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Interpretable machine learning 
model for early prediction of 
delirium in elderly patients 
following intensive care unit 
admission: a derivation and 
validation study
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Background and objective: Delirium is the most common neuropsychological 
complication among older adults admitted to the intensive care unit (ICU) and 
is often associated with a poor prognosis. This study aimed to construct and 
validate an interpretable machine learning (ML) for early delirium prediction in 
older ICU patients.

Methods: This was a retrospective observational cohort study and patient 
data were extracted from the Medical Information Mart for Intensive Care-IV 
database. Feature variables associated with delirium, including predisposing 
factors, disease-related factors, and iatrogenic and environmental factors, were 
selected using least absolute shrinkage and selection operator regression, and 
prediction models were built using logistic regression, decision trees, support 
vector machines, extreme gradient boosting (XGBoost), k-nearest neighbors and 
naive Bayes methods. Multiple metrics were used for evaluation of performance 
of the models, including the area under the receiver operating characteristic 
curve (AUC), accuracy, sensitivity, specificity, recall, F1 score, calibration plot, 
and decision curve analysis. SHapley Additive exPlanations (SHAP) were used to 
improve the interpretability of the final model.

Results: Nine thousand seven hundred forty-eight adults aged 65  years 
or older were included for analysis. Twenty-six features were selected to 
construct ML prediction models. Among the models compared, the XGBoost 
model demonstrated the best performance including the highest AUC (0.836), 
accuracy (0.765), sensitivity (0.713), recall (0.713), and F1 score (0.725) in the 
training set. It also exhibited excellent discrimination with AUC of 0.810, good 
calibration, and had the highest net benefit in the validation cohort. The SHAP 
summary analysis showed that Glasgow Coma Scale, mechanical ventilation, 
and sedation were the top three risk features for outcome prediction. The SHAP 
dependency plot and SHAP force analysis interpreted the model at both the 
factor level and individual level, respectively.

Conclusion: ML is a reliable tool for predicting the risk of critical delirium in elderly 
patients. By combining XGBoost and SHAP, it can provide clear explanations for 
personalized risk prediction and more intuitive understanding of the effect of 
key features in the model. The establishment of such a model would facilitate 
the early risk assessment and prompt intervention for delirium.
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Introduction

Delirium, also known as acute encephalopathy, is a 
neuropsychiatric syndrome characterized by acute changes or 
fluctuations of cognitive function, inattention, disorganized thinking, 
and altered level of consciousness (1, 2). Delirium is highly prevalent 
among hospitalized older adults and represents the most common 
neuropsychological complication in older patients within the intensive 
care unit (ICU) (3). Reported incidence rates of delirium among 
hospitalized older adults ranges from 14 to 56%, depending on patient 
population and screening instrument (4–6). In the ICU, the prevalence 
of delirium has been shown to reach as high as 60–80% (3, 7). 
Delirium in older patients often arises due to a complex interplay of 
factors exacerbating challenges posed by the ICU environment, 
including prolonged mechanical ventilation (MV) and hospital stay, 
increased costs, long-term cognitive impairment, and increased risk 
of death (8, 9).

It is now known that antipsychotics and other psychoactive 
medications do not reliably improve brain function in critically ill 
patients with delirium (10). According to the 2018 Pain, Agitation/
Sedation, Delirium, Immobility, and Sleep Disorders in Adult Patients 
in the ICU Guideline, clinicians need to pay increased attention to the 
screening of high-risk delirium patients and actively implementing 
approaches to prevent delirium (11). Therefore, a reliable delirium 
predictive model will help clinicians identify delirium high-risk 
patients and guide timely interventions. In fact, several predictive 
models have been developed for delirium in the ICU, including the 
PRE-DELIRIC model, the E-PRE-DELIRIC model, and the 
DYNAMIC-ICU model (12–15). However, all of these models were 
based on results from a wide range of age groups and did not take into 
consideration the characteristics of older patients. There are other 
alternative models available for predicting delirium in older adults, 
but these models have been mainly validated in postoperative 
individuals, and their applicability to ICU patients is still uncertain 
(16–19). Therefore, there is still a lack of delirium risk prediction 
models applicable to older patients admitted to the ICU.

Compared to traditional regression analysis, machine learning 
(ML) methods offer numerous potential advantages for studies of 
older adults (20). With the abundance of data available from geriatric 
cohort studies and electronic health records, ML methods can 
enhance the accuracy and efficiency of prediction models in aging 
applications while leveraging the increasing amounts of health 
system data (21). However, due to the “black box” of ML algorithms, 
this makes it difficult to understand the predicted outcomes and 
limits the applications of these models (18). Notably, the SHapley 
Additive exPlanation (SHAP) methods have gained increasing 
prominence in addressing this issue (19). SHAP has significant 
advantages in elucidating how the ML model calculates the features 
required for prediction and visualizing the prediction models. It has 
been successfully applied to improve clinical understanding of a 
variety of diseases, including the risk of hypoxemia during surgery, 
the prognosis of acute kidney injury, and the risk factors for sepsis 

and septic death (22–24). However, there is currently no 
interpretable ML method to predict the risk of delirium in critically 
ill older patients.

The objective of this study was to develop and validate a predictive 
model for delirium in ICU patients aged 65 years and older using six 
ML algorithms. In addition, the SHAP method was used to provide a 
comprehensive explanation and enhancing clinical understanding for 
the best performing model. The findings from this study would 
facilitate early identification of high-risk older individuals prone to 
delirium in ICU settings, thereby enabling clinicians to implement 
timely interventions.

Materials and methods

Data source

The study was conducted using the extensive electronic health 
record database of the Medical Information Mart for Intensive Care 
(MIMIC)-IV version 2.2 (v2.2). Specifically, the MIMIC database 
contains comprehensive and high-quality data on both deidentified 
and characterized adult patients (≥18 years old) who were admitted 
to the ICU at Beth Israel Deaconess Medical Center between 2008 and 
2019 (25). MIMIC-IV v2.2 is the latest version of the MIMIC database, 
incorporating contemporary data (26). The institutional review board 
at MIT (Cambridge, MA) and Beth Israel Deaconess Medical Center 
(Boston, MA) approved the use of this database, granting a waiver of 
informed consent for this study while ensuring compliance with 
ethical standards outlined in the Declaration of Helsinki. One of our 
authors has been granted access to the database (CM, Certification 
Number: 34907227). Our study adhered to the Transparent Reporting 
of a Multivariable Prediction Model for Individual Prognosis or 
Diagnosis (TRIPOD) statement (27).

Study population and outcome

Older patients were included if they met the following criteria: (1) 
admitted to the ICU; (2) underwent delirium assessment; (3) aged 
≥65 years older. The assessment of delirium in the MIMIC-IV v2.2 
database was conducted using the Confusion Assessment Method for 
the ICU (CAM-ICU) score. The CAM-ICU score is the most effective 
tool for diagnosing and assessing delirium in adult ICU patients 
according to the 2013 Society of Critical Care Medicine guidelines for 
pain, agitation, and delirium, which consists of four features: (1) an 
acute onset of mental status changes or a fluctuating course; (2) 
inattention; (3) disorganized thinking; and (4) an altered level of 
consciousness (28). Patients were diagnosed with delirium (i.e., 
CAM-ICU positive) if they presented with features 1 and 2, in addition 
to either feature 3 or 4. We  excluded patients who had been 
hospitalized for less than 48 h and those already diagnosed with 
dementia, as the latter can be  easily misdiagnosed as cognitive 
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impairment. In cases where patients had multiple admissions to the 
ICU, only their first admission was analyzed.

This is a retrospective observational study in which all enrolled 
patients have undergone delirium assessment. They were further 
divided into two groups: delirious patients (case group) and 
non-delirious patients (control group), and a comparison of baseline 
characteristics between the two groups was conducted (see Table 1). 
The primary outcome of this study was the occurrence of delirium 
during ICU stay. All enrolled patients were followed from inclusion 
until ICU discharge, hospital discharge, or in-hospital death.

Data extraction and variables processing

In order to maximize the collection of potential candidate 
delirium predictors, we conducted a comprehensive literature review 
to summarize the risk factors for delirium. According to the widely 
accepted classification of risk factors for delirium, these factors can 
be categorized into three major groups: predisposing factors, disease-
related factors, and iatrogenic and environmental factors (6, 29). Old 
age, gender, body mass index, marital status, education level, and a 
high burden of coexisting conditions are common predisposing 
factors (1, 6, 30, 31). The presence of certain chronic comorbidities, 
such as chronic obstructive pulmonary disease (COPD), hypertension, 
diabetes, heart failure, atrial fibrillation (AF), stroke, chronic kidney 
disease (CKD), and tumor has also been associated with the 
development of delirium (6, 29, 32). The disease-related factors 
encompass the severity of the disease upon admission and laboratory 
indicators after admission, including blood routine count, creatinine, 
electrolyte, albumin, blood glucose, and coagulation indicators (30, 
32, 33). The vital signs, including blood pressure, heart rate, respiratory 
rate, and temperature, are commonly reported as well (34, 35). The 
iatrogenic and environmental factors involve interventions received 
in ICUs, including drugs and organ support techniques, such as the 
utilization of sedatives and vasoactive drugs, and implementation of 
MV and renal replace therapy (RRT) (6, 29, 36).

Based on the aforementioned delirium-related variables, 
we utilized structured query language (SQL) with PostgreSQL (version 
9.6) to extract the following data from the MIMV-IV v2.2 database: 
demographic characteristics (including age, gender, race, and marital 
status), admission condition (including admission type and ICU 
type), chronic comorbidities, disease severity scores, vital signs and 
laboratory indicators within 24 h after ICU admission. The vital signs 
were determined as the mean values during the first 24 h since ICU 
admission of each included patients. In cases where a laboratory 
variable was recorded multiple times within this time frame, the value 
corresponding to the greatest severity of illness was selected. 
Additionally, we documented the occurrence of acute kidney injury 
and ICU interventions within 48 h of ICU admission, such as MV, 
RRT, vasopressors, and sedation.

Our study was retrospective and relied on existing clinical data, 
no formal sample size calculation was performed prior to the study. 
Instead, we collected as many samples from the database as possible. 
Ultimately, a total of 9,748 patients were enrolled in the study. And 48 
variables were collected for preliminary analysis (Table 1). Given that 
this study focuses on a binary outcome, the sample size of the final 
cohort is adequate to ensure the robustness of the results while 
adhering to the principle of having at least 10 events per variable 

(EPV) (37, 38). Variables with missing data exceeding 20% were 
excluded (39). The remaining missing values underwent multiple 
imputation using “MICE” package in R (40). Details of missing data 
was shown in Supplementary Figure S1.

Statistical analyses

Continuous variables in this study were reported as medians with 
interquartile range (IQR) unless otherwise specified, and the 
differences between groups were identified with univariate analysis. 
Categorical variables were presented as frequency and proportion in 
each patient group, and compared using the chi-square test or Fisher’s 
exact test if appropriate. All statistical analyses were performed using 
the R software (version 4.3.2). p-values less than 0.05 (two-sided test) 
were considered statistically significant.

A pre-seeded random number generator (123) in R software was 
utilized to randomly divide the cohort into training (n = 6,823) and 
validation (n = 2,925) sets based on a ratio of 7:3. All patients in the 
training set were included for variables selection and model 
development. We employed an L1-penalty least absolute shrinkage 
and selection operator (LASSO) regression approach to reduce 
potential collinearities and prevent overfitting, augmented with 
10-fold cross-validation (41). LASSO regression is a method used to 
reduce the dimensionality of data by selecting features based on a 
penalty function. It effectively reduces the absolute size of the 
coefficients in a regression model, determined by the value of lambda. 
Following the feature selection, we  identified 26 features with 
significant predictive ability according to lambda. 1se criterion. The 
prediction model was then constructed using the following ML 
algorithm, including logistic regression (LR), decision trees (DT), 
support vector machines (SVM), extreme gradient boosting 
(XGBoost), k-nearest neighbors (KNN), and naive Bayes (NB). ML 
have the capacity to accommodate numerous predictors, fewer model 
assumptions, and require less user specification of model terms. It has 
the ability to form flexible, empirically driven interactions based on 
the data without needing these interactions to be specified in advance 
(20). During the modeling process, we repeated 5 rounds of 10-fold 
cross-validation and grid search parameter optimization to 
ensure stability.

The area under receiver operating characteristic (ROC) curve 
(AUC), accuracy, specificity, sensitivity, positive predictive value 
(PPV), negative predictive value (NPV), recall, and F1 score were used 
to assess the model’s performance. The optimal model was determined 
based on the highest AUC and accuracy in the validation set (42, 43). 
We  then utilized a calibration curve to evaluate the consistency 
between predicted and actual occurrence of delirium for the top three 
optimal models in the training set. Additionally, we assessed the net 
clinical benefit through the decision curve analysis (DCA).

SHAP method is applied to interpret the optimal model. The 
SHAP values are derived from game theory, providing an estimation 
of the impact that each feature has on the predicted outcome and 
effectively explaining the contribution of each feature to a single 
observation (19, 44). We employed a SHAP significance analysis and 
SHAP summary plot to evaluate feature importance, followed by 
utilizing SHAP dependency plot to investigate the impact of features 
on outcome prediction. Finally, a SHAP force analysis was used to 
elucidate the contribution of features in individual patients.
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TABLE 1 Baseline characteristics of patients with and without delirium.

Variables Total (N =  9,748)
Non-delirium 

(N =  5,505)
Delirium (N =  4,243) p-value

Age (years) 76 (70, 83) 76 (70, 82) 76 (71, 83) 0.004

Male (%) 5,277 (54.1) 2,970 (54.0) 2,307 (54.4) 0.7

Ethnicity (%) <0.001

 Asian 1,688 (17.3) 841 (15.3) 847 (20.0)

 Black 765 (7.8) 390 (7.1) 375 (8.8)

 Hispanic 210 (2.2) 123 (2.2) 87 (2.1)

 White 6,665 (68.4) 3,900 (70.8) 2,765 (65.2)

 Others 420 (4.3) 251 (4.6) 169 (4.0)

Marital Status (%) <0.001

 Single 2,476 (25.4) 1,278 (23.2) 1,198 (28.2)

 Married 4,771 (48.9) 2,801 (50.9) 1,970 (46.4)

 Divorced 658 (6.8) 378 (6.9) 280 (6.6)

 Others 1,843 (18.9) 1,048 (19.0) 795 (18.7)

Admission type (%) <0.001

 Selective 1,538 (15.8) 1,025 (18.6) 513 (12.1)

 Urgent 7,850 (80.5) 4,244 (77.1) 3,606 (85.0)

 Emergent 360 (3.7) 236 (4.3) 124 (2.9)

ICU type (%) <0.001

 CVICU 2,207 (22.6) 1,498 (27.2) 709 (16.7)

 CCU 1,405 (14.4) 941 (17.1) 464 (10.9)

 MICU 1,457 (14.9) 660 (12.0) 797 (18.8)

 M/SICU 1,317 (13.5) 735 (13.4) 582 (13.7)

 NICU 1,050 (10.8) 550 (10.0) 500 (11.8)

 SICU 1,286 (13.2) 629 (11.4) 657 (15.5)

 TSICU 1,026 (10.5) 492 (8.9) 534 (12.6)

Comorbidity

 COPD (%) 1,133 (11.6) 541 (9.8) 592 (14.0) <0.001

 Hypertension (%) 4,638 (47.6) 2,698 (49.0) 1,940 (45.7) 0.001

 Diabetes (%) 3,238 (33.2) 1,736 (31.5) 1,502 (35.4) <0.001

 Heart failure (%) 3,706 (38.0) 2,057 (37.4) 1,649 (38.9) 0.13

 Atrial fibrillation (%) 4,397 (45.1) 2,396 (43.5) 2,001 (47.2) <0.001

 AMI (%) 1,448 (14.9) 776 (14.1) 672 (15.8) 0.017

 CKD (%) 2,419 (24.8) 1,268 (23.0) 1,151 (27.1) <0.001

 Stroke (%) 2,112 (21.7) 990 (18.0) 1,122 (26.4) <0.001

 Tumor (%) 1,483 (15.2) 854 (15.5) 629 (14.8) 0.3

Scoring system

 GCS 15.0 (14.0, 15.0) 15.0 (14.0, 15.0) 14.0 (13.0, 15.0) <0.001

 APSIII 43 (33, 56) 39 (31, 51) 49 (37, 63) <0.001

 SAPS II 39 (32, 48) 37 (31, 44) 43 (36, 52) <0.001

 SOFA 5.0 (3.0, 7.0) 4.0 (2.0, 6.0) 6.0 (4.0, 9.0) <0.001

Vital signs

 Heart rate (min−1) 81 (72, 92) 80 (72, 91) 83 (74, 95) <0.001

 Systolic BP (mmHg) 116 (106, 128) 115 (106, 128) 116 (106, 128) 0.2

 Diastolic BP (mmHg) 59 (53, 67) 59 (53, 67) 59 (54, 67) 0.3

(Continued)
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Results

Baseline characteristics

A total of 9,748 older patients from the MIMIC-IV v2.2 database 
were eventually included in this study and the detailed selection 
process could be found in Figure 1. Among the enrolled patients, there 
were 4,243 cases of delirium (43.5%). Table  1 summarizes the 
characteristics of patients with and without delirium, including the 
demographic, comorbidity, disease-related conditions, and the ICU 
interventions. Overall, patients with delirium had had higher white 

blood cell, blood urea nitrogen, creatinine, anion gap, international 
normalized ratio and glucose levels, and were more likely to have 
COPD, cerebrovascular disease, diabetes, CKD, and stroke, and 
received more medical treatment. They also exhibited more abnormal 
vital signs and electrolyte levels, as well as a higher degree of disease 
severity. The length of the ICU and hospital day in the delirium group 
was significantly longer than that in the non-delirium group [ICU-
stay: 5.3 (3.3, 9.5) vs. 3.1 (2.3, 4.2), p < 0.001; hospital-stay: 12 (8, 20) 
vs. 8 (5, 12), p < 0.001]. Similarly, there were significant difference in 
mortality between delirium and non-delirium groups (ICU mortality: 
13.0% vs. 5.7%, p  < 0.001; hospital mortality: 22.0% vs. 10.0%, 

TABLE 1 (Continued)

Variables Total (N =  9,748)
Non-delirium 

(N =  5,505)
Delirium (N =  4,243) p-value

 Mean BP (mmHg) 75 (70, 83) 75 (70, 83) 76 (70, 83) 0.11

 Respiratory (min−1) 18.8 (16.8, 21.3) 18.6 (16.6, 21.0) 19.1 (17.0, 21.7) <0.001

 Temperature (°C) 36.8 (36.6, 37.1) 36.8 (36.6, 37.0) 36.9 (36.6, 37.2) <0.001

Lab. indicators

 WBC (109/L) 11.3 (8.4, 15.0) 10.9 (8.1, 14.5) 11.8 (8.9, 15.5) <0.001

 Hemoglobin (1012/L) 10.45 (9.15, 12.00) 10.45 (9.20, 12.00) 10.45 (9.05, 12.00) 0.2

 Hematocrit (%) 32.0 (28.1, 36.7) 32.0 (28.2, 36.5) 32.2 (28.0, 36.8) 0.4

 Platelet (109/L) 180 (135, 239) 180 (136, 238) 180 (135, 241) 0.6

 Bicarbonate (mmol/L) 23.0 (20.5, 25.0) 23.0 (21.0, 25.0) 22.5 (20.0, 24.5) <0.001

 Sodium (mmol/L) 138.5 (136.0, 141.0) 138.5 (136.0, 140.5) 139.0 (136.0, 141.5) <0.001

 Potassium (mmol/L) 4.20 (3.90, 4.60) 4.20 (3.90, 4.60) 4.20 (3.90, 4.65) 0.12

 Chloride (mmol/L) 104.0 (100.0, 107.5) 104.0 (100.5, 107.0) 104.0 (100.0, 107.5) 0.5

 Calcium (mmol/L) 8.40 (7.95, 8.85) 8.40 (7.98, 8.85) 8.35 (7.90, 8.80) <0.001

 Glucose (mg/dL) 132 (111, 163) 128 (109, 155) 138 (115, 173) <0.001

 BUN (mg/dL) 22 (16, 34) 21 (15, 31) 23 (17, 38) <0.001

 Creatinine (mg/dL) 1.05 (0.80, 1.55) 1.00 (0.75, 1.40) 1.10 (0.80, 1.75) <0.001

 Anion gap (mmol/L) 14.5 (12.5, 17.0) 14.0 (12.0, 16.0) 15.0 (13.0, 17.5) <0.001

 INR 1.25 (1.10, 1.50) 1.25 (1.10, 1.45) 1.30 (1.10, 1.55) 0.003

 Prothrombin time (s) 13.8 (12.2, 16.3) 13.8 (12.2, 16.0) 13.9 (12.2, 16.8) 0.023

 PTT (s) 32 (28, 42) 32 (28, 42) 32 (28, 41) 0.021

ICU interventions

 MV (%) 4,517 (46.3) 1,862 (33.8) 2,655 (62.6) <0.001

 RRT (%) 420 (4.3) 164 (3.0) 256 (6.0) <0.001

 Vasopressor use (%) 4,522 (46.4) 2,282 (41.5) 2,240 (52.8) <0.001

 Sedation (%) 5,239 (53.7) 2,345 (42.6) 2,894 (68.2) <0.001

 AKI (%) 7,007 (71.9) 3,699 (67.2) 3,308 (78.0) <0.001

ICU-stay (days) 3.7 (2.6, 6.1) 3.1 (2.3, 4.2) 5.3 (3.3, 9.5) <0.001

Hospital-stay (days) 9 (6, 15) 8 (5, 12) 12 (8, 20) <0.001

ICU-mortality (%) 865 (8.9) 315 (5.7) 550 (13.0) <0.001

Hospital-mortality (%) 1,486 (15.2) 551 (10.0) 935 (22.0) <0.001

Data are presented as a number with the percentage in parentheses, or as the median with the interquartile range in parentheses. The “tumor” refers to a malignant cancer. Sedation includes 
midazolam, propofol, dexmedetomidine, and diazepam. ICU, intensive care unit; CCU, coronary care unit; CVICU, cardiovascular ICU; MICU, medical ICU; SICU, surgical ICU; NICU, neuro 
ICU; TSICU, trauma-neuro surgical ICU; COPD, chronic obstructive pulmonary disease; AMI, acute myocardial infarction; CKD, chronic kidney disease; GCS, Glasgow Coma Score; APSIII, 
the Acute Physiology Score III; SAPS II, the Simplified Acute Physiology Score II; SOFA, the Sequential Organ Failure Assessment score; BP, blood pressure; SpO2, oxyhemoglobin saturation; 
WBC, white blood cell count; BUN, blood urea nitrogen; INR, international normalized ratio; PTT, partial thromboplastin time; MV, mechanical ventilation; RRT, renal replacement therapy; 
AKI, acute kidney injury.
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p < 0.001), which suggests that delirium may be associated with a 
poor prognosis.

The total population was divided into a 70% training cohort and 
a 30% validation cohort, with comparable baseline characteristics 
between the two sets (p > 0.05), as detailed in Supplementary Table S1. 
The training set was subsequently utilized for model development.

Feature selection and model development

To identify the most relevant variables for critical delirium in 
Table  1, we  employed L1-penalized LASSO regression for 
dimensionality reduction and feature selection. Figure 2A illustrates 
the relationship between cross-validation errors and penalty terms. 
We  utilized a 10-fold cross-validation approach to determine the 
optimal penalty parameter lambda, selecting 26 clinical variables with 
significant predictive ability based on the lambda. 1se criteria to 
construct our model. Figure 2B displays the distribution of coefficients 
for these selected features in the LASSO regression, revealing the 
optimal point for retaining nonzero variables. The 
Supplementary Table S2 presents the 26 selected variables, along with 
their corresponding non-zero coefficient values.

Subsequently, based on the selected features, we employed six ML 
algorithms, including LR, DT, SVM, XGBoost, KNN, and NB, to 
predict the primary outcome from the training set. During the 
modeling process, we performed 5 rounds of 10-fold cross-validation 

and grid search parameter optimization to ensure the generalizability 
of the models while avoiding overfitting.

Model performance and comparisons

The performance comparison of various ML models was 
presented in Table 2 and Figure 3, respectively. Table 2 provides the 
detailed AUC, accuracy, sensitivity, specificity, PPV, NPV, recall, and 
F1 scores for six models. The AUC values associated with the different 
models ranged from 0.777 to 0.836 (LR: 0.777, DT: 0.791, SVM: 0.785, 
XGBoost: 0.836, KNN: 0.799, and NB: 0.777) in the training set 
(Figure 3A). The XGBoost model had the highest performance with 
an AUC of 0.836, accuracy of 0.765, sensitivity of 0.713, recall of 0.713, 
and F1 score of 0.725 (Table 2). Similarly, in the validation set, the 
XGBoost model achieved the highest performance with an AUC of 
0.810 and accuracy of 0.744, which surpassed the AUCs of the other 
models, highlighting the superior performance of the XGBoost model 
(Table 2 and Figure 3B).

To examine the calibration of the models, calibration curves for 
the three models with the highest AUC values (XGBoost, KNN, DT) 
were generated and compared (Figure 3C). Among them, XGBoost 
showed the best fit between observed and predicted probabilities, 
indicating its superior calibration. Decision curve analysis (DCA) was 
performed on these three models and the results are shown in 
Figure 3D. The analysis showed that using the XGBoost prediction 

FIGURE 1

The flowchart and framework of the prediction models.
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model provided the highest net benefit for predicting delirium, 
outperforming both KNN and DT. Taken together, the XGBoost 
model was selected as the optimal model and subsequently employed 
for further interpretation.

Model interpretations

The predictor’s contribution to the prediction outcomes was 
quantified using SHAP, which employs a game-theoretic approach to 
assess the significance of each feature. The feature importance ranking 
was visualized using the SHAP significance analysis for the XGBoost 
model, as depicted in Figure 4A. Our analysis identified the top 10 risk 

factors associated with critical delirium, including Glasgow Coma 
Scale (GCS) score, MV, sedation, ICU type, the Acute Physiology 
Score III (APSIII), temperature, age, diastolic blood pressure, 
oxyhemoglobin saturation and the Sequential Organ Failure 
Assessment score (SOFA). This ranking was further complemented by 
SHAP summary plot (Figure  4B) that visually demonstrates the 
influence of each feature on model output. A positive Shapley value 
for each feature indicates an increased risk of delirium while a negative 
value suggests decreased risk. For instance, for MV, yellow dots located 
rightward from zero line signifies higher MV values (i.e., receiving 
MV treatment) contributing towards increased risks of delirium.

The impact of features at factor level on the risk of the predictive 
model was analyzed using SHAP dependency plot, as depicted in 

FIGURE 2

Feature selection by the LASSO regression model. (A) The LASSO model underwent tenfold cross-validation to determine the optimal penalization 
coefficient parameter (lambda). (B) The plots depict the LASSO regression coefficients across various penalty parameter values. The lambda. 1se was 
chosen in our study due to its stricter penalty and ability to reduce overfitting. LASSO, least absolute shrinkage and selection operator.

TABLE 2 The prediction performance of each model.

Model AUC Accuracy Sensitivity Specificity PPV NPV Recall F1 score

Training set

LR 0.777 0.713 0.599 0.801 0.698 0.722 0.599 0.645

XGBoost 0.836 0.765 0.713 0.804 0.737 0.785 0.713 0.725

DT 0.791 0.724 0.683 0.755 0.682 0.756 0.683 0.683

SVM 0.785 0.721 0.636 0.787 0.696 0.738 0.636 0.665

KNN 0.799 0.719 0.519 0.873 0.758 0.703 0.519 0.616

NB 0.777 0.678 0.399 0.892 0.739 0.659 0.399 0.518

Validation set

LR 0.780 0.715 0.602 0.804 0.704 0.722 0.602 0.649

XGBoost 0.810 0.744 0.692 0.785 0.715 0.766 0.692 0.703

DT 0.792 0.722 0.671 0.761 0.686 0.748 0.671 0.679

SVM 0.785 0.720 0.638 0.785 0.697 0.736 0.638 0.666

KNN 0.772 0.700 0.498 0.858 0.731 0.687 0.498 0.592

NB 0.761 0.662 0.385 0.878 0.710 0.647 0.385 0.499

LR, logistic regression; XGBoost, extreme gradient boosting; DT, decision tree; SVM, support vector machine; KNN, k-nearest neighbors; NB, naive bayes.
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Figure 5. The three most important features in the XGBoost model, 
namely GCS, MV, and sedation, were depicted in Figures  5A–C 
respectively. The results showed a complex nonlinear relationship 
between GCS and outcomes, while MV and sedation were consistently 
associated with increased risk. APSIII score is a widely used tool to 
assess the severity of patients in the ICU. Using the APSIII score as an 
example, Figures 5D–F furthermore illustrated interactions among 
different features. It was evident that despite identical APSIII scores, 
there may be discrepancies in the corresponding SHAP values for 
different levels of GCS, MV and sedation.

Additionally, we further demonstrate the model’s interpretability 
by presenting SHAP force analysis for two representative cases: one 
predicting a high risk of delirium and another indicating a low risk of 
delirium (Supplementary Figure S2). The plot provides an overview 
of how the key features affect prediction outcome at individual level. 
Factors that contribute to higher predicted scores compared with the 
baseline (mean predicted value) are highlighted in purple, while 
factors that lead to lower predicted scores are indicated in orange. The 

length of the arrows helps visualize the degree of impact of the 
prediction, whereby the longer the arrow, the more significant the 
effect. For instance, in the first case (Supplementary Figure S2A), most 
features are shown in purple, suggesting their contribution to the risk 
of developing delirium, particularly blood urea nitrogen and APSIII.

Discussion

In this retrospective cohort study, we  used ML methods to 
establish a clinical prediction model for assessing the risk of delirium 
in ICU patients aged 65 years and older. The ML prediction model 
based on XGBoost was ultimately chosen due to its impressive 
performance in predicting delirium. In addition, we further used the 
SHAP value method to gain a deeper understanding of the prediction 
model. To the best of our knowledge, this study is the first to develop 
a prediction model for delirium in older patients in the ICU through 
explainable ML methods. These findings could help healthcare 

FIGURE 3

Comprehensive evaluation of machine learning models. (A) ROC curves and AUC values of the training set. (B) ROC curves and AUC values of the 
validation set. (C) Calibration curves of the XGBoost, DT, KNN models in the validation set. (D) Decision curves analysis of the XGBoost, RF, SVM models 
in the validation set. ROC, receiver operating characteristic; AUC, the area under the receiver operating characteristic curve; LR, logistic regression; 
XGBoost, extreme gradient boosting; DT, decision tree; SVM, support vector machine; KNN, k-nearest neighbors; NB, naive bayes.
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providers identify delirium early in daily clinical practice and assist in 
medical decision-making.

Delirium is the most common neuropsychological complication 
during ICU stay for older patients. Delirium among older patients 
could lead to prolonged hospitalization day, increased mortality, and 
diminished long-term quality of life (5, 6, 8). Early recognition of risk 

factors related to delirium is important. The establishment of reliable 
delirium prediction models could assist clinicians in identifying high-
risk patients and guiding timely intervention. Although several 
models have been developed to assess the risk of delirium in ICU, 
these models either encompass a wide range of age groups or solely 
focus on the recovery period after surgery, without considering the 

FIGURE 4

Feature importance analysis by SHAP method for XGBoost model. (A) SHAP significance analysis of feature importance ranking based on the mean 
value. (B) SHAP summary plot of the XGBoost model. GCS, Glasgow Coma Scale; MV, mechanical ventilation; APSIII, the Acute Physiology Score III; T, 
temperature; DBP, diastolic blood pressure; SpO2, oxyhemoglobin saturation; SOFA, the Sequential Organ Failure Assessment Score; MBP, mean blood 
pressure; R, respiratory rate; SBP, systolic blood pressure; Cl, chloride; BUN, blood urea nitrogen; HR, heart rate; SAPSII, the Simplified Acute Physiology 
Score II; AF, Atrial fibrillation; Admtype, type of admission; COPD, chronic obstructive pulmonary disease; AKI, acute kidney injury.

FIGURE 5

SHAP dependency plot of features in the XGBoost model. The Y-axis represents SHAP values, while the X-axis represents actual clinical parameters. For 
binary variables such as MV and sedation, “0” indicates the absence of the condition, while “1” indicates its presence. Significantly, when a feature’s 
SHAP value is greater than 0, it suggests an increased risk of delirium, whereas a negative SHAP value suggests a reduced risk. GCS, Glasgow Coma 
Scale; MV, mechanical ventilation; APSIII, the Acute Physiology Score III.
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specific characteristics of older patients in ICU settings (45–47). As 
far as we know, this is the first study on the risk prediction of delirium 
in critically ill patients aged 65 years and older. The best ML model 
selected in this study, namely XGBoost, showed good discrimination, 
calibration and clinical practicability in predicting the risk of delirium 
in ICU older patients. Recently, Marra et al. (14) developed a dynamic 
model to predict the risk of delirium in ICU patients. The model had 
a high negative predictive value (0.874) in excluding the next-day 
delirium, but a poor positive predictive value (0.548) and sensitivity 
(0.597). This suggests that the model is mainly used to exclude the risk 
of delirium, rather than identify high-risk patients (45). In contrast, 
our model not only has a high AUC value and accuracy, but also has 
good specificity, sensitivity, PPV, and NPV in both the training and 
validation sets. Therefore, it has higher clinical value in guiding 
targeted interventions to prevent older delirium in ICUs.

Feature selection is a crucial step in developing prediction models 
(48). Based on an extensive review of previously published literature 
on delirium risk factors, we have identified potential predictors of 
delirium and then comprehensively screened these risk factors from 
the database. It is noteworthy that we obtained a substantial sample 
size from the MIMIC-IV database, enabling us to incorporate a 
greater number of potential risk factors in our feature selection (37). 
This is crucial for identifying important predictive variables. We then 
utilized the LASSO regression to feature processing, which can avoid 
model overfitting and exclude the influence of strong collinearity 
related variables (49). In addition, the utilization of ML techniques to 
build prediction models can also easily handle multiple variables and 
capture nonlinear relationships (21). In the past, several studies have 
developed prediction models for delirium in the ICU. The 
PRE-DELIRIC and early PRE-DELIRIC model includes predictive 
variables such as age, illness severity score, patient classification, coma, 
use of sedatives and analgesics, and emergency admission; while the 
Lanzhou model incorporates mechanical ventilation, coma, blood 
urea nitrogen and mean arterial pressure at ICU admission, and 
medical history as predictive variables (12, 13, 15, 50). However, these 
models are built on traditional regression analysis methods with 
limited inclusion of population and candidate variables. They also 
target a broader age group and cannot reflect the specific 
characteristics of older patients. Our study focused on older ICU 
patients, as they are more to suffer from delirium (3). We extensively 
screened potential risk factors associated with critical delirium in 
older adults. We also found that the advanced age, severity score, use 
of sedation, type of admission and type of ICU, BUN, and mean BP 
was associated with the occurrence of delirium in older adults. In 
addition to these aforementioned risk factors, certain vital signs such 
as temperature, heart rate, respiratory rate, and SpO2 also hold 
predictive value in our findings. These vital signs also reflect the 
severity of illness in critically ill older patients. Previous research has 
indicated that a history of conditions such as hypertension, chronic 
obstructive pulmonary disease, and diabetes is linked to the 
occurrence of delirium (6, 29). However, our findings suggest that 
certain comorbidities, including acute kidney injury, stroke, and atrial 
fibrillation, have a higher predictive value for the risk of delirium in 
older individuals. It is worth noting that the analysis results also found 
that marital status impacts delirium occurrence: married older 
patients had a lower risk of delirium in the prediction model. This 
aspect has received less attention in previous studies on non-older 
patients, possibly because marital status affects the emotional state of 

older patients, which in turn influences delirium occurrence (51, 52). 
Further research is needed to confirm this hypothesis.

The interpretability of ML has always been a challenging problem 
(18). To address this issue, we employed the SHAP values to analyze 
each feature and enhance the interpretability of the model (19). Based 
on the SHAP importance ranking, it is visually evident that the 
important features significantly influence the occurrence of delirium 
in older patients within ICUs. Notably, advanced age, low GCS score, 
high SOFA score, high APSIII score, MV treatment, and sedative use 
have all been widely reported as risk factors for delirium (6, 29, 31, 
32). Recently, Zhang et  al. (53) used ML methods to develop a 
prediction model for patients with sepsis-related delirium. The model 
successfully identified the top  10 important features impacting 
outcomes, including MV, initial ICU type, GCS, sedation, temperature, 
and age. This has high consistency with the predictive features 
obtained in our study. However, due to different study outcomes, there 
are discrepancies in the ranking of feature importance. Interestingly, 
we observed that there is a complex nonlinear correlation between 
GCS and the predicted outcome through the SHAP dependency plot, 
which has also been observed in other delirium prediction models 
(53). From a clinical perspective, a GCS score of 3 indicates severe 
brain damage, while a score of 15 suggests normal brain function. 
Therefore, patients in both groups had significantly reduced risk of 
developing delirium. Additionally, the use of SHAP force plots also 
provides personalized prediction insights for delirium, visually 
guiding clinicians and patients in decision-making. Taken together, 
the combination of XGBoost and SHAP can provide clear explanations 
for personalized risk prediction, facilitating an enhanced 
comprehension of the efficacy of important features within the model.

There are several limitations in this study. Firstly, not all patients 
in the database received CAM-ICU evaluation for delirium diagnosis, 
and this study excluded those who did not receive delirium 
assessment, which may lead to selection bias in the sample population. 
Secondly, despite our best efforts to collect potential predictors of 
delirium, some risk factors such as education level, alcohol 
consumption history, and activities of daily living were not recorded 
in the database, so we were unable to obtain this information. In fact, 
these factors may also have an impact on the occurrence of delirium 
after admission (29, 36). Also, several variables had to be excluded due 
to a high number of missing values. These may have caused us to 
overlook some features. Thirdly, we could not conduct further analysis 
on the potential effects of MV duration, types and doses of sedative 
drugs used in older adults within the ICU, which may potentially 
complicate our predictive variables for older delirium. Finally, the 
model has been validated and demonstrated excellent performance in 
the internal validation cohorts; however, it lacks external validation. 
While ML has the potential to improve clinical care by providing 
prediction for the risk of delirium in older adults, researchers should 
critically evaluate data sources, feature selection, and machine 
learning algorithms (20). In clinical practice, researchers should use 
an analysis framework that is consistent with the research objectives 
of this study, and conduct prospective cohort studies to verify the 
generalizability and reproducibility of results. Interdisciplinary 
research teams, including machine learning experts and clinical 
specialists, should work together to validate and evaluate prediction 
models. The interpretation of predictive outcomes should be more 
closely integrated with clinical practice in order to better improve 
patient care.
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Conclusion

In summary, our study developed a ML model based on the 
MIMIC-IV v2.2 databases for early prediction of delirium risk in older 
ICU patients. The XGBoost model outperformed other models in 
terms of prediction performance. The SHAP methods were used to 
explain intrinsic information of the XGBoost model, which can 
provide clear explanations for personalized risk prediction and 
facilitate a more intuitive understanding of the effects of key features. 
These findings have the potential to assist clinicians in screening older 
patients at high risk of critical delirium and help optimize 
management strategies.
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