored the C1+C2+D method, which

involves joint training using both CFP and UWF images with

UDA techniques. Encouragingly, this method outperformed the

MCFP backbone model, demonstrating significant improvements

across several indicators. This result underscores the effectiveness

of leveraging UDA to jointly train CFP and UWF images,

thereby reducing domain discrepancies and enhancing the

accuracy of DR grading. By leveraging the complementary

information from both CFP and UWF domains, our approach

showcases its efficacy in achieving superior performance in

DR grading tasks. These findings underscore the potential

of UDA techniques and the integration of diverse image

sources for enhancing the accuracy and reliability of DR

grading models.

4.6.2 The e�ectiveness of adversarial lesion
segmentation module

As described in Section 3.3, a pivotal component of our

proposed method is the adversarial lesion segmentation module,

aimed at capturing multi-lesion features from annotated UWF

images. This addresses the challenge of lacking prior guidance

during the decision-making stage of DR. Detailed ablation results

for the adversarial lesion segmentation module are presented in

Section 4.4. Specifically, we observe an increase of approximately

1.05% in accuracy (ACC) for MLesion compared to MTransfer. This

suggests that the lesion generation module provides additional

lesion information, and the specific lesion features are beneficial

for distinguishing DR subtypes, aligning with the findings of

epidemiological studies.

4.6.3 The e�ectiveness of the LEAM
In Section 3.3.3, we introduced the incorporation of fully

integrated lesion features into our approach. To ascertain

the effectiveness of the Lesion External Attention Module

(LEAM), we compared the performance of the model with and

without LEAM, denoted as MLesion and MOurs respectively.

The results demonstrated that the feature fusion strategy

facilitated by LEAM significantly enhances the classification

performance, with a 3.49% increase in accuracy (ACC)

and a 6.48% increase in kappa. This observation suggests

that the proposed LEAM effectively embeds lesion-specific

knowledge into the grading module. By focusing attention

on salient lesion features, LEAM facilitates the extraction and

integration of crucial information, thereby improving the

overall capability of the grading model to accurately classify

retinal images.
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FIGURE 5

Confusion matrix of proposed model.

TABLE 6 Performance comparisons of ablation studies.

Method Training Resnet-50 C1+C2+D Lesion LEAM ACC PRE F1 Kappa

MCFP Clabel X 0.2647 0.4397 0.2786 0.1057

MTransfer Clabel/Uunlabel X X 0.5458 0.5340 0.5955 0.4069

MLesion Clabel/Uunlabel X X X 0.5563 0.4493 0.6262 0.4001

MOurs Clabel/Uunlabel X X X X 0.5912 0.5240 0.6423 0.4648

C and U denotes the CFP and UWF datasets, respectively.

5 Discussions and conclusion

Several existing studies have highlighted the significant

advantages of ultra-widefield (UWF) imaging over color fundus

photography (CFP) in monitoring diabetic retinopathy (DR)

progression. However, due to limited datasets and annotations,

the field of UWF-based DR-assisted diagnosis remains relatively

unexplored. Moreover, most existing studies utilizing UWF images

and deep learning methods for DR diagnosis employ end-to-end

models lacking guidance from prior knowledge and interpretability

in decision-making.

In this study, we introduce a deep learning-based

method aimed at robust predictions for DR in UWF

photography, focusing on unsupervised lesion-aware domain

adaptation. However, achieving robust predictions for

DR in an unsupervised manner presents two significant

challenges: Firstly, overall metrics for segmenting UWF

lesions need improvement, and there is a lack of detailed

class information; secondly, lesion segmentation and disease

grading are separate tasks requiring individual attention

and improvement.

The main contribution of our work lies in accomplishing

the tasks of lesion segmentation and automatic grading of DR

using CFP images to assist UWF image analysis through the

innovative application of unsupervised domain adaptation (UDA)

methods. We aim to incorporate clinical priors into the deep

learning algorithm through lesion segmentation of UWF images

and the explicit utilization of light-dark lesion data to enhance
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FIGURE 6

The macula and optic cup in (A) are incorrectly identified as bright lesions; the intersection of the eyelashes and fundus in (B) is also incorrectly

detected as a dark lesion. All samples are a fusion of the pre-processed maps with the results of the lesion features.

DR classification accuracy. Our ablation study demonstrates the

effectiveness of our specifically designed components.

5.1 Limitations

5.1.1 The performance of UWF segmentation
network needs to be improved

In this work we proposes a UWF lesion segmentation network

based on adversarial domain transfer, which simulates the process

of clinical doctors diagnosing DR based on detailed lesion features.

Although this method achieved certain segmentation results on

the UWF-seg dataset, the overall performance still needs to be

improved. UWF images are often obstructed by eyelids and

eyelashes, and these artifacts may affect the screening performance

of models trained on clean images. Although pre-processing can

remove some artifacts, it also masks useful information in the

surrounding area and there are still some false positives cases.

As Figure 6A shows, the macula and the optic disc will be

wrongly detected as bright lesions, where Figure 6B shows that

the intersection of eyelashes and fundus will also be wrongly

segmented as a lesion area. Therefore, an effective method for

removing UWF image artifacts while preserving key structures is

urgently needed. In addition, the irregular shape of lesions, their

similarity to surrounding normal tissues, and mutual occlusion

make them difficult to segment correctly using unsupervised

methods. To overcome these challenges, future research can

adopt deep reinforcement learning or semi-supervised training to

improve the model’s segmentation ability for complex lesions.

5.1.2 Collaborative training framework needs to
be developed

In this work, we propose an ULTRA (Unsupervised Lesion

Transfer Learning for Disease Recognition and Assessment)

network based on UWF images for automatic grading of

diabetic retinopathy (DR), and its effectiveness has been

demonstrated through extensive experiments. However, our

approach treats lesion segmentation and disease diagnosis as

separate tasks and combines their features using a specific fusion

strategy. This requires manual selection of fusion strategies and

hyperparameter tuning, potentially resulting in information loss in

the fusion process.

To address this limitation, future research could explore the

development of a collaborative training framework and optimize

joint training strategies to ensure the accuracy of both lesion

segmentation and disease diagnosis. By enhancing the effectiveness

of joint learning, such efforts can lead to improved performance

and reliability in automated DR grading systems based on

UWF images.

5.2 Analysis on failure cases

We further analyze the failed classification cases by GradCAM.

Specifically, Figure 7A demonstrates successful predictions of DR

severity grading by the model, while Figure 7B displays examples

of misclassifications. All images are preprocessed and overlaid

with heatmaps. it is observed that in Figures 4–6A, despite the

presence of interfering factors such as eyelash artifacts, ULTRA

consistently disregards these artifacts and focuses primarily on

lesion information, resulting in accurate predictions of DR severity

with high confidence. Based on our observation on cases shown

in Figure 7A, we found that proposed model pays more attention

to lesion information, despite the presence of interfering factors

such as eyelash artifacts, resulting in accurate predictions of

DR severity with high confidence. However, at times, these

interfering factors can cause confusion, as evident in Figure 7B.

These misclassifications typically occur in the No DR or NPDRI

stages, where the model lacks sufficient reliable attention and tends

to prioritize peripheral artifacts, mistakenly identifying them as

lesions, particularly in the vicinity of eyelashes. Notably, in the first

example, the optic disc may be misinterpreted as exudates or a large

hemorrhage, and the intersection between the eyelashes and eyelid

is incorrectly identified, leading to the erroneous classification of

the case as NPDRIII instead of No DR. In the third example, a

PDR image is incorrectly diagnosed as NPDRIII primarily due to

the failure in accurately identifying the patchy hemorrhage in the

image. It also shows that our proposed use of a lesion prior as one

of the classification features is feasible, and there is reason to believe

that as lesion performance improves in future work, our model will

be able to more accurately identify the degree of DR severity.
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FIGURE 7

(A) Examples of successfully ignored the artifact model and instead focused on specific lesions and correctly identified the degree of DR severity with

a high confidence rate. (B) Examples of misclassifications.

5.3 Conclusion

In this work, we designed a specific approach and strategies

to solve the above mentioned issues. Specifically, we proposed

a novel DR grading network for unsupervised lesion-aware

domain adaptation in UWF images. Our approach tackles

the task of grading DR by leveraging unsupervised domain

adaptation techniques while explicitly considering the presence

of lesions. By incorporating lesion-specific knowledge into the

model, we aimed to improve its ability to generalize across

different domains and accurately grade UWF images. To achieve

this, we developed a comprehensive framework that combines

DA strategies with lesion-aware mechanisms. By leveraging

unsupervised learning techniques, our approach can effectively

adapt the grading model from a source domain (e.g., CFP

images) to a target domain (e.g., UWF images) without the

need for labeled data in the target domain. Moreover, our

framework incorporates lesion-aware mechanisms, such as the

Lesion Embedding Attention Module (LEAM), to ensure that

the model can effectively capture and exploit the discriminative

information present in lesion regions. By integrating these

novel components and adopting a holistic approach, our

proposed method aims to address the challenges associated

with domain shift and the unique characteristics of UWF

images in DR grading. Through experimental evaluations and

comparisons, we demonstrate the effectiveness and superiority

of our approach in accurately grading UWF images, thus

contributing to improved diagnosis and management of

diabetic retinopathy.
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