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For cancer therapy, the focus is now on targeting the chemotherapy drugs to 
cancer cells without damaging other normal cells. The new materials based 
on bio-compatible magnetic carriers would be  useful for targeted cancer 
therapy, however understanding their effectiveness should be done. This paper 
presents a comprehensive analysis of a dataset containing variables x(m), y(m), 
and U(m/s), where U represents velocity of blood through vessel containing 
ferrofluid. The effect of external magnetic field on the fluid flow is investigated 
using a hybrid modeling. The primary aim of this research endeavor was to 
construct precise and dependable predictive models for velocity, utilizing the 
provided input variables. Several base models, including K-nearest neighbors 
(KNN), decision tree (DT), and multilayer perceptron (MLP), were trained and 
evaluated. Additionally, an ensemble model called AdaBoost was implemented 
to further enhance the predictive performance. The hyper-parameter 
optimization technique, specifically the BAT optimization algorithm, was 
employed to fine-tune the models. The results obtained from the experiments 
demonstrated the effectiveness of the proposed approach. The combination of 
the AdaBoost algorithm and the decision tree model yielded a highly impressive 
score of 0.99783  in terms of R2, indicating a strong predictive performance. 
Additionally, the model exhibited a low error rate, as evidenced by the root 
mean square error (RMSE) of 5.2893  ×  10−3. Similarly, the AdaBoost-KNN model 
exhibited a high score of 0.98524 using R2 metric, with an RMSE of 1.3291  ×  10−2. 
Furthermore, the AdaBoost-MLP model obtained a satisfactory R2 score of 
0.99603, accompanied by an RMSE of 7.1369  ×  10−3.
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1 Introduction

There are different challenges in medical science among which cancer therapy is one of 
the most major challenges which is currently being studied to improve the efficiency of 
treatment (1, 2). For cancer therapy, the drug must reach the cancer cell at desired dosage, 
while other adjacent normal cells should be intact. Indeed, targeted cancer therapy would be of 
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great importance for scientists to develop drug delivery systems with 
high efficacy (3, 4). Recently, bio-compatible magnetic nanocarriers 
have attracted much attention due to their superior properties in 
cancer treatment (5–7). The motion of these particles in the blood 
circulating system can be monitored and controlled using magnetic 
field such as external permanent magnet (8, 9).

Computational methods can be developed and implemented for 
magnetic-based drug delivery systems to understand the effectiveness 
of drug as well as the targeting the drug-carrier formulation. For 
modeling, fluid mechanics as well as magnetic models should 
be combined to build a holistic model of system (10, 11). For model 
development, the interactions between the nanoparticles and the 
medium as well as the external force should be taken into account. 
Since the fluid flow contains magnetic nanoparticles, 
ferrohydrodynamics of blood would help one understand the flow 
pattern and monitor the agglomeration of nanoparticles in the blood 
stream. Indeed, the agglomeration of drug loaded nanoparticles 
would cause problems and reduce the efficacy of targeted 
cancer treatment.

Among different modeling approaches developed for drug 
delivery systems, the models based on fluids mechanics have shown 
great capability in which the blood flow in vessel can be modeled by 
solution of fluid mechanics equations (12). The flow in this case is 
considered to be  under the low Reynolds number flow regime. 
Therefore, the main forces applied on the fluid flow are magnetic force 
as well as viscous forces (12). So, numerical solution of the governing 
equations is the main methodology for simulation of blood flow with 
magnetic nanoparticles. However, other modeling strategies can 
be integrated to the fluid mechanic models to facilitate the simulation, 
such as machine learning models which have attracted much attention 
in different fields. The methods of machine learning have been used 
with integration to computational fluid mechanics (CFD) models to 
reduce the complexity of CFD models (13). This approach can be also 
adopted in this work for modeling targeted cancer therapy using 
magnetic nanoparticles.

The field of machine learning (ML) has proven to be  highly 
effective in uncovering intricate patterns within complex systems and 
making accurate predictions based on input variables (14, 15). These 
techniques have revolutionized various domains, including data 
analysis, artificial intelligence, and predictive modeling. By leveraging 
ML algorithms and models, researchers and practitioners can extract 
valuable insights from vast amounts of data. ML techniques excel at 
identifying hidden relationships and patterns that may not 
be immediately apparent to human observers. This ability to capture 
intricate patterns empowers ML models to make precise predictions 
and inform decision-making processes. A wide range of ML models 
have been developed and utilized in science and engineering.

The main objective of this research was to develop accurate and 
reliable predictive ML models for velocity simulation of blood flow 
using the given input variables. Various foundational models, such as 
K-nearest neighbors (KNN), decision tree (DT), and multilayer 
perceptron (MLP), were trained and assessed. Furthermore, an 
ensemble model known as AdaBoost was employed to augment the 
predictive performance. The models are integrated to CFD model 
developed for simulation of blood flow in vessel for targeted 
cancer therapy.

K-nearest neighbors (KNN) is a non-parametric classification and 
regression algorithm that assigns a data point to a class based on the 

majority class among its K-nearest neighbors (16). While versatile, it 
faces challenges like the curse of dimensionality. Decision trees (DT) 
construct tree-shaped models for decision-making, offering 
interpretability but prone to overfitting and sensitivity to minor data 
variations (17). Multilayer perceptron (MLP), with interconnected 
layers of neurons, excel in pattern recognition but encounter 
computational challenges and local optima during training (18). 
AdaBoost combines weak models, transferring gradients to improve 
accuracy, adapting well to noisy data and outliers while leveraging 
knowledge from previous estimators for enhanced performance.

Employing individual machine learning methods in their basic 
forms may lead to models with reduced accuracy or potential 
overfitting. In this research, we hypothesized that utilizing AdaBoost 
and BAT algorithm to regulate hyperparameters and modulate the 
complexity of models could yield more precise and generalized 
models. This hypothesis was validated through the analysis of results.

2 Materials and methods

2.1 Data set description and model

In this study, the dataset used consists of more than 17,000 data 
entries. The dataset’s structure involves utilizing spatial coordinates as 
input, while the output variable is represented as the velocity, indicated 
as U, and measured in meters per second (m/s). U, as the only 
response, is indeed the velocity field for blood flow through vessel 
which contain drug loaded magnetic nanoparticles. The influence of 
external magnetic force on the nanoparticles was considered in the 
CFD model development. The obtained velocity field in 2 dimensional 
(2D) using the CFD was then used for training/testing the ML models. 
Therefore, the model is built in two steps, i.e., CFD simulation and ML 
development using the CFD outputs. The description of the system 
containing vessel and the external magnet has been reported elsewhere 
(19). The pairwise distribution of the dataset variables is visualized in 
Figure 1 and the box plots are depicted in Figure 2. Also Table 1 shows 
the statistics of the dataset.

The main equation which is solved via numerical technique is the 
Navier–Stokes equations which are solved via finite element method 
(FEM). The equations can be expressed as:

 
ρ µ ρ
∂
∂

−∇ ∇ + ∇( )( ) + ∇ +∇ =
U
t

U U U U p F· ·
T

 ∇ =·U 0

where U is velocity of blood through the vessel (m/s). p is the 
pressure, and F is body force (N). F as the body forces is estimated 
using the external magnetic field based on Maxwell’ model (19). The 
geometry of the vessel is considered as a tubular shape with axial 
symmetry where the input velocity is considered to be the well-known 
parabolic velocity profile. Additionally, a sinusoidal velocity profile 
was considered to take into account the influence of hear beat on the 
velocity profile. The simulations in this study were performed for the 
case at a hear beat.

In this study, prior to delving into the execution of regression 
analysis, sophisticated preprocessing steps were undertaken to ensure 
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the integrity and reliability of the dataset. Beginning with the 
identification and isolation of outliers through the innovative Isolation 
Forest algorithm, the data underwent a rigorous cleansing process, 
effectively eliminating anomalous data points that could potentially 
skew the subsequent regression analysis. Following outlier detection, 
the dataset was subjected to min-max normalization, a transformation 
technique aimed at standardizing the range of values across different 
features, thereby enhancing the stability and interpretability of the 
regression model. Furthermore, to gauge the model’s performance 
accurately, the dataset was judiciously partitioned into training and 
testing subsets, with an 80-20 ratio, ensuring a robust evaluation 
framework. Through this comprehensive preprocessing pipeline, the 
study lays a solid foundation for rigorous regression analysis, poised 
to uncover meaningful insights with confidence and precision.

2.2 Base regression models

After the simulation of fluid flow using the Navier–Stokes 
equations, the velocity distribution in two dimensional were obtained 
and extracted for ML model development. A number of ML models 
were used which will be explained in the following sections. Therefore, 

the ML models possess two inputs which are the coordinates and sole 
response, which is the velocity field, U (m/s).

The decision tree (DT) model is a highly advantageous option for 
regression applications. The technique is dependent on a data 
structure resembling a tree and functions as a means for selecting 
features optimally during the process of dividing the tree. The core 
aim is to identify a feature that effectively refines the split dataset and 
brings order to the initially disordered data. The decision tree model 
comprises three fundamental components: root nodes, intermediate 
nodes, and leaf or terminal nodes. The leaf nodes indicate the ultimate 
predictions, while the remaining nodes serve as evaluative points for 
various attributes. At each node, data samples are subdivided into 
child nodes (sub-nodes) based on property tests and the resultant 
insights (20, 21).

All data points are inputted into the root node during the initial 
stage of the training phase. Subsequently, the DT algorithm determines 
the optimal strategy for dividing the data into partitions. As this 
method is applied, each sub-dataset resulting from the division 
adheres to the criteria of the division rule, ensuring that all samples 
are appropriately categorized. The initial dataset undergoes successive 
subdivisions until a tree-like structure is formed, giving rise to several 
meticulously refined datasets (22).

FIGURE 1

Pair plot of the dataset for velocity field, U.
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The attainment of optimal “purity” in a DT occurs when all 
instances within a specific branch node are classified into the same 
category, as previously mentioned. Various metrics are commonly 
employed to assess the purity of divided samples and examine the 
integrity of datasets. The metrics encompassed in this set are 
information gain ratio, entropy, and the Gini index (23).

Information entropy measures dataset impurity, reflecting 
uncertainty in sample distribution across categories. Decision tree 
algorithms leverage entropy to assess information gain from 
attribute-based data splits. Gain ratio evaluates split effectiveness, 
considering both information gain and intrinsic attributes’ 
information to mitigate biases from attributes with many distinct 
values. The Gini index, akin to entropy, gauges impurity by the 
probability of misclassifying a randomly chosen sample. Decision 
trees use the Gini index to identify optimal attribute splits minimizing 
impurity in branch nodes. Employing these metrics, decision tree 

algorithms ensure accurate and informative model construction, 
selecting attribute splits that enhance tree purity and effectiveness.

Another foundational model utilized in this research is the 
K-nearest neighbors (KNN) model. The KNN technique is rooted in 
non-parametric and similarity-based learning methods (24). These 
methods do not impose any assumptions about the data distribution. 
The KNN algorithm belongs to the realm of supervised machine 
learning techniques and stands out for its simplicity, straightforward 
implementation, and the absence of a substantial training time 
requirement. This versatility makes it applicable to addressing both 
classification and regression challenges (25, 26).

In this approach, the identification of nearest neighbor locations 
relies on distance metrics, commonly utilizing Euclidean distance. 
However, other distance metrics like Manhattan distance, Minkowski 
distance, and various alternatives are also employed. The Euclidean 
distance is calculated using the following equation (27):

FIGURE 2

Variable box plots for the input and output parameters.

TABLE 1 Statistical measures of dataset variables.

Statistic X (m) Y (m) U (m/s)

Mean −0.029661 −0.015008 0.338124

Standard deviation 0.062820 0.002845 0.114155

Minimum −0.140000 −0.020000 0.000000

Maximum 0.080000 −0.010000 0.500050
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Multilayer perceptron regression (MLP) stands as an impressive 
and versatile machine learning model, capable of tackling both 
regression and classification tasks with finesse. This model belongs to 
the esteemed family of feedforward artificial neural networks, drawing 
inspiration from the intricate workings of the human brain.

Within the realm of regression, MLP boasts a sophisticated 
multilayer architecture comprising an input layer, one or multiple 
hidden layers, and an output layer. These layers house artificial 
neurons, or nodes, interconnected through weighted connections, 
forging a pathway for information flow.

At the heart of MLP lies the mission to comprehend intricate, 
nonlinear relationships within the data. This journey commences with the 
transformation of input features, traversing a realm of weighted 
computations and activation functions, ultimately yielding a predicted 
output. This intricate process is mathematically encapsulated as 
follows (28):

 

( ) ( 1) (2) (1)

(1) (2) ( 1) ( )
( ( (... ( (
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L L
y f W f W f W f W
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Here, x stands for the illustrious input features, W i( ) symbolizes the 
weight matrix of layer i, and b i( ) embodies the captivating bias vector of 
layer i. Also, f signifies the activation function, often a mesmerizing 
nonlinear entity such as ReLU (Rectified Linear Unit) or sigmoid.

MLP embarks on a journey of enlightenment by minimizing an 
aptly chosen loss function (e.g., MSE) through an optimization 
algorithm like the enchanting gradient descent. This iterative voyage 
adjusts the weights and biases, unlocking the true potential of the 

model’s predictive prowess. The learning rate (η) gracefully guides the 
magnitude of the weight updates.

The remarkable flexibility and capacity of MLP to capture intricate, 
nonlinear relationships make it an invaluable instrument for an array of 
regression tasks. From the captivating realm of financial forecasting to the 
captivating art of image analysis and the captivating mastery of natural 
language processing, MLP shines as a beacon of hope. With the right 
blend of adaptability and meticulous hyperparameter tuning, MLP 
emerges as a reliable and accurate solution, transcending barriers to 
conquer real-world regression challenges.

2.3 AdaBoost method

Adaptive boosting, also known as AdaBoost, is a technique that 
utilizes a group of multiple base models, with each model performing 
slightly better than a random predictor. The key concept behind 
AdaBoost is the transfer of gradients from preceding base estimators 
to subsequent ones, enabling the minimization of inaccuracies in 
previous models and enhancing their overall accuracy (29).

Through the sequential learning process, each base estimator in 
AdaBoost builds upon the knowledge of its predecessors, resulting in an 
increase in the overall cognitive ability of the learner. This sequential 
learning approach allows AdaBoost to effectively handle outliers and 
noisy data, making it a robust technique for predictive modeling.

The final prediction in AdaBoost is determined by combining the 
estimates from all the individual weak models using weighted 
averaging. This ensemble approach leverages the collective knowledge 
of the weak models to generate a more accurate and robust prediction.

The flowchart of Figure 3 shows the workflow of AdaBoost. One of 
the advantages of AdaBoost is its adaptability, as it can effectively handle 
difficult-to-predict training examples by focusing the attention of 
subsequent base estimators on such instances. This adaptive nature allows 

FIGURE 3

Flowchart of AdaBoost method.
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FIGURE 4

The impact of number of base models on the model performances.

AdaBoost to continually improve its performance and make 
accurate predictions.

2.4 BAT optimization algorithm for 
hyperparameter tuning

In recent years, the optimization of hyperparameters has become 
a critical aspect of enhancing the performance of machine learning 
models. The BAT (Bat Algorithm) optimization algorithm, inspired 

by the echolocation behavior of bats, presents an innovative approach 
to efficiently tuning hyperparameters.

The Bat Algorithm, simulates the echolocation behavior of bats to 
find optimal solutions in a search space. It is particularly well-suited 
for optimization problems due to its ability to balance exploration and 
exploitation effectively (30).

The algorithm introduces a population of virtual bats, each 
representing a potential solution in the hyperparameter space. These 
bats fly through the search space while adjusting their frequencies and 
loudness, mimicking the echolocation characteristics observed in real 

SCHEME 1

Contour of velocity field in 2 dimensions, obtained by CFD simulations.
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bats. The algorithm optimizes the solutions based on the fitness of 
each bat in the given problem context.

The application of BAT algorithm to hyperparameter tuning 
involves formulating the optimization problem specific to the model 
and dataset at hand. Let Θ  represent the hyperparameter vector, and 
f Θ( )  denote the objective function to be optimized.

The BAT algorithm updates the position of each bat in the 
hyperparameter space using the following equations (31):

 • Frequency:

 f f f fi = + −( )×min max min β

 • Velocity:

 
v v fi i i i= + −( )×Θ Θbat

 • New position:

 Θ Θi i iv= +

Here, fi  represents the frequency of the bat, vi is the velocity, β  is 
a random vector, and ̃ bat  denotes the best solution found so far.

The BAT optimization algorithm for hyperparameter tuning offers 
several advantages. It explores the hyperparameter space efficiently, 
adapts to different problem landscapes, and is capable of escaping 
local optima. However, practitioners should consider the sensitivity of 
the algorithm to the choice of parameters, such as the population size 
and the range of frequencies.

In a nutshell the utilization of the BAT optimization algorithm for 
the purpose of hyperparameter tuning presents a novel and 
bio-inspired methodology aimed at improving the efficacy of machine 
learning models. The BAT algorithm’s ability to effectively explore the 
hyperparameter space makes a significant contribution to the ongoing 
advancement of optimization techniques within the field.

3 Results and discussion

In this study, we investigated the relationship between variables 
x(m), y(m), and U(m/s), where U represents the velocity. 
We  employed several base models, namely decision tree (DT), 
K-nearest neighbors (KNN), and multilayer perceptron (MLP), to 
predict the velocity based on the given variables. Additionally, 
we utilized the ensemble model AdaBoost to enhance the predictive 
performance of our models. In the first step of modeling, CFD 
simulations were conducted to obtain the velocity field for the 
blood flow through the vessel. The results of CFD for velocity field 
are illustrated in Scheme 1. As seen, the velocity tends to zero near 
the wall as no-slip boundary condition was used for the wall. 

TABLE 2 Performance of base models and AdaBoost ensemble.

Model R2 score RMSE

ADA-DT 0.99783 5.2893 × 10−3

ADA-KNN 0.98524 1.3291 × 10−2

ADA-MLP 0.99603 7.1369 × 10−3

FIGURE 5

Visualization of expected values compared to predicted values using ADA-DT model.
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FIGURE 7

Visualization of expected values compared to predicted values using ADA-MLP model.

Moreover, the parabolic velocity profile can be seen in the vessel 
which resembles the flow through a tube. The maximum velocity 
occurs at the center of the blood vessel.

To fine tune the hyper-parameters of our models, we employed the 
BAT optimization algorithm. This algorithm efficiently explores the 
parameter space and finds the optimal values, leading to improved 
model performance. The critical hyper-parameters include setting the 
optimal value of K to 2 for the base K-nearest neighbors (KNN) model, 
determining a maximum tree depth of 8 for decision trees (DT), and 
selecting hidden layer sizes of (66, 29) for the multi-layer perceptron 
(MLP). Additionally, the number of estimators in AdaBoost on top of 

the base models are 10, 180, and 450 for ADA-KNN, ADA-MLP, and 
ADA-DT, respectively. Figure 4 illustrates the influence of the number 
of estimators on model performances.

The results obtained from our experiments are presented in 
Table 2. We evaluated the performance of each model in terms of the 
R2 score and the RMSE.

Our results indicate that all base models, when combined with 
AdaBoost, achieved high accuracy in predicting the velocity. The 
ADA-DT model demonstrated outstanding performance, exhibiting a 
significant R2 score of 0.99783 and a low RMSE of 5.2893 × 10−3. This 
suggests that the decision tree-based model, when boosted with 

FIGURE 6

Visualization of expected values compared to predicted values using ADA-KNN model.
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FIGURE 8

Learning curve for ADA-DT model.

FIGURE 9

Partial dependency of x(m) on U(m/s).
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FIGURE 10

Partial dependency of y(m) on U(m/s).

AdaBoost, effectively captured the underlying patterns in the data and 
produced accurate predictions. The comparison between the expected 
values and the predicted values is depicted in Figure 5 using the model.

The ADA-KNN model also yielded promising results, with an R2 test 
score of 0.98524 and an RMSE of 1.3291 × 10−2. This indicates that the 
K-nearest neighbors algorithm, in conjunction with AdaBoost, 
successfully captured the local relationships in the dataset and provided 
accurate predictions. This model is used to depict the comparison 
between the expected and predicted values in Figure 6.

Similarly, the ADA-MLP model demonstrated strong predictive 
performance, with an R2 test score of 0.99603 and an RMSE of 
7.1369 × 10−3. This suggests that the multilayer perceptron, coupled with 
AdaBoost, effectively learned the complex relationships between the 
variables and accurately predicted the velocity. The comparison between 
the expected values and the predicted values is depicted in Figure 7 using 
the model.

Overall, our findings highlight the effectiveness of AdaBoost in 
improving the performance of base models in predicting the velocity 
based on variables x(m) and y(m). The high R2 scores and low RMSE 
values obtained demonstrate the accuracy and reliability of our models. 
The ADA-DT performs relatively better than the two other models. The 
learning curve depicted in Figure  8, serves as a validation of the 
ADA-DT performance. It illustrates how the model’s training, and 

cross-validation scores evolve with an increasing number of training 
examples. Notably, as the number of training examples grows, both 
scores converge and stabilize, indicating that the model generalizes well 
to unseen data. This convergence suggests that the model is effectively 
learning from the training data and can make reliable predictions on 
new instances, affirming its validity and robustness.

As a result, we chose this model as the best-fit model, with the 
partial dependencies depicted in Figures 9, 10, and the 3D surface of 
this model depicted in Figure 11. The parabolic velocity profile can 
be observed in radial direction which is due to the imposed boundary 
conditions as well as the effect of viscous forces on the flow pattern. 
It should be noted that we considered continuum medium for the 
fluid flow containing the nanoparticles, however future study can 
develop two-phase flow models for considering the existence of solid 
particles and their influence on the flow pattern.

4 Conclusion

The main aim of the current study was to develop hybrid models 
for simulation of blood flow through vessel containing magnetic 
nanoparticles. The role of nanoparticles is the carrier for cancer drug 
to reach the target. The modeling strategy was conducted in two 
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steps, i.e., CFD simulations followed by ML modeling. Based on the 
dataset containing variables x(m), y(m), and U(m/s), the aim of this 
research was to develop an ensemble model using the AdaBoost 
algorithm for predicting the velocity, represented by U(m/s). Three 
base models, namely DT, KNN, and MLP, were utilized in conjunction 
with AdaBoost to enhance predictive accuracy.

The results obtained from the AdaBoost ensemble model in 
combination with each of the base models were highly promising. The 
ADA-DT model demonstrated a highly notable R2 value of 0.99783 
and a remarkably low RMSE of 5.2893 × 10−3. In a similar vein, the 
ADA-KNN model demonstrated a noteworthy R2 score of 0.98524, 
accompanied by an RMSE of 1.3291 × 10−2. The ADA-MLP model 
demonstrated exceptional performance, achieving an R2 value of 
0.99603 and an RMSE of 7.1369 × 10−3.

The results of this study underscore the efficacy and dependability 
of the AdaBoost ensemble model in forecasting velocity using the 
provided dataset. The high R2 scores and low RMSE values indicate 
that the model accurately captures the relationship between the input 
features [x(m) and y(m)] and the output variable [U(m/s)]. This 
showcases the potential of the ensemble approach in improving 
prediction accuracy over individual base models.

It is worth mentioning that the hyper-parameter optimization of 
the ensemble model was conducted using the BAT optimization 
algorithm. This approach ensured that the model parameters were 
fine-tuned to achieve optimal performance. The utilization of such 
advanced optimization techniques further enhances the credibility 
and robustness of the findings.

In conclusion, this study successfully developed an AdaBoost 
ensemble model incorporating base models such as DT, KNN, and 
MLP to predict velocity based on the provided dataset. The impressive 
performance of the ensemble model, as evidenced by high R2 scores 
and low RMSE values, underscores its efficacy in accurately estimating 
velocity. The utilization of the BAT optimization algorithm for hyper-
parameter optimization adds a layer of sophistication to the 
research methodology.
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FIGURE 11

Final 3D prediction surface plot of velocity distribution.
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