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Rectal cancer (RC) is a globally prevalent malignant tumor, presenting significant 
challenges in its management and treatment. Currently, magnetic resonance 
imaging (MRI) offers superior soft tissue contrast and radiation-free effects for 
RC patients, making it the most widely used and effective detection method. In 
early screening, radiologists rely on patients’ medical radiology characteristics 
and their extensive clinical experience for diagnosis. However, diagnostic 
accuracy may be hindered by factors such as limited expertise, visual fatigue, and 
image clarity issues, resulting in misdiagnosis or missed diagnosis. Moreover, the 
distribution of surrounding organs in RC is extensive with some organs having 
similar shapes to the tumor but unclear boundaries; these complexities greatly 
impede doctors’ ability to diagnose RC accurately. With recent advancements 
in artificial intelligence, machine learning techniques like deep learning (DL) 
have demonstrated immense potential and broad prospects in medical image 
analysis. The emergence of this approach has significantly enhanced research 
capabilities in medical image classification, detection, and segmentation fields 
with particular emphasis on medical image segmentation. This review aims to 
discuss the developmental process of DL segmentation algorithms along with 
their application progress in lesion segmentation from MRI images of RC to 
provide theoretical guidance and support for further advancements in this field.
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1 Introduction

Colorectal cancer (CRC) is one of the most common malignant tumors in the digestive 
system worldwide. According to the Global Cancer Statistics 2018 released by the World 
Health Organization, an estimated 1.8 million new cases of CRC and 861,000 deaths were 
reported in 2018. Colorectal cancer ranked third in terms of incidence (constituting 
approximately 10.2% of all cancer cases) and second in terms of mortality (accounting for 
around 9.2% of all cancer-related deaths) (1). The incidence rate is higher in developed 
countries and regions. Among them, Rectal cancer (RC) is a prevalent malignancy worldwide, 
ranking second in incidence among all gastrointestinal tumors and representing the third 
leading cause of global cancer-related mortality (2). Accurate diagnosis and treatment of RC 
are pivotal in enhancing the long-term survival outcomes for patients (3). Currently, as a result 
of the widespread implementation of early detection methods for RC and continuous 
advancements in medical imaging technology, an increasing number of patients with RC can 
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be identified at an early stage and receive optimal treatment (3, 4). As 
a pivotal imaging modality in the field of radiology, magnetic 
resonance imaging (MRI) proficiently delineates tumor morphology 
and precise localization, lymph node staging, extramural vascular 
invasion, as well as rectosigmoid mesentery fascia involvement (5). It 
has emerged as the foremost choice for diagnosing RC (6–8). However, 
the conventional radiology diagnosis of RC often necessitates doctors 
with extensive diagnostic expertise. Typically, radiologists are required 
to meticulously examine MRI images frame by frame, and accurately 
annotating the lesion area at a pixel level poses a significant challenge 
for physicians when determining the target region for radiation 
therapy in RC patients (9). Simultaneously, the substantial patient 
volume encountered in clinical practice significantly exacerbates their 
workload. Prolonged and repeated repetitive image analysis can 
potentially lead to misdiagnosis and failure to detect certain 
conditions, thereby impeding timely treatment initiation for these 
patients (10). The MRI images of RC often pose the following 
diagnostic challenges: ① There is considerable interindividual 
variability in the size and shape of RC, while the pelvic region exhibits 
complex anatomical structures. ② The region of interest (ROI) 
occupies a relatively small proportion within the image, certain organs 
exhibit analogous morphologies to the RC and are situated in close 
proximity, resulting in indistinct boundaries of RC and rendering 
diagnosis and differentiation challenging. Therefore, the development 
of a precise segmentation algorithm for the MRI images of RC is 
imperative to alleviate the burden on healthcare professionals and 
enhance the accuracy of diagnosis as well as efficiency in radiotherapy 
planning through computer algorithm-driven automatic identification 
of lesions associated with RC in MRI images.

Deep learning (DL), as a fundamental technology in the new era of 
artificial intelligence, enables the construction of highly effective 
machine learning algorithms based on extracted features. Integration of 
this algorithm with computer-aided diagnosis (CAD) technology not 
only eliminates subjective human factors but also facilitates accurate and 
efficient processing of massive medical data by clinical practitioners. 
Currently, DL-based CAD systems have been extensively employed in 
diverse medical image processing applications and have exhibited 
remarkable efficacy (11–13). Furthermore, the storage format of medical 
images adheres to the globally recognized DICOM (Digital Imaging and 
Communications in Medicine) standard, which serves as a robust 
foundation for the advancement of DL due to its inherent advantages 
such as universality, standardization, and exceptional quality. Currently, 
this technology has gained widespread application in the preoperative 
TNM staging of RC, assessment of neoadjuvant therapy efficacy, lesion 
segmentation, and non-invasive preoperative prediction combined with 
genetic typing (14–17). DL-based segmentation algorithms are 
end-to-end structures, where after the model architecture is completed, 
radiologists only need to focus on the input and output ends of the 
model during training and application. This eliminates the need for 
adjusting algorithmic encoding rules and optimizations based on 
intermediate results as required by traditional segmentation algorithms, 
thereby significantly enhancing work efficiency and facilitating practical 
clinical implementation. The DL-based segmentation algorithms 
currently achieve outstanding performance, surpassing various publicly 
available computer vision benchmark datasets and being widely applied 
in medical image processing (18, 19). Although there have been many 
studies on RC segmentation algorithms based on DL, there has not been 
a comprehensive review summarizing previous literature. The objective 

of this review is to present a comprehensive overview of the 
developmental process related to MRI-based DL segmentation 
algorithms, as well as the current research status in RC for image lesion 
segmentation. The ultimate aim is to provide more systematic guidance 
for advancements in this field.

2 Commonly DL-based algorithm for 
image semantic segmentation

The concept of DL, initially introduced by the esteemed machine 
learning expert Hinton in 2006, represents a prominent form of 
machine learning (20). The core of DL lies in constructing machine 
learning architectures with multiple hidden layers, training them on 
large-scale datasets, and extracting a substantial amount of 
representative feature information to achieve accurate sample 
classification and prediction (21). The workflow typically encompasses 
three stages: ① preprocessing of image data; ② training, validation, and 
testing of the model; and ③ evaluation of the model (22). The 
preprocessing of image data is a fundamental task in DL, encompassing 
noise reduction, data normalization, feature selection, and extraction 
(23). To enhance model training and optimize accuracy, we typically 
partition them into three distinct subsets: the training set, validation 
set, and test set. The training set facilitates data parameter learning for 
classifier fitting, while the validation set serves as a safeguard against 
overfitting. Subsequently, the test set is employed to assess model 
performance. Ultimately, model evaluation is conducted to ascertain 
whether the research objectives are effectively achieved. Figure  1 
presents a comprehensive flowchart illustrating the principles of DL.

Currently, computer vision encompasses various subtasks, 
including image classification, image segmentation, object detection, 
image annotation, and image generation. Among these tasks, image 
segmentation plays a pivotal role in medical image processing by 
facilitating the extraction of annotated ROI from 2D or 3D images. 
This technique generates a mask image with identical dimensions to 
the original image, where pixels representing ROI are assigned specific 
values (e.g., 0 for background region and 1 for ROI), thereby indicating 
the results of segmentation (24). The conventional image segmentation 
algorithms can be  broadly categorized into several groups, 
encompassing threshold-based segmentation algorithms, edge-based 
segmentation algorithms, region-based segmentation algorithms, and 
clustering-based segmentation algorithms (25). However, these 
algorithms are relatively simplistic, primarily relying on elementary 
features such as texture and shape of the image, while disregarding the 
distinctions between diverse objects. The DL-based algorithms for 
image semantic segmentation leverage the exceptional feature learning 
capabilities of neural network models, enabling them to effectively 
capture and model the intricate semantic information as well as the 
interdependencies between various regions within images. This 
remarkable advancement has surpassed traditional image 
segmentation approaches, thereby showcasing its immense potential 
for further advancements in this field.

2.1 Convolutional neural networks

The Convolutional Neural Networks (CNN) serve as the 
predominant algorithmic models in DL applications, being 
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fundamentally embraced as the foundational network for 
contemporary medical image segmentation algorithms. Although the 
concept of CNN was initially proposed by Fukushima et al. in the 
1980s, and recognition based on receptive fields was invented to 
simulate the human visual system, research related to CNN faced 
significant limitations due to scarce computer hardware resources and 
insufficient training data at that time (26). Krizhevsky et al. developed 
AlexNet for the ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC) until 2012, resulting in a substantial enhancement of image 
classification accuracy from 70 to 80% compared to conventional 
algorithms. This breakthrough prompted a resurgence of interest 
among researchers in the field of CNN (27). Subsequently, a plethora 
of seminal CNN models such as VGGNet, ResNet, GoogleNet, and 
DenseNet emerged in rapid succession (28–31). These models have 
found extensive applications across diverse image-processing 
tasks and have even surpassed human cognitive capabilities in 
certain aspects.

CNN, developed based on traditional artificial neural networks, 
plays a pivotal role in the implementation of DL techniques for image 
recognition (32). The fundamental architecture is illustrated in 
Figure  2, comprising five distinct components: the input layer, 
convolutional layer, pooling layer, activating layer, fully connected 
layer, and output layer (33, 34). Firstly, the image is transmitted to the 
input layer in the form of a 3D pixel matrix, where the dimensions of 
the matrix represent the size of the image, and its depth represents the 
number of color channels. The convolutional layer automatically 
extracts high-level features that are relevant to accomplishing the 
given task. The pooling layer sparsely processes input feature maps to 
effectively reduce computational load. Subsequently, through an 
alternating stacking of convolutional and pooling layers, features are 
extracted and analyzed by the fully connected layer acting as a 
classifier for specific task classification. Finally, probabilistic scores for 
corresponding categories are provided by the output layer.

Early CNN models employed fully connected layers at the final 
stage, leading to the loss of spatial information inherent in the input 
image. Consequently, these models encountered challenges in 
accurately determining the affiliation category for each pixel within 
the input image. In order to tackle this challenge, Long et  al. 
introduced the Fully Convolutional Network (FCN) in 2015 and 
pioneered the application of CNN in the domain of image 
segmentation (35). The VGG Net and Inception Net models were 
employed as underlying structures for overlaying and conducting 

deconvolution operations on feature maps generated by various 
convolutional modules, resulting in segmentation outcomes that 
maintain consistency with the original image dimensions. As depicted 
in Figure  3, in contrast to conventional CNN, FCN exclusively 
comprises convolutional layer. In comparison with the input, 
convolution, pooling, fully connected and output processes of CNNs, 
the FCN procedure can be  simplified into three steps: stacking 
alternating convolution and pooling layers, merging diverse layers, 
and performing up-sampling operations (35, 36). The advantages of 
FCN are as follows (37–39): ① The model eliminates a fully connected 
layer, effectively reducing the model’s complexity. ② By incorporating 
up-sampling operations that restore input feature maps’ resolution 
while preserving their original spatial information, FCN enables the 
use of images of any size as input, facilitating end-to-end pixel-level 
prediction. ③ FCN integrates skip connections to fuse feature maps 
from different levels, ensuring robustness and accuracy in predictions.

In the same year, Ronneberger et  al. proposed U-Net, an 
FCN-based architecture designed for medical image datasets with 
limited samples (40). The major highlight of this model lies in its 
utilization of lateral skip connections within a symmetrical encoder-
decoder architecture, facilitating the transfer of feature maps from the 
encoding process to the decoding process. This mechanism enables 
the fusion and complementation of low-level semantic information 
with high spatial resolution features, as well as high-level semantic 
information with lower spatial resolution features. By progressively 
enhancing the spatial resolution of encoder output features, it achieves 
seamless integration of high-level semantic information and high-
resolution spatial details, thereby showcasing exceptional performance 
in medical image segmentation tasks (41, 42). The U-Net network is 
composed of two main components: the compression path and the 
expansion path. The compression path serves for feature extraction 
and aims to reduce the size of the feature maps. Each convolution 
block in the compression path consists of consecutive 3 × 3 
convolutions, followed by a ReLU activation unit and a max pooling 
layer. This structure is iteratively applied multiple times. The 
distinctive characteristic of U-Net lies in its expansion path, where 
each stage employs a 2 × 2 deconvolution to upsample the feature 
maps. Subsequently, the upsampled feature maps are concatenated 
with their corresponding counterparts from the compression path 
through skip connections. Following this concatenation, two 
consecutive 3 × 3 convolutions and ReLU activation layers are 
employed. Finally, an additional 1 × 1 convolution is utilized to 

FIGURE 1

Flowchart of DL.
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decrease the number of channels in order to generate segmented 
images as desired. By incorporating skip connections, U-Net 
effectively integrates low-level information with high-level features, 
enabling it to preserve more high-resolution details and further 
enhance accuracy in image segmentation. Consequently, this network 
has gained significant attention in the field of medical image 
segmentation and is widely employed as a primary model for various 
medical image segmentation tasks or as a benchmark model for 
evaluating model performance. The fundamental architecture of 
U-Net is illustrated in Figure 4.

Similar to the idea of skip connections in U-Net, SegNet was 
proposed by Badrinarayanan et al. in 2016 (43). The key contribution 
of the network architecture in this algorithm lies in its function as also 
an encoder-decoder, which stores index information during down-
sampling pooling operations and utilizes these indices to recover 
corresponding information during up-sampling processes. In 2017, 
Zhao et al. introduced PSPNet, a novel approach that incorporates a 

pyramid pooling module to effectively integrate global contextual 
information with local semantic details, thereby augmenting the 
network’s capacity for scene understanding (44). The DeepLab 
network, proposed by Chen et  al. in 2017, incorporated dilated 
convolution into the segmentation network to enhance the model’s 
receptive field. Additionally, fully connected conditional random fields 
were employed to refine the CNN-based segmentation results (45).

Given the prevalence of 3D data in medical imaging, such as CT, 
MRI, PET, etc., there has been a proliferation of new 3D image 
segmentation algorithms within the realm of medical image 
segmentation, including notable examples like 3D U-Net (46). The 3D 
U-Net network model represents an enhanced iteration of the U-Net 
network, wherein all 2D operations have been substituted with their 
corresponding 3D counterparts, namely 3D convolution, 3D max 
pooling, and 3D deconvolution, resulting in 3D segmentation images 
(47). The fundamental architecture of 3 U-Net is illustrated in Figure 5, 
exhibits the capability to achieve image segmentation with minimal 

FIGURE 2

The schematic diagram of CNN.

FIGURE 3

The schematic diagram of FCN.
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data owing to the abundance of repetitive structures and organizational 
information present in 3D images. Moreover, compared to its 
predecessors, this network demonstrates enhanced efficiency during 
the training process.

Inspired by both DenseNet and U-Net, Zhou et  al. proposed 
U-Net++, a potent variant based on the U-Net architecture (48). As 
depicted in Figure 6, U-Net++ employs dense skip connections to 
tightly link each convolutional block between the contracting and 
expanding paths, facilitating the preservation of more comprehensive 
semantic information throughout the network and enabling efficient 
image segmentation. In contrast to traditional U-Net where feature 
maps from the contracting path are directly connected to 
corresponding layers in the expanding path, U-Net++ introduces 
multiple skip connection nodes between each corresponding layer. 
Each skip connection receives feature maps from all nodes at the same 
level as well as directly upsampled feature maps from lower levels. This 
design the maximizes retention of semantic information between 
compression and expansion paths, resulting in enhanced 
segmentation performance.

The challenge in CNN-based semantic segmentation research lies 
in the loss of positional and detailed information during continuous 
pooling and extraction of high-level semantic features. This leads to 
incomplete restoration of such information during up-sampling, 
thereby impacting the accuracy of segmentation. The pooling function 
in SegNet (49), the skip connections between up-sampling and down-
sampling in U-Net (41), 3D U-Net (46), and U-Net++ (48), and the 
fully connected conditional random field in DeepLab (45) are all 
designed to complement the detailed information during up-sampling 

operations. Moreover, integrating the semantic information extracted 
by CNN with local/global features is imperative for achieving accurate 
object segmentation across diverse scenes and varying sizes. The 
pyramid pooling module in PSPNet (50) and the dilated convolution 
in DeepLab (45) both synergistically fuse features from different 
spatial ranges to enhance segmentation efficacy. Currently, U-Net, 3D 
U-Net, and U-Net++ are widely recognized as classical neural network 
models in the field of medical image segmentation tasks.

2.2 Recurrent neural networks

The RNN is a pivotal component in the field of DL, extensively 
employed for processing time sequence data. The distinctive 
architecture characterized by self-connections within the hidden 
layers endows RNN with the ability to retain contextual information 
pertaining to temporal sequences. Owing to its unique internally 
recurrent structure, which sets it apart from other neural networks, 
RNN exhibits remarkable suitability for effectively handling sequential 
data (51, 52).

The fundamental architecture of RNN is illustrated in Figure 7, 
which consists of an input layer, a hidden layer, and an output layer. 
This network exhibits a fully connected structure not only between 
layers but also within the hidden layer, enabling it to retain information 
from previous time steps and propagate it to subsequent ones. 
Consequently, the input of the hidden layer includes not only the 
input of the input layer but also the output of the previous time step’s 
hidden layer. The depth of an RNN manifests in two dimensions: 

FIGURE 4

The schematic diagram of U-Net.
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vertical depth, allowing for multiple hidden layers to deepen network 
architecture; and horizontal depth, permitting multiple hidden layers 
in temporal dimension while retaining memory capabilities. As a 
result, RNN effectively handles sequential data features and achieves 
optimal predictive models (53, 54). Xt represents the value of the input 
layer, s represents the value of the hidden layer, W represents the 
weight coefficient matrix when using previous hidden layer output as 

input for this time step, o represents the value of the output layer, V 
represents the weight coefficient matrix from the hidden layer to the 
output layer. For a given input X = (X1, X2,…, Xn), by using formulas 
(1) and (2), we obtain a sequence of hidden layers St = (S1, S2,…, Sn) 
and an output sequence yt = (y1, y2,…, yn) after passing through RNN.

 
S f W S W X bt ss t xs t s= + +( )−1  (1)

 
y W S bt sy t y= +

 (2)

In this context, Wss denotes the weight coefficient matrix of the 
hidden layer, Wxs represents the weight coefficient matrix from the 
input layer to the hidden layer, and Wxs signifies the weight coefficient 
matrix from the hidden layer to the output layer. bs and by, respectively, 
denote bias vectors of the hidden layer and output layer. The function 
f (·) represents activation functions such as sigmoid or tanh. The 

FIGURE 5

The schematic diagram of 3D U-Net.

FIGURE 6

The schematic diagram of U-Net++.

FIGURE 7

The schematic diagram of RNN.
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interconnected neurons in RNN’s hidden layer facilitate data sharing 
among neuron nodes, enabling effective handling of time series data.

However, traditional RNNs face inherent challenges in addressing 
the issues of gradient vanishing and exploding during model training, 
which pose significant limitations on their application (55). To 
mitigate the problem of gradient vanishing in RNN, Hochreiter et al. 
proposed a novel Long Short-Term Memory (LSTM) neural network 
architecture (56). The LSTM incorporates three gates, namely the 
input gate, output gate, and forget gate, into the RNN. Upon 
information entry into the network, it undergoes evaluation based on 
predefined rules. Permissible information proceeds to subsequent 
steps while impermissible information is discarded via the forget gate. 
LSTM finds applications in diverse domains such as handwriting 
recognition, time series prediction, image analysis, and speech 
recognition. Currently, LSTM is extensively employed in the domains 
of handwriting recognition, time series prediction, as well as image 
and speech recognition (57). Gers et al. identified the limitations of 
the initial LSTM model and recognized the importance of periodically 
resetting the memory cell state and selectively forgetting irrelevant old 
information to accommodate new information storage during the 
process of information transmission (58). To address these issues, they 
introduced memory unit components on top of the original structure. 
The underlying design principle is that when stored content in the 
memory cell becomes irrelevant, it should be reset accordingly. This 
approach effectively mitigates both gradients vanishing and exploding 
problems while addressing long-term dependency concerns. Figure 8 
presents a comprehensive flowchart illustrating the principles 
of LSTM.

In the LSTM architecture, the input information comprises of the 
current input state Xt and the previous time step’s cell state ht − 1. The 
update mechanism involves filling or removing storage units within 
the internal structure. The gates in the LSTM design are constructed 
using a combination of sigmoid activation function and matrix dot 
product operations. The sigmoid activation function restricts its 
output values between 0 and 1, representing the extent to which 
information is allowed to propagate.

2.3 Graph neural networks

Although CNN and RNN have achieved decent results in some 
early diagnoses and image segmentation tasks, their limitation lies in 
the isolated extraction of individual imaging information, which 
hampers their ability to learn more effective models due to the 

inherent structure generated by predicting individual labels based on 
the interactions between partially labeled individuals and the entire 
population (59). The Graph Neural Network (GNN) framework has 
emerged in recent years as a powerful tool for directly learning from 
graph-structured data using DL techniques. Its exceptional 
performance has garnered significant attention and extensive 
exploration by researchers. By leveraging diverse types of information, 
including imaging and non-imaging data, GNN enhances the 
representation capability of individual subjects, enabling accurate 
prediction of individual labels based on interactions between partially 
labeled individuals and the entire population. Consequently, GNN 
finds wide application in fMRI disease diagnosis combined with 
population graph analysis (60). Bruna et  al. were pioneers in the 
application of convolutional operations to GNN by leveraging a series 
of Laplacian operators, which enable a more direct representation of 
the convolutional properties in the Fourier domain of graph data (61). 
However, this approach is computationally intensive and overlooks 
local features. Defferrard et al. proposed ChebNet, a method that 
utilizes truncated Chebyshev polynomials to approximate spectral 
filters and avoid the need for computing Fourier bases (62). Kipf et al. 
introduced GGN with a local first-order approximation using spectral 
convolution (63). Currently, GGN employs a hierarchical propagation 
mechanism to encode node relationships from the graph structure as 
node features, thereby facilitating the generation of feature 
representations that encompass richer information. The GNN can 
be categorized into spectral-based approaches (62, 63) and spatial-
based approaches (64, 65). Spectral-based GNN leverages the 
principles of spectral CNN, which are founded on graph Fourier 
transform and normalized Laplacian matrix. On the other hand, 
spatial-based GNN defines graph convolution operations based on the 
spatial relationships among graph nodes. However, as the number of 
graph convolution layers increases, there arises a phenomenon called 
‘over-smoothing’ where high-level node representations tend to 
converge excessively. To address this issue and facilitate meaningful 
learning of high-level node representations, novel structures for GNN 
have also been proposed (66). The commonly used GNN structures 
are ChebNet (62), GCN (63), and JK-Net (66).

3 Application of DL based on MRI for 
lesion segmentation

Currently, the majority of research on RC tumor segmentation 
utilizing DL methods primarily focuses on imaging techniques such 

FIGURE 8

The schematic diagram of LSTM.
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as T2WI, which enable the visualization of intricate anatomical 
structures. However, there is a paucity of studies investigating 
automatic segmentation algorithms for RC based on functional 
imaging modalities like DWI. Trebeschi et al. employed a DL model 
based on CNN to integrate T2WI + DWI (with B values of 1,000 and 
0) images of RC patients, aligning the two image sets through 
deformable registration (67). However, suboptimal alignment between 
the two image sets may occur due to patient motion or involuntary 
bowel movement during scanning intervals. By exclusively utilizing 
DWI data for segmentation, potential errors in the registration process 
can be circumvented. Hence, it is imperative to investigate automatic 
segmentation of rectal tumors based on DWI. Irving et  al. have 
developed an automated framework for tumor segmentation in RC 
patients using a superpixel approach and dynamic contrast-enhanced 
MRI (DCE-MRI) (68). This framework incorporates global anatomical 
morphological constraints to refine the boundaries of superpixels, 
resulting in excellent performance in DCE-MRI segmentation tasks. 
Moreover, this method can be extended to other DCE-MRI superpixel 
segmentation problems. Jian et al. utilized the complete rectal MRI 
image as input for the segmentation model and established five 
convolutional modules. Each module was capable of generating a 
corresponding predicted result map, which was subsequently fused to 
form the ultimate segmentation outcome of rectal tumors (69). Kim 
et al. employed a conventional U-Net architecture as the segmentation 
model, utilizing the entire rectal MRI image as input to automatically 
delineate both the rectum and tumor regions (70). Subsequently, they 
utilized the segmented output from this model as input for a 
classification network to determine the stage (T2 or T3) of the tumor 
in the rectal MRI image. Zhu et  al. employed a fully supervised 
paradigm to train a 3D U-Net model on DWI images of 300 rectal 
cancer patients, resulting in a Dice coefficient segmentation score of 
0.675 (71). These findings demonstrate the high accuracy and 
effectiveness of the DL model for tumor segmentation in DWI images 
of RC patients.

In rectal MRI images, the limited spatial coverage of rectal tumors 
poses a challenge for traditional CNNs to effectively capture both 
tumor-specific information and contextual details. Furthermore, the 
inclusion of hidden features surrounding the tumor is crucial for a 
comprehensive analysis of RC. To address this issue, some researchers 
have employed convolution kernels with varying sizes to extract 
features from the entire rectal MRI image, enabling simultaneous 
attention to subtle tumor characteristics and concealed features in its 
vicinity. The proposed multiscale convolutional architecture, as 
introduced by Men et  al., employs VGG-16 as the underlying 
framework for accurate RC segmentation (72). By incorporating 
dilated convolutions at both the beginning and end of the main 
network, features at various scales in rectal images can be effectively 
extracted. Specifically, the initial dilated convolutions capture 
low-level contextual information while the subsequent ones capture 
high-level contextual information. Subsequently, Men et al. proposed 
a CAC-SPP model based on ResNet-101 for accurate segmentation of 
RC (73). This approach incorporates cascaded dilated convolutions 
and spatial pyramid pooling modules to effectively capture multi-scale 
features in rectal images, enabling the model to focus specifically on 
the contextual information surrounding rectal tumors.

In recent years, significant advancements have been made in the 
application of DL techniques for MRI image segmentation in 
RC. Presently, the primary focus within this field revolves around 

developing more efficient models utilizing innovative technologies. 
The utilization of U-Net architecture in DL has exhibited remarkable 
advancements in medical image segmentation tasks, positioning it 
as one of the prevailing focal points within this realm of scientific 
inquiry (16). The traditional U-Net network was enhanced by Li 
et al. through the introduction of a novel U-Net architecture (74). 
The proposed model introduces a novel approach by replacing the 
encoder with Squeeze-and-Excitation networks (SENet) and 
incorporating a global pooling layer after the last encoder. 
Additionally, spatial and channel compression is achieved through 
excitation attention mechanism modules in each decoder, followed 
by connecting the output results of each decoder. The research 
findings demonstrate that this model enables accurate and efficient 
RC segmentation as well as contour segmentation. DeSilvio et al. 
developed a U-Net model specifically designed for segmenting the 
rectal outer wall, lumen, and perirectal fat area in T2WI images 
after RC treatment (75). In a multi-institution evaluation, this 
region-specific U-Net achieved comparable performance to 
multiple radiologists in image segmentation tasks, with Dice 
coefficient indicators of 0.920 for bowel wall segmentation and 
0.895 for bowel lumen segmentation (compared to radiologists’ 
scores of 0.946 and 0.873 respectively). Furthermore, this model 
exhibited a remarkable improvement of 20% over other types of 
U-Net models in terms of performance enhancement. The practical 
significance lies in its accurate assessment of tumor extent and 
precise delineation of rectal structures. Due to the limited ability of 
traditional U-Net networks to capture adequate contour 
information from extracted high-level features, a recent study by 
Dou et al. proposed an attention fusion U-Net model to enhance 
image segmentation accuracy (76). This model takes multi-
parametric MRI images as input and effectively integrates their 
features through embedded attention fusion modules. Experimental 
results demonstrate that this approach achieves a Dice coefficient 
index of 0.821 ± 0.065 for segmentation, positioning it among the 
most advanced methods currently available for RC 
image segmentation.

4 Conclusion

DL based on MRI has demonstrated promising results in 
segmenting RC lesions and holds great potential for clinical 
applications. However, there is limited research specifically focused on 
MRI lesion segmentation for RC, with researchers primarily utilizing 
small-scale datasets that predominantly consist of T2WI MRI images. 
The investigation of lesion segmentation in other modalities of MRI, 
such as T1WI MRI images crucial for anatomical localization in 
clinical diagnosis, remains insufficient. Additionally, most existing 
modules in this field are designed for 2D image segmentation despite 
the fact that medical practice typically involves 3D MRI images. This 
approach may not accurately handle cases without tumor regions, 
leading to false segmentation issues. Furthermore, due to the relatively 
limited size of the test set used in this study, future research should 
encompass multicenter studies involving diverse medical centers and 
various types of MRI devices. Moreover, comprehensive exploration 
should be conducted on 3D convolutional segmentation models based 
on different modalities of MRI to provide robust technical support for 
precise localization of lesion positions during clinical diagnosis.
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