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Introduction: Transparency and traceability are essential for establishing

trustworthy artificial intelligence (AI). The lack of transparency in the data

preparation process is a significant obstacle in developing reliable AI systems

which can lead to issues related to reproducibility, debugging AI models, bias

and fairness, and compliance and regulation. We introduce a formal data

preparation pipeline specification to improve upon the manual and error-prone

data extraction processes used in AI and data analytics applications, with a focus

on traceability.

Methods: We propose a declarative language to define the extraction of AI-ready

datasets from health data adhering to a common data model, particularly those

conforming to HL7 Fast Healthcare Interoperability Resources (FHIR). We utilize

the FHIR profiling to develop a common data model tailored to an AI use case

to enable the explicit declaration of the needed information such as phenotype

and AI feature definitions. In our pipeline model, we convert complex, high-

dimensional electronic health records data represented with irregular time series

sampling to a flat structure by defining a target population, feature groups and

final datasets. Our design considers the requirements of various AI use cases

from different projects which lead to implementation of many feature types

exhibiting intricate temporal relations.

Results: We implement a scalable and high-performant feature repository to

execute the data preparation pipeline definitions. This software not only ensures

reliable, fault-tolerant distributed processing to produce AI-ready datasets and

their metadata including many statistics alongside, but also serve as a pluggable

component of a decision support application based on a trained AI model during

online prediction to automatically prepare feature values of individual entities.

We deployed and tested the proposed methodology and the implementation

in three different research projects. We present the developed FHIR profiles

as a common data model, feature group definitions and feature definitions

within a data preparation pipeline while training an AI model for “predicting

complications after cardiac surgeries”.
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Discussion: Through the implementation across various pilot use cases, it has

been demonstrated that our framework possesses the necessary breadth and

flexibility to define a diverse array of features, each tailored to specific temporal

and contextual criteria.

KEYWORDS

artificial intelligence, dataset, harmonization, transparency, FHIR, interoperability,
health data spaces

1 Introduction

1.1 Background and objectives

Transparency, and traceability are considered among the key
requirements for trustworthy artificial intelligence (AI) by the AI-
Act which will be governing the use of AI solutions in the EU
(1). Lack of transparency in the data preparation process, i.e.,
the difficulty in tracking and understanding the transformations
and manipulations that the data undergoes before being used for
training is a major issue for building trustworthy AI solutions (2).

Today’s AI models depend on a complex, iterative process
involving extensive communication among medical professionals,
data scientists, and database administrators. Medical experts
outline the specific data needed for the AI project to data
scientists and AI developers, who then pass these requirements
to database administrators. These administrators are responsible
for retrieving the relevant data from existing sources, such as
Electronic Health Records (EHR), based on the defined variables.
Typically, this procedure is manually carried out by database
administrators, resulting in time-consuming, labor-intensive tasks
that lack transparency and traceability. Data scientists check the
accuracy and relevance of the data, while medical professionals
evaluate the performance of the AI model trained using this data.
This prone-to-error and laborious back-and-forth continues until
there is a mutual understanding and satisfaction with the data
prepared for the AI application. This lack of transparency can lead
to several issues:

• Reproducibility: Without knowing the exact steps taken
during data preparation, it becomes difficult to reproduce
the same dataset or validate the results obtained from the
AI model. This also hampers the ability to effectively train
AI models across several sites via a federated learning
architecture. For example, researchers may decide to exclude
data from certain patients with specific phenotypes (e.g.,
having a condition like epilepsy). Even if they document this
exclusion by indicating the name of the disease, the lack of
clear coding for exclusion criteria can still pose a problem due
to insufficient transparency. Medical terminologies (e.g., ICD-
10 codes for diagnosis) are used to indicate phenotypes, and
the usage of these medical concepts can vary among different
healthcare settings. Even if the same terminology is used, the
practical definition of the phenotype can differ between two
healthcare settings. Therefore, when an AI model is deployed
in a different setting, it is crucial that the phenotype definitions
are clear and transparent. This allows for proper configuration

and customization of data mapping or preprocessing steps
according to how medical terminologies are used in that
specific setting.
• Debugging: When unexpected results occur during model

training or inference, it can be challenging to identify the root
cause without knowing how the training data was prepared.
• Bias and Fairness: Data transformations and preprocessing

steps can inadvertently introduce biases into the dataset,
leading to biased AI models. During training data extraction
and data cleaning step, decisions on how to handle missing
values can introduce biases. For example, if data for certain
racial groups is more likely to have missing values, imputing
these with overall mean values might not accurately reflect
the health status of these groups. Then suppose that an AI
model trained and deployed to predict health risks for a
diverse patient population where this data cleaning step not
documented transparently. Because the model was trained
on a biased dataset, it may not perform well for these
underrepresented groups. Due to this unidentified bias, the
model may perform well on the majority population but
poorly on minorities which may exacerbate existing health
disparities. Without traceability, it’s challenging to detect and
mitigate these biases.
• Compliance and Regulation: In regulated domains such as

healthcare, there are regulatory requirements for documenting
data processing steps for transparency and auditability
purposes.

In this paper, we propose a formal data preparation pipeline
specification to overcome the limitations of the manual and
error-prone data extraction processes for AI and data analytics
applications, while also addressing the issue of traceability.
We introduce a declarative JSON-based language designed for
specifying how to extract data from datasets that adhere to
Common Data Models, specifically those compatible with HL7
Fast Healthcare Interoperability Resources (FHIR) standards (3),
as part of a pipeline process to prepare data for AI. Our goal is
to enhance the scalability, transparency, and reproducibility of AI
applications by streamlining the data extraction phase and clearly
separating medical knowledge from data engineering knowledge.
Our approach also endeavors to offer a practical methodology
for realizing the objectives outlined in the European Health Data
Space (EHDS) legislation (4) which aims to facilitate health data
portability and foster the development of a unified market for
health data for secondary use purposes. The transparent and
declarative model used to define the data preparation pipeline
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supports the aggregation of health data from diverse sources,
thereby making them accessible for clinical research.

Our objective is to establish a data preparation pipeline
originating from Electronic Health Record (EHR) sources to
generate AI-ready training datasets. This task presents several
challenges due to the inherent complexity of EHRs, rendering them
unsuitable for direct use as feature vectors in training AI models
(5–7). EHR data is structured in intricate, nested, high-dimensional
models with diverse data types often linked to external domain-
specific terminologies and code systems, enhancing the semantic
understanding of data entities. However, this structure doesn’t
align directly with the flat feature vectors expected by AI methods,
typically represented as normalized, domain-agnostic value sets.
Moreover, EHR data records unevenly distributed clinical events,
resulting in irregularly sampled sparse time series data, further
complicated by the presence of missing values.

Converting EHR data into feature vectors suitable for AI
methods necessitates multiple steps, involving various decisions.
These decisions encompass selecting domain-specific codes from
international code systems to determine which data entities
from EHR to include, identifying necessary temporal joins and
aggregations, determining the resampling strategy for longitudinal
EHR data, specifying transformations for normalization, unit
conversion, and harmonization, and devising approaches to handle
missing data. The design of our declarative data preparation
pipeline definition has been guided by these challenges. It is crafted
to transparently define each step of the transformation pipeline
as a sequence of data processing and transformation actions in a
standardized manner.

Our data preparation pipeline model is technology agnostic;
it provides a machine processable definition of the pipeline steps.
In this paper, to demonstrate the effectiveness of the proposed
methodology, we also briefly describe our implementation of
an engine, called “onfhir-feast”, that processes this machine
processable pipeline definition to extract AI-ready datasets from
EHR sources. Implemented as a high-performance distributed
engine, we showcase its ability to efficiently extract datasets
for various use cases. This domain-specific, technology-agnostic
language establishes a standardized approach for a variety of
stakeholders, including data scientists, health data owners, and
AI or clinical decision support service vendors, to collaborate
and develop AI-based solutions or conduct research studies. This
framework enables scalability and reproducibility, ensuring that
solutions and studies can be effectively implemented and replicated
across different healthcare settings.

1.2 Related research

One of the pioneering initiatives to enable observational
research on top of EHRs is OHDSI (8). OHDSI offers the
OMOP Common Data Model (CDM) (9), which standardizes
the structure and content of observational data with the support
of a standardized vocabulary. Additionally, OHDSI provides a
suite of open-source tools, including ATLAS for designing and
executing observational research studies, and ACHILLES for
characterizing and visualizing source data. While OMOP CDM
serves as a solid foundation, it requires extension and specialization

to cater to the needs of domain specific research studies, such
as cancer research (10) and medical imaging (11). In OMOP
CDM approach, it is not possible to document these extensions
and customizations in a machine processable and traceable
manner. Our approach addresses this gap by introducing a FHIR-
based CDM, which meticulously documents all customizations
in a machine-processable manner via the profiling methodology.
Although OHDSI’s open-source tools facilitate population queries
and dataset extraction, this process is not documented in a
machine processable manner which diminishes the end-to-end
transparency, and traceability of the dataset preparation process.
This deficiency hampers reproducibility and auditability, key
requirements of AI-Act.

There have been a number of efforts in the literature to flatten
the hierarchical EHR data to create AI-ready tabular datasets.
Fiddle (6) provides an open-source generic preprocessing pipeline
implementation for extracting structured data from the EHR data
with three distinct steps, namely for pre-filtering, transforming
and post-filtering. As HL7 FHIR is widely supported by numerous
health care institutions and vendors of clinical information systems,
several efforts focused on flattening EHR data represented as
FHIR resources for extracting AI friendly data sets. Liu et al. (12)
utilized the FHIR Bulk Data API to create population-level exports
from clinical systems, into a file format often referred to as "Flat-
FHIR’ represented in NDJSON-based data format. FHIR-DHP (5)
proposes a generic data harmonization pipeline (DHP) that is
composed of data exchange, mapping, and export operations to
transform EHR data to FHIR standard first, then to a relational
database format, and exporting the data to a custom flattened
JSON format as an AI-friendly format. FhirExtinguisher (13) has
extended the FHIR Search API with an additional projection layer
using FHIRPath, to build a tool for transforming FHIR resources
into tabular data. Pathling (14) proposes an extended FHIR
Analytics API, as a specialization of the FHIR API that focuses on
providing functionality useful for health data analytics applications,
namely: importing bulk FHIR data, execution of aggregation-
based queries across a data set, searching via FHIRPath queries
for cohort selection and extracting datasets to create custom data
extracts for input into other tools and workflow. Although these
efforts provided a generic methodology (5, 12) and/or extended
API specification and implementation (13, 14) to flatten EHR
data as tabular data sets, they do not provide a declarative model
to formally define the data preparation pipeline. Our technology
agnostic approach complements these, by providing an additional
level of abstraction for enabling transparency, traceability, and
reproducibility of AI methods. It should be noted that these efforts
such as (13, 14) can be utilized to implement a transformation
engine implementing the declarative data preparation pipeline
definition proposed in this paper.

2 Materials and methods

2.1 Common data modeling for AI use
case

A pivotal component of our methodology involves the
construction of Common Data Models (CDMs) tailored for AI
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applications. In our methodology, the CDMs are meticulously
built utilizing the HL7 Fast Healthcare Interoperability Resources
(FHIR) standard, leveraging the FHIR profiling technique. FHIR
profiling is the process of defining or constraining FHIR resources
to address specific requirements. This involves customizing FHIR’s
generic, standardized resources to create more precise models that
cater to particular use cases, workflows, or data exchange scenarios
within healthcare applications. These profiles dictate how FHIR
resources are used, including the elements they must contain, the
cardinality of these elements (e.g., optional, mandatory, repeating),
and value sets or data types for each element.

In healthcare, AI applications are generally built for specific
use cases, and the data requirements, so called variables needed
for executing the AI model or visualizing the results, are declared
within those use cases. One of the primary benefits of utilizing a
CDM with HL7 FHIR profiling is the creation of a customized
standard data model that is specifically tailored to the unique
requirements of each AI use case. By defining a machine
processable CDM that precisely aligns with the specific data
elements, structures, and terminologies relevant to the use case,
we ensure that the AI system is built upon a solid foundation of
accurate and relevant data.

Utilizing a CDM defined by the HL7 FHIR standard is
the establishment of a standardized interface for querying
and accessing health records. This standardization not only
simplifies the integration of disparate health information systems
but also ensures that AI algorithms can access the necessary
data in a consistent and reliable manner. By facilitating a
uniform method to search and retrieve health records, we
significantly reduce the complexity and variability often
encountered in health data, thus enabling more efficient data
processing and analysis.

The use of HL7 FHIR in defining our CDM enables the
explicit declaration of information critical to the AI use case,
such as phenotype and AI feature definitions. This is achieved by
referring to inherent FHIR structures and standardized medical
terminologies through the value set references. With this approach,
an AI use case transparently declares its information of interest.
As a result, our methodology not only enhances the semantic
interoperability of health data but also ensures that the AI systems
have access to a rich and semantically coherent dataset. This level
of specificity and clarity in data representation is essential for the
development of AI algorithms that are both effective and reliable in
clinical settings.

As a common data model for a specific analytic or AI use case,
we propose to provide a FHIR Implementation Guide including the
following machine processable FHIR based definitions.

• A FHIR CapabilityStatement defining the list of related FHIR
resource types needed for this use case as well as references
to search parameters to be used to search related data for
each resource type.
• A list of StructureDefinition resources defining syntactic

and semantic customizations and restrictions representing a
category of health events or facts needed for the use case.
• A list of ValueSet and/or CodeSystem resources defining the

relevant concepts from terminology systems for restricting
certain elements value sets or define information of interest.

• The adoption of a Common Data Model based on the HL7
FHIR standard, tailored through the FHIR profiling approach,
offers significant advantages for the development of AI in
healthcare. It provides a standardized, customizable, and
semantically rich framework for accessing and processing
health records, thereby laying the groundwork for scalable and
transparent AI solutions in healthcare.

2.2 Declarative model to define the data
preparation pipeline

We propose an end-to-end data preparation pipeline that
begins with clinical data sources, such as Electronic Health Records
(EHRs) and supplies AI systems with training datasets. This
pipeline can also be utilized to run intelligent clinical applications
and decision support services built based on AI models readily on
EHRs by seamlessly retrieving the input parameters.

By utilizing the Common Data Model built upon HL7 FHIR,
we establish a standardized interface for accessing source data
effortlessly. Our goal is to create a transparent pipeline utilizing
this FHIR interface to generate a dataset optimized for AI
applications. However, this presents a challenge: converting the
nested, hierarchical data model of FHIR into a tabular or time
series format compatible with mainstream AI frameworks such as
TensorFlow (15), Pythorch (16) or Scikit-learn (17).

EHR data is intricate, featuring high dimensionality, irregular
time series sampling, and a variety of data types with diverse
representations of clinical events. Converting this complex EHR
data into flat feature vectors that align with Machine Learning (ML)
techniques poses several challenges.

• First and foremost, performing temporal joins and
aggregations over EHR data is necessary to derive features
or outcome variables in a dataset. These derived features
will become columns in the tabular format expected by
AI frameworks. This process also requires tailoring to the
specific requirements of each use case. For instance, consider
a scenario involving EHR data where a particular lab result,
such as creatinine, is represented as a FHIR Observation type
resource according to the FHIR standard. In a specific use
case, like predicting complications after cardiac surgeries,
various creatinine results may be relevant. These could
include the creatinine level before surgery, the first creatinine
result within 24 h after surgery, the latest creatinine result,
the average of all results, and the difference between the
first and last creatinine results. Each of these aspects needs
to be defined as separate features specific to the given use
case scenario. Thus, it’s essential to establish a method for
defining how these use case-specific tabular feature sets can be
extracted from the hierarchical, relational FHIR-based model
for each unique use case scenario.
• Frequently, transformations are required to adjust the scale

or discretize the numeric values found in EHR data, such
as laboratory values. This is necessary to create normalized
features that align with the expectations of ML models.
Additionally, numeric values expressed in various units may
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need to be converted to a specified unit for the sake
of harmonization.
• In EHR data, clinical events are logged as they occur within

the clinical workflow, leading to irregular sampling of time
series events, which differs from the regular sampling expected
by ML methods. Consequently, it’s essential to establish
strategies for resampling longitudinal EHR data to meet the
requirements of specific use cases.

Each of these steps requires numerous decisions from data
scientists in the data preparation process. Transparency within
these decisions is vital for data transparency, as they heavily
impact the characteristics, and quality of the resulting dataset. To
ensure clarity in defining these steps or decisions, we introduce
a declarative model aimed at precisely defining each step of
the transformation in the pipeline from EHR data to AI-
ready feature sets.

The HL7 FHIR API offers a standardized query language,
included within the FHIR API’s search interaction, enabling the
querying of health data. Additionally, there’s another language
known as FHIRPath (18), designed for processing and navigating
FHIR content. Our declarative model leverages these FHIR
Query and FHIRPath statements to transparently define health
datasets as a series of data processing and transformation steps
in a standardized manner. Through this declarative model,
transformation steps can be precisely defined and executed to
prepare training, validation, or test datasets for AI. Moreover, it
can also facilitate the preparation of features for executing decision
support models during online prediction.

In the process of designing our declarative model, we aimed to
recognize the steps typically taken by data scientists or research
groups when creating a dataset through conventional methods,
which often involve coding in Python and/or SQL. We endeavored
to devise a practical approach to achieve the same using FHIR
constructs. The following steps have been identified and form the
primary sections of our declarative model:

• Definition of target population: This step entails identifying
the target cohort by declaratively specifying the characteristics
of the data entities that will comprise the target population for
a specific use case, utilizing inclusion and exclusion criteria. In
certain scenarios, entities eligible for inclusion in the dataset
may be limited to specific time periods. This step also allows
for defining these eligible time periods tailored to the specific
use case requirements.
• Definition of feature groups: In this step, we define an

intermediate result set, as a group of base features, that can
be retrieved from EHR and can be utilized in the next step to
calculate the final set of features required by the use case. At
this step it is also possible to define transformations such as
unit conversions to create harmonized data sets.
• Definition of final datasets: This step includes defining the

individual features based on the base features identified
in feature groups. At this step, we first define the rules
for resampling of longitudinal health data, and also define
anchor time points that are important for the use case.
Following this, we declaratively specify how final features in
the dataset can be calculated based on the base features, and

TABLE 1 An example definition of target population for a simple use
case; “Patients diagnosed with Parkinson.”

{

"url": "https://aiccelerate.eu/cohorts/pilot2/

parkinson_cohort",

"name": "parkinson_cohort",

"title": "Patients diagnosed with Parkinson",

"description": "Patients diagnosed with Parkinson

(ICD-10 G20 code)",

"version": "0.1",

"date": "2022-04-21T00:00:00",

"fhirVersion": "4.0.1",

"publisher": "AICCELERATE WP1 Team (SRDC Corp.)",

"entityType": ["Patient"],

"eligibilityCriteria": [

{

"fhirSearch": "?",

"description": "All patients with a parkinson

diagnosis (ICD-10 G20)",

"filter": [

{

"resourceType": "Condition",

"fhirSearch": "?code = http://hl7.org/fhir/

sid/icd-10{\T1\textbar} G20&patient = {{Patient}}",

"entities": ["Condition.subject"],

"eventTime": "Condition.onsetDateTime"

}

]

}

]

anchor timepoints, through a set of temporal and contextual
constraints, aggregations, and transformations.

In the subsequent sections, we explore the intricacies of the
methodologies and processes involved, elucidating the benefits and
functionalities of the suggested approach and solution. Through
the application of the proposed language, we offer exemplary
definitions to demonstrate the adaptability of our method across
a diverse range of use cases.

2.2.1 Definition of target population
The initial phase in preparing the dataset involves defining

the target cohort, which entails specifying the characteristics or
phenotype of the entities (for instance, patients) designated as the
target population for the current use case, and whose information
will be incorporated into the dataset. In this context, we adhere
to the definition provided by OHDSI, which describes a cohort as
"a set of persons who satisfy one or more inclusion criteria for a
duration of time” (19).

In our approach, a single population definition is engineered
for versatility across various use cases, thereby allowing it to be a
distinct, reusable component within different dataset definitions.
For illustration, Table 1 presents a population definition tailored for
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datasets focusing on Parkinson’s disease patients. Each construct,
starting with the population definition, is initiated with metadata
elements such as title, description, version, and a canonical
URL, to provide a comprehensive overview of the definition. To
establish a population definition effectively, it is essential first to
identify the specific entities comprising the population. Within
the FHIR framework, there are distinct resource types—such as
Patient, Practitioner, and Organization—designed to represent
individuals (e.g., patients or healthcare practitioners) or entities
(e.g., organizations), along with their foundational information. All
ancillary resources link back to these primary resources to delineate
their interrelations. For instance, a lab result, denoted by a FHIR
Observation resource, specifies its associated patient through a
reference type element that points to the pertinent FHIR Patient
resource.

As depicted in Figure 1, our methodology employs the names
of FHIR resource types, such as “Patient,” to denote that our target
population primarily consists of patients, reflecting the common
practice in health data analytics. Unlike OHDSI, our approach
expands the definition of the target population to include not
only individual entities like patients or practitioners but also
conceptually broader categories such as encounters or episodes
of care. These categories encompass both the individual involved
and specific events, such as a hospital visit or a surgical care
episode. This broader categorization allows us to leverage the
relationships established in FHIR between resources like FHIR
Encounter or EpisodeOfCare and other FHIR resources (for
example, medications administered during a hospital stay). By
doing so, we facilitate precise grouping of data based on distinct
criteria, thereby enhancing the clarity and utility of the data for
health analytics.

The subsequent step involves defining the eligibility criteria,
which detail the characteristics or phenotypes of the entities
in question. Our framework supports the definition of multiple
eligibility criteria, recognizing that a single entity may exhibit
different characteristics based on varying representations of
underlying facts. For instance, patients with diminished kidney
function might be identified through FHIR Condition resources
that implicitly diagnose with specific ICD-10 codes, or through
eGFR measurements depicted by FHIR Observation resources
where the value falls within a certain range. This flexibility also
accommodates the inclusion of various sub-cohorts within the
dataset. The process of defining eligibility criteria begins with a
FHIR query statement targeting the base entity type, which in
our scenario is the FHIR Patient resource. At this example, we
impose no limitations on demographic information such as age,
gender, or ethnicity, which are typically included in the FHIR
Patient resource type. The criteria are further refined through
additional filter definitions applied to other FHIR resource types.
For example, to isolate patients diagnosed with Parkinson’s disease,
we employ a FHIR query on FHIR Condition resources. FHIR
facilitates a universal search mechanism via RESTful API, providing
a comprehensive list of search parameters for each resource
type. These parameters enable queries on FHIR resources using
filters based on coded, numeric, Boolean, textual, temporal, or
relational information, including references among resources. In
our methodology, we utilize these FHIR search statements to
delineate a specific result set. In population definitions, these
queries serve to filter entities that satisfy at least one condition

specified by the query. Specifically, we target patients who have
at least one FHIR Condition resource coded with the ICD-10
code “G20” for Parkinson’s diagnosis. Each filter explicitly states
the search parameter linking the population to that resource type
(e.g., patient = {{Patient}} indicates the ’patient’ parameter linked
to our population’s Patient entities) and includes a FHIRPath
expression that specifies the path for entity identifiers (e.g.,
“Condition.subject”). For more intricate scenarios, additional
filters on other resource types can be defined to specify further
characteristics required for an entity to be considered eligible
for the cohort. Moreover, FHIRPath expressions allow for the
imposition of additional conditions on the result set for each filter,
addressing constraints that the standard FHIR query mechanism
may not accommodate.

In certain cases, entities qualify for inclusion in a cohort only
during specific time frames or across multiple intervals. This means
that the relevance of an entity to a use case hinges on its state
within these designated periods. For instance, in the context of
constructing a dataset for analyzing or predicting the progression of
Parkinson’s disease, our interest is confined to the period following
a patient’s Parkinson diagnosis. By utilizing a FHIRPath expression
to mark the event time, we can determine the precise moment each
entity enters the cohort, which for our example is the onset time
of Parkinson, as recorded in the FHIR Condition resource. While
it’s also possible to define an exit time when an entity no longer
meets the cohort criteria, this aspect is not utilized in our example
scenario. Consider a use case aimed at examining patient outcomes
in relation to a specific medication regimen over time. Here, the
start and end times of medication administration, as documented in
FHIR MedicationRequest resources, could serve as the markers for
entering and exiting the cohort, respectively. Given that medication
prescriptions are often renewed, multiple resources may document
medication use for distinct periods. In such instances, it becomes
necessary to identify multiple eligibility periods for patients. Our
methodology allows for the specification of a minimum time gap
between consecutive eligibility periods. For example, setting a
15-day minimum gap implies that if the interval between two
prescriptions is less than 15 days, they are considered part of the
same usage period. This approach enables the precise delineation of
eligibility periods in alignment with clinical guidelines or practices.
As we will detail in forthcoming sections, these eligibility periods—
particularly the defined entry and exit times—are critical for the
sampling of data used in creating training or validation datasets.
They also play a pivotal role in the development of other features
that hinge on these specific temporal markers.

The defined entry and exit times within population criteria
are instrumental when establishing criteria based on the temporal
relationship between two health events. An illustrative scenario,
as discussed in the Book of OHDSI, involves identifying “patients
who initiate ACE inhibitors monotherapy as first-line treatments
for hypertension.” In such a case, one might set up a filter on
the Condition resource to search for a hypertension diagnosis,
utilizing the diagnosis or onset date as the event time. Subsequently,
an additional filter could be applied to MedicationRequest or
MedicationStatement resources. This filter would search for a
specific set of ATC codes corresponding to ACE inhibitors,
incorporating an extra condition. This condition, defined using
a FHIRPath expression, would stipulate that the temporal gap
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FIGURE 1

Population definition schema. “*” gives the cardinality of corresponding element and means it is an array and 0 or more cardinality.

FIGURE 2

FeatureGroup definition schema. “*” gives the cardinality of corresponding element and means it is an array and 0 or more cardinality.
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TABLE 2 A sample Feature Group definition to retrieve blood pressure
measurements for the specific population.

{

"url": "https://aiccelerate.eu/feature-groups/

pilot1/bloodpressure",

"name": "bloodpressure",

"title": "Blood Pressure Measurement",

"description": "Represent a blood pressure

measurement including systolic and diastolic",

"version": "0.1",

"date": "2022-09-07",

"fhirVersion": "4.0.1",

"publisher": "AICCELERATE WP1 Team (SRDC

Corp.)",

"targetResourceType": "Observation",

"targetProfile":

"http://hl7.org/fhir/StructureDefinition/bp",

"fhirSearch":

"?patient = {{Patient}}&category = http:

//terminology.hl7.org/CodeSystem/observation-

category{\T1\textbar}

vital-signs&code = http://loinc.org{\T1\textbar}

85354-9",

"entities": {

"pid": "Patient"

},

"timestamp": "time",

"feature": [

{

"name": "pid",

"title": "Patient identifier",

"description": "Patient identifier",

"dataType": "id",

"fhirPath": "Observation.subject"

}, {

"name": "time",

"title": "Observation time",

"description": "Time of measurement",

"dataType": "dateTime",

"fhirPath": "Observation.effectiveDateTime"

},

{

"name": "systolic",

"title": "Systolic BP",

"description": "Systolic BP value",

"dataType": "decimal",

"fhirPath":

"Observation.component.where(code.coding.exists

(system = ’http://loinc.org’ and

code = ’8480-6’)).first().valueQuantity.value"

},

(Continued)

TABLE 2 (Continued)

{

"name": "diastolic",

"title": "Diastolic BP",

"description": "Diastolic BP value",

"dataType": "decimal",

"fhirPath":

"Observation.component.where(code.coding.exists

(system = ’http://loinc.org’ and

code = ’8462-4’)).first().valueQuantity.value"

}

]

}

between the hypertension diagnosis and the initiation of ACE
inhibitor therapy must be at least 365 days. This method enables
the precise definition of eligibility criteria that hinge on the
chronological sequencing of health-related events.

In addition to inclusion criteria, certain use cases necessitate
the establishment of exclusion criteria. Continuing with the
aforementioned example, the criterion "with no history of prior
hypertension treatment" mandates verifying the absence of any
hypertension treatment prior to the identified ACE inhibitors
monotherapy, subsequently excluding those patients from the
population. This is achieved through the same mechanism of filter
definitions, which, when designated as exclusions, allow for the
identification and removal of such cases. Entities for which at least
one resource meets the FHIR query and the specified condition are
thus excluded from the population. This method enables the precise
tailoring of the population by omitting entities that do not meet the
defined criteria.

2.2.2 Definition of feature groups
With an understanding of the necessary features and outcome

variables, the following step involves identifying the specific FHIR
resources required to compute these variables, ensuring access via
the FHIR API while adhering to the agreed-upon common data
model. To facilitate the reuse of these definitions across varying
scenarios and dataset constructs, we introduce a concept known
as a “feature group.” Figure 2 briefly summarizes the definition
schema. This construct allows for the delineation of result sets
tailored to specific needs. For instance, as depicted in Table 2, one
can establish a feature group aimed at gathering blood pressure
readings for the targeted population, subsequently isolating systolic
and diastolic values as base features for subsequent analyses while
calculating other features. Essentially, feature group definitions
articulate a FHIR result set—stemming from a particular FHIR
query—alongside the specific data points to be extracted from this
set.

Similar to defining a population, we employ FHIR search
statements to outline the desired result set, specifying both the type
of FHIR resource and the expected target FHIR profile to ensure the
resulting resources conform accordingly. In the given example, we
opt for the FHIR Blood Pressure profile, which mandates the use of
the LOINC code 85354-9 to identify blood pressure measurement
records specifically. This code is utilized as a filter within the
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search statement. Additionally, the relevant FHIR reference or ID
type search parameter is paired with an entity placeholder (e.g.,
patient = {{Patient}}). This approach signifies that our request is
exclusively for records pertaining to patients within the defined
population, ensuring that the data collected is directly relevant to
our study’s subjects.

We proceed to identify the base variables to be extracted
from the result set determined by the FHIR search statements.
This compilation should encompass potential identifiers for
the entities involved, and, where applicable, associated time
information that elucidates the timing of the clinical event or
fact in question. FHIR resources, akin to other clinical record
models, are capable of representing health-related facts or events
in three distinct categories: (i) time-independent information, such
as demographics provided by the FHIR Patient resource or family
health conditions outlined in the FHIR FamilyMemberHistory
resource; (ii) events/facts associated with a specific time point,
like the onset date of a chronic condition detailed in the FHIR
Condition resource or a particular laboratory result specified in
the FHIR Observation resource; and (iii) events/facts pertinent to
a defined time period, for instance, the duration of medication
use indicated by the FHIR MedicationStatement resource. In
the construction of these definitions, it is crucial to map entity
identifiers to their corresponding entity types. For instance, in
our scenario, we designate “pid” as the identifier for patients.
Additionally, temporal variables—such as the timestamp of the
clinical event/fact or the start and end times for events/facts
spanning a period—must be articulated for the feature groups,
except those involving time-independent information. In our case,
we specify that the variable “time,” representing the moment of
blood pressure observation, will serve as the timestamp for the
data in question.

Illustrated by our example, each variable is accompanied by
metadata including its name, description, and data type (aligned
with FHIR data types), along with a FHIR Path expression that
specifies the method for extracting information from the result
set. Beyond mere extraction, FHIR Path can be employed for data
transformations or calculations. For instance, in situations where
your common data model does not limit the units for a particular
laboratory result or if there are several unit options, FHIR Path
expressions can be used to convert numeric values from various
units into a standardized unit, facilitating data harmonization.
Similarly, these expressions can be applied to rescale or discretize
numeric values, aiding in data normalization. Our approach allows
for the inclusion of such contextual data within the definition itself,
providing formulas for unit conversion, thresholds for clinical
measurements, etc. This enables the use of FHIR Path expressions
for performing the requisite calculations. By integrating contextual
data and its metadata within the dataset definition and keeping
it separate from the scripts, we adhere to our principles of
transparency and readability. Additionally, this method enhances
the configurability and reusability of the definitions.

2.2.3 Definition of dataset
We introduce the concept of “feature set”; similar to other

constructs within our framework, its definition begins with
essential metadata that provides a verbal description of the dataset
to be prepared with respect to the feature set definition. The
definition model is illustrated in Figures 3, 4. We outline a strategy

for resampling the longitudinal health data, which often displays
characteristics of sparsity and irregular sampling intervals, with
various variables being recorded at disparate frequencies. The
pivotal decision here involves determining the sampling time
points for each entity, essentially deciding what each row in the
dataset represents. This decision is intricately linked to the specific
analytics or AI use case envisioned for the dataset. Current practices
in the literature, employed by data scientists and researchers, offer
several approaches for this:

• Selecting the start or end times of specific health events as
sampling points. For example, utilizing the discharge time
from a hospital as the sampling point for a dataset aimed at
predicting hospital readmission.
• Segmenting a period to establish sampling points based on the

frequency of the most regularly recorded data. An instance of
this would be dividing the time from the end of surgery until
discharge into 8-h intervals for a dataset intended to predict
the length of stay following cardiac surgeries.
• Dividing a period while also incorporating outcome events

into consideration. For example, segmenting the duration of
an Intensive Care Unit (ICU) stay into 5-min intervals, but
also using the occurrence time of sepsis as an additional
sampling point and adjusting the time windows accordingly.
This approach aims to predict sepsis during ICU stays
by analyzing vital signs and other frequent measurements,
ensuring snapshots of each patient are taken at 5, 10, 15 min,
etc., prior to the observation of sepsis.

These strategies enable the creation of datasets that reflect the
dynamics of patient health status over time, tailored to the specific
analytical or predictive needs of the use case.

Within our framework, we’ve integrated a mechanism to
streamline the definition of sampling strategies, as illustrated in
Table 3 under the “referenceTimePoints” section. This mechanism
allows users to specify the methodology for determining sampling
time points in a structured manner:

• Method: The "method" element specifies the chosen
methodology for sampling. For methods that require dividing
a period into sub-periods, we leverage the eligibility period
calculated for each entity based on the population definition.
For instance, in a scenario where a patient’s eligibility period is
delineated by the time span from the end of their first surgery
to their discharge from the hospital, specifying a period (e.g.,
1 h) means this duration will be segmented into 1-h intervals.
• Outcome Events: If the determination of time points also

takes into account certain outcome events, these are specified
by referencing one or more FeatureGroup definitions. In
the given example, a FeatureGroup that provides data on
complications is utilized for this purpose.
• Configuration: Users can further refine the strategy by setting

a time offset to define the exact sampling point relative to
an event, as well as a minimum gap between two outcome
events for them to be considered distinct outcomes. In
the context of predicting post-operative complications, the
example specifies that two complications must occur at least
8 h apart. Additionally, it stipulates that the initial sampling

Frontiers in Medicine 09 frontiersin.org

https://doi.org/10.3389/fmed.2024.1393123
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1393123 July 29, 2024 Time: 10:22 # 10

Namli et al. 10.3389/fmed.2024.1393123

FIGURE 3

FeatureSet definition schema. “*” gives the cardinality of corresponding element and means it is an array and 0 or more cardinality.

FIGURE 4

Remaining of FeatureSet schema. “*” gives the cardinality of corresponding element and means it is an array and 0 or more cardinality.

point should be set 1 h before the occurrence of the earliest
complication.

This flexible mechanism enables precise configuration of
sampling strategies, tailoring the dataset to capture clinically
relevant events and periods. By incorporating both fixed intervals
and event-driven sampling points, researchers can create datasets

that more accurately reflect the complexities of patient care
trajectories, enhancing the potential for insightful analysis and
predictive modeling.

In addition to primary sampling points, certain scenarios
benefit from the delineation of secondary time points, which
correspond to significant health events within the patient’s care
continuum. These secondary time points are defined in relation
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TABLE 3 A sample FeatureSet definition−Defining sampling time points
and other time points.

{

"url": "https://aiccelerate.eu/feature-sets/

pilot1_hsjd_complications",

"name": "pilot1_hsjd_complications",

"title": "Feature set for AICCELERATE Pilot 1 for

predicting complications after the surgery",

"description": "Feature set for AICCELERATE

Pilot 1 for predicting complications after the

surgery",

"version": "0.1",

"date": "2022-04-21",

"fhirVersion": "4.0.1",

"publisher": "AICCELERATE WP1 Team (SRDC

Corp.)",

"referenceTimePoints": {

"method": "temporal-windows",

"description": "The time period between the end

of first surgical operation and the discharge time is

divided into 1h periods. However if patient has

complications then these event times are considered

as anchor points and reference time points are

calculated accordingly. Two complications with less

than 8 h are assumed same complication so no

reference time point is picked within this period.

Enumeration for reference time points start from 1 h

before the complications",

"useEndTime": true,

"period": "1h",

"minGap": "8h",

"offset": "1h",

"featureGroup": [{

"reference":"https:

//aiccelerate.eu/feature-groups/pilot1/complication"

}],

"secondaryTimePoint": [

{

"name": "lastSurgeryTime",

"description": "Time of the latest main

surgery performed in the episode",

"join": { "type": "past" },

"featureGroup": [

{

"reference":"https://aiccelerate.eu/

feature-groups/pilot1/surgeryEncounter",

"useEndTime": true,

"filter": {

"name": "isMainSurgery",

"description": "If procedure is main

cardiac surgery",

"fhirPath": "category = ’394603008’"

}

}

]}

]},

. . .. . .

TABLE 4 A part of sample FeatureSet definition – Defining features from
medication data for predicting progression to Advanced
Parkinson Disease.

{

"reference":"https:

//aiccelerate.eu/feature-groups/pilot2/medication",

"join": {

"type": "past",

"duration": "3mo"

},

"feature": [

{

"name": "hasBenzodiazepinesRecently",

"description": "Whether patient has

benzodiazepines or not within this period. ATC Code:

under N05CD",

"valueExpr": {

"fhirPath": "atcCode.startsWith(’N05CD’)",

"dataType": "boolean"

},

"temporalAgg": [{

"aggOp": ["any"]

}]

},

. . .

to the primary sampling points, offering a nuanced timeline that
captures critical clinical milestones. In the provided example of
Table 3, the secondary time point "lastSurgeryTime" is identified as
the time marking the end of the patient’s last surgery, as indicated
by the relevant feature group that records surgery encounters. This
point is determined to be the closest, yet prior, instance to the
established primary sampling time point. To ensure the significance
of each identified event, users have the flexibility to specify a
minimum interval that should exist between two consecutive
events. Furthermore, the framework allows users to select specific
events (e.g., first, last, second to last) to serve as these secondary
time points. Secondary time points, along with primary sampling
points, play a crucial role in defining the temporal context for
data analysis and feature extraction. For instance, in the example,
the "lastSurgeryTime" serves as a pivotal reference for calculating
features such as the number of hours elapsed since the most
recent surgery at each sampling point. This approach allows for
the inclusion of dynamic, temporally relevant information in the
dataset, enhancing the precision of subsequent analyses and the
development of predictive models that accurately reflect patient
trajectories and outcomes.

The process of transforming raw health data into meaningful
dataset features involves defining a set of temporal and contextual
constraints, aggregations, and transformations based on the
information provided by related feature groups. Each feature group
encapsulates a category of health events (e.g., lab results, diagnoses,
surgeries) along with the base facts of these events, the entity they
are related to, and the time or period of the event. To convert
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TABLE 5 A part of sample FeatureSet definition−Enumerating features
from frequent SPO2 measurements in hospital after cardiac surgeries for
predicting complications.

{

"reference": "https:

//aiccelerate.eu/feature-groups/pilot1/vitalsign",

"filter": {

"name": "spo2",

"fhirPath": "code = ’2708-6’"

},

"feature": [

{

"name": "value",

"description": "Aggregation of last (2,4 and

8)-h time windows for SPO2 measurements",

"temporalAgg": [

{

"lastN": 3,

"windowPeriod": "h",

"windowSize": 2,

"extending": "multiplicative",

"aggOp": ["stddev", "avg", "max", "min",

"median", "kurtosis", "skewness"]

}

],

"windowFunc": ["delta"]

},

{

"name": "value",

"description": "Aggregations of last 3 1-h

time windows for body SPO2 measurements",

"temporalAgg": [

{

"lastN": 3,

"windowPeriod": "h",

"windowSize": 1,

"aggOp": ["stddev", "avg", "max", "min",

"median", "kurtosis", "skewness"]

}

],

"windowFunc": ["delta"]

}

]

},

. . .

these facts into actionable variables, it’s essential to establish clear
temporal relationships between the facts represented by the selected
feature groups and the predefined anchor time points. For instance,
as illustrated in Table 4, when defining features, one may only
want to consider medication usage data from the most recent three

months. This decision impacts the definitions of features within the
dataset, such as a Boolean feature indicating recent benzodiazepine
use by a patient. This "recency" is calculated in relation to the
main sampling time point for each record, ensuring that the feature
reflects current or recent medication use. The language designed
for this purpose allows users to define temporal constraints with
ease, specifying periods in relation to defined time points either
by indicating a duration that looks forward (future) or backward
(past) in time. This flexibility can include optional offsets or can be
bounded between two specific time points. For example, to focus on
diagnoses made after a patient’s Parkinson’s diagnosis, one could
define a temporal period that spans from the time of the patient’s
eligibility to the sampling time point. This approach facilitates the
generation of features that are not only relevant to the patient’s
current health state but also temporally aligned with the objectives
of the study or analysis. It allows for the creation of datasets that
can more accurately model health outcomes by incorporating the
timing and sequence of health events in relation to significant
clinical milestones.

In the process of defining features for a dataset, it’s not only
possible to apply temporal constraints to health event data, but
you can also impose contextual constraints to further refine the
data included in your analysis. This is accomplished by specifying
filters on the data represented by a feature group. These filters
are expressed using FHIRPath expressions, which allow for precise
selection of data based on specific criteria. Table 5 shows an
example of such a contextual constraint filtering complication data,
where the result set is based on FHIR AdverseEvent resources.
By applying a filter using the corresponding SNOMED-CT code,
one can specifically target unexpected ICU admission events. This
method ensures that the dataset only includes relevant adverse
events, thereby enhancing the specificity and relevance of the
analysis.

The language introduces a "pivoting mechanism" for efficiently
handling scenarios where it’s necessary to generate a standardized
set of features across multiple concepts within the same category,
such as laboratory test results. This mechanism is particularly
useful for cases where analysts wish to extract a common suite
of statistical measures (e.g., the latest, average, minimum, and
maximum values) for a variety of tests or measurements that are
relevant to their specific use case. The first step involves selecting
a base variable from the FeatureGroup definition that will serve
as the pivot. This could be, for example, the LOINC code for a
laboratory test, which uniquely identifies the type of lab test being
conducted. Users can then specify a list of values and corresponding
labels for this pivot variable. These values could be specific LOINC
codes for lab tests that are of particular interest in the use case. If
the exact tests of interest are known ahead of time, they can be
explicitly listed in the model. If the specific items of interest are
not predetermined, the model allows users to define criteria for
automatically selecting these pivot variables based on the data. For
instance, one might specify that features should be enumerated for
the 20 most frequently occurring lab tests in the dataset, provided
that each of these tests appears in the records of at least 100 patients.
This pivoting mechanism simplifies the process of generating a
consistent set of features across multiple data points or concepts,
which is particularly valuable when dealing with large and complex
datasets. It ensures that analysts can focus on analyzing the most
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relevant and frequently occurring data points without manually
defining features for each possible variable.

In the process of defining features for a dataset, there are two
primary methods to derive feature values from the underlying data
represented by feature groups: direct use of base variable values and
calculation through FHIR Path expressions.

• Direct Use of Base Variables: A feature can be directly based
on the value of a base variable that has been defined within
the related feature group. This approach is straightforward and
involves using the raw value of a data point as a feature in the
dataset. Table 5 shows an example using the "value" variable
from a feature group that represents vital sign information.
• Calculation Through FHIRPath Expressions: Alternatively,

features can be derived by applying FHIRPath expressions
to calculate values from the data records within each feature
group. This method allows for more complex transformations
of the data. As shown in Table 4, an example illustrates
how medication usage data, identified by ATC codes in the
medication usage feature group, can be transformed into a
feature indicating whether the patient is using a medication
from the benzodiazepine group. This involves interpreting the
ATC codes using FHIRPath expressions to identify specific
medication classes and then summarizing this information
into a binary feature (e.g., benzodiazepine usage: yes/no).

For addressing the challenges of data harmonization, especially
when dealing with disparate measurement units, scales, or
categorization needs stemming from different calibration standards
of medical devices or varied clinical practices, the model
introduces a mechanism for specifying and applying contextual
information. The model facilitates this through a dedicated section
within FeatureGroup or FeatureSet definitions, designed for the
transparent declaration of contextual parameters. These parameters
can encompass a wide array of transformational instructions, such
as:

• Conversion formulas for standardizing units of measurement
(e.g., converting temperature from Fahrenheit to Celsius or
blood pressure readings from mmHg to kPa).
• Rescaling instructions for numerical values to align with a

common scale or range, enhancing comparability.
• Categorization criteria based on clinical thresholds or norms,

enabling the transformation of continuous data into discrete
categories that reflect clinical significance (e.g., defining
hypertension stages based on blood pressure readings).
• Terminology mappings, which are crucial for harmonizing

data coded in different clinical terminologies or classification
systems, such as mapping between different coding systems for
diagnoses or medications (e.g., ICD to SNOMED-CT).

The proposed language provides a convenient method for
generating multiple features from a single value by leveraging a
combination of aggregation operators and temporal windowing
strategies. This approach allows for the extraction of rich, time-
sensitive insights from health data, particularly useful for variables
that are measured repeatedly over time, such as vital signs or lab
results. The key aspects of this feature include:

• Aggregation Operators: Users can apply a variety of standard
aggregation functions, such as standard deviation, average,
and maximum, to a set of data points. These functions are
akin to those found in SQL and data processing frameworks
like Apache Spark (20), ensuring familiarity and ease of use for
those with a background in data science.
• Temporal Windowing: The language supports several types

of temporal windows, including tumbling, extending, session,
and sliding windows. This flexibility allows users to analyze
data over specified periods in a manner that best suits their
analytical or predictive needs. For example, users can look
at the last 3 1-h windows or extend their analysis over
longer periods, such as 2, 4, and 8 h, to observe trends or
changes over time.
• Configuration Flexibility: Parameters such as the number

of windows, window size, extension factor, or sliding step
duration can be easily adjusted. This configurability enables
users to tailor their analysis to specific requirements or
hypotheses about the data.
• Extension Capability: While the language comes with a set

of predefined aggregation operators, it is designed to be
extensible. Implementors can introduce additional operators
as needed, enhancing the language’s applicability to a wide
range of scenarios and datasets.
• Delta and Rate of Change: Beyond simple aggregations, the

language supports operators for calculating changes between
consecutive temporal windows, such as the delta or rate of
change. This feature can be particularly insightful for tracking
the progression or improvement of a patient’s condition over
time, offering a dynamic view of health status that static
measurements cannot provide.

As exemplified in Table 5 and Figure 5, by applying these
techniques to SpO2 (oxygen saturation) measurements, users can
generate a comprehensive set of features that describe not just the
current state but also the variability and trends of a patient’s oxygen
levels over time. Such detailed feature sets can significantly enhance
the predictive power of analytical models, enabling more nuanced
and accurate assessments of patient health and outcomes.

We introduce a systematic naming convention within the
language to ensure that each feature generated through its advanced
aggregation and temporal windowing capabilities receives a
unique and descriptive name. This naming scheme is crucial for
maintaining clarity and ease of reference when dealing with a
potentially large number of features. The components of this
naming scheme include:

• FeatureGroup Names: The base name derived from the
FeatureGroup, which categorizes the health event or data type,
e.g., "vitalsign".
• Filters: The specific aspect or measurement within the

FeatureGroup, such as "spo2" for oxygen saturation levels.
• Join Expression and Temporal Aggregation Window:

Indicators such as "l2" and "w1h" specify the temporal context
of the feature, with "l2" denoting the second last window and
"w1h" specifying a window period of 1 h.
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FIGURE 5

Population definition schema.

• Aggregation and Window Function Operators: The operation
applied to the data, such as "avg" for average, clearly indicates
the type of statistical measure calculated for the feature.

As illustrated in Figure 5, "vitalsign_spo2_l2_w1h_avg",
illustrates how these elements combine to form a feature name
that is both informative and concise. This feature name indicates
that it represents the average oxygen saturation ("spo2") values
from the "vitalsign" feature group, calculated over the second
last 1-h window ("l2_w1h"). This structured approach to naming
ensures that each feature’s purpose and derivation are immediately
apparent, facilitating easier analysis and interpretation of the data.
It also aids in the automated processing of features, as the naming
convention provides clear and consistent cues about the nature
and temporal dynamics of the data encapsulated by each feature.

3 Results

3.1 Implementation: a feature repository
for health data

We have developed a software, onfhir-feast, capable of
processing declarative data preparation pipeline definitions in a
high-performance distributed manner. This software enables two
key functionalities: (1) Batch extraction of training or validation
datasets from an integrated FHIR compliant data source and (2)
Calculation of features for entities (e.g., patients) to support online
prediction services integrated into the production environment as
part of an AI-based decision support solution.

onfhir-feast is aligned with the emerging concept of a feature
store, which is integral to AI pipelines. In the realm of machine
learning, a feature store serves as a platform dedicated to managing
and providing access to both historical and real-time feature data
(21). It facilitates the creation of precise datasets at particular time
points using historical feature data. Consistent with this definition,
onfhir-feast manages Population, FeatureGroup, and FeatureSet
definitions to provide a REST API for configuring or triggering a
dataset extraction pipeline, enabling access to the dataset or real-
time features for online predictions by leveraging these definitions.

A service built on an EHR system that provides data access via
HL7 FHIR is typically optimized for patient-centric applications
with user interfaces. However, when it comes to population-centric
queries, especially in the context of AI pipelines, performance issues
may arise due to the large volume of data involved. To address
this challenge and prevent excessive workload on FHIR endpoints,
onfhir-feast is designed akin to a health data warehouse. In this
setup, only relevant data is synchronized periodically, typically at
intervals such as every hour or every day, based on the Population
and FeatureGroup definitions in the platform. Consequently, only
FHIR resources updated since the last synchronization will be
queried, resulting in a reduced workload on the system ensuring
optimal performance and efficient utilization of resources.

In this synchronization process, the Population definitions take
precedence. Entity identifiers of the resulting entities identified in
each batch, based on these Population definitions, are stored in
a specific population table within the configured time-series data
repository. Subsequently, each FeatureGroup definition referenced
in the activated dataset definitions is executed for the related
population identified up to that point in time. This approach
ensures that the platform only synchronizes the necessary data for
the identified population.

The result sets of FeatureGroup executions are likewise stored
in FeatureGroup-specific tables in the time-series data repository.
Importantly, Population and FeatureGroup definitions can be
reused across different dataset definitions. The platform manages
this seamlessly to ensure that it never queries and processes the
same FHIR resource more than once, thereby optimizing efficiency
and resource utilization.

With this synchronization mechanism, onfhir-feast acts as a
data warehouse similar to having an OMOP database populated
with data pipelines mapping EHR system data. But in our case,
users are more flexible to design their own tables, in other words
Feature Groups, tailored to their use cases when needed.

Additionally, onfhir-feast offers an API to asynchronously
trigger dataset extraction for preparing training or validation
datasets. Users can choose to utilize all available data or specify
a particular period, such as extracting a training dataset from
data recorded in the previous year. Similarly, periodic dataset
preparations can be scheduled and configured to support AI
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model retraining scenarios. When such an extraction is triggered,
the platform initiates the synchronization phase, which updates
with the new data on the integrated system until the last
synchronization point and populates the related tables in the
time-series data repository. Subsequently, the relevant FeatureSet
definition is executed on the loaded data from those tables for the
identified entities within the population to prepare the dataset. The
resulting datasets are then stored in the integrated "Offline Feature
Repository.”

Throughout the execution of this process, the client has the
option to inquire about the status of the process via the REST API.
Upon completion, automatically generated metadata of the dataset
is stored and made accessible to the client. This metadata includes a
list of features and outcome variables, along with their descriptions,
basic statistics (such as the number of missing values, maximum,
minimum, and average for numeric values, cardinalities, and value
sets for nominal features, etc.).

The platform leverages Apache Spark (20), Akka (22) and
Apache Software Foundation (23) frameworks to ensure reliable,
fault-tolerant distributed processing for handling parallel FHIR
queries during population identification and synchronization
phases, as well as processing the result set for dataset preparation.
It also provides extension mechanism to support the usage of
different type of databases or persistency mechanisms as integrated
repositories (such as time series data repository, Offline and
Online Repository). Currently, PostgreSQL based repositories and
file system-based repositories for storing data in Apache Parquet
format are supported.

The platform can also serve as a component of a decision
support application integrated with a trained AI model, tasked
with preparing features for individual entities for online prediction.
To facilitate this, a corresponding synchronous operation is
provided as part of the REST API. During this process, the
same dataset definitions, comprising the bundle of FeatureSet,
Population, and FeatureGroup definitions, are executed. However,
this time, they are applied to a single entity (e.g., a patient)
to calculate the same feature list in a consistent manner. The
process triggers the synchronization phase solely for that entity,
considering data updated after the last synchronization time for
the target population if the patient is included in the population.
Subsequently, the FeatureSet definition is executed on the obtained
data to prepare the features for online prediction.

3.2 Case studies

The proposed methodology and the implemented platform
have been deployed and tested in 3 research projects supported
within the EU Horizon 2020 and Horizon Europe frameworks
namely, AICCELERATE (24), DataTools4Heart (25) and AI4HF
(26) projects as part of several pilot studies.

Table 6 presents the list of pilot studies and use cases
where the described methodology is followed and a range of
dataset definitions are provided. In all these projects, the onfhir-
feast platform is deployed locally on the data provider’s data
center to extract training and/or test datasets. For instance, in
AICCELERATE, Pilot 2 involves utilizing datasets extracted from
various data providers for cross-validation of AI models developed
locally. Additionally, onfhir-feast serves as an integral component

TABLE 6 Case studies where the methodology and the platform are used
for preparing training/validation datasets.

Case study # of data
provider

# of
variables

AICCELERATE

Pilot 1−Patient Flow Management and
Surgical Units

2

1.1 Dataset for predicting complications
after cardiac surgeries

1 916

1.2 Dataset for predicting length of stay
(LoS) for patients after cardiac surgeries

1 583

1.3 Dataset for predicting duration of
surgery, ICU stay and LoS before surgery

2 88

Pilot 2−Parkinson’s Disease Digital Care
Pathway

2

2.1 Dataset for predicting progression to
advanced Parkinson stage and predicting
Mild Cognitive Impairment in Parkinson
patients

2 402

Pilot 3−Palliative and chronic pediatric
service delivery & patient workflow

3

3.1 Dataset for clustering pediatric
palliative patients into risk groups

1 117

3.2 Dataset for predicting tumor relapse
after cancer treatment in pediatric patients

1 549

3.3. Dataset for predicting time needed for
preparation (time to surgery) to a surgery

1 48

DataTools4Heart and AI4HF*

Pilot 1−Medication prescription in
patients with acute heart failure and
chronic kidney disease or hyperkalaemia

9

1.1 Dataset for analysing prescription
patterns and clinical outcomes in terms of
HF and CKD

9 604

Pilot 2−Risk score for acute HF in the
emergency department

9

2.1 Dataset for predicting on
(HF/CV)-rehospitalization, cardiovascular
event or mortality within 7-, 30-, 90-,
180-days, 1-, 3- and 5-year follow-up.

9 162

Pilot 3−Referral pathways for patients with
HF

9

3.1 Dataset for predicting the right
specialty at the first time right to refer the
patients for an in-hospital and general
practitioners referral support model.

9 268

*DataTools4Heart and AI4HF projects are under development at the time of writing this
manuscript. The numbers might change as the projects may evolve.

of the resulting solution for online prediction. In DataTools4Heart
and AI4HF projects, onfhir-feast is incorporated into federated
learning platforms to extract harmonized datasets from diverse data
providers.

3.2.1 Example case study−predicting
complications after cardiac surgeries

To illustrate the methodology and results achieved using the
solution, we will now provide the details of the data preparation

Frontiers in Medicine 15 frontiersin.org

https://doi.org/10.3389/fmed.2024.1393123
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1393123 July 29, 2024 Time: 10:22 # 16

Namli et al. 10.3389/fmed.2024.1393123

TABLE 7 Feature group definitions and relation to CDM for the use case.

FHIR resource
type

AICCELERATE CDM
FHIR profile

Feature group definitions

Patient AIC-Patient: Patient demographics
- gender, birthdate→ Set as mandatory

Patient_demographics
(pid, gender, birthDate)

EpisodeOf
Care

AIC-OperationEpisode: Surgical episode of care indicating the
period from admission to discharge
- type→ Bind to a valueset for episode types to distinguish surgical
episodes
- diagnosis→ Set as mandatory to identify pre-operative diagnosis
for surgery

Episodes
(pid, episodeId, time, endTime, preOpDiagnoses,
comorbidtyDiagnoses)

Encounter AIC-OperationEpisodeEncounter: Encounters related to surgical
workflow.
- type→ Bind to a ValueSet with SNOMED-CT codes to distinguish
ICU stays, ward stays, operation encounters

Icuorwardstay
(pid, episodeId, encounterId, startTime, endTime, type, location,
duration)

surgeryEncounter
(pid, episodeId, encounterId, startTime, endTime, category,
priority, location, duration)

Condition AIC-Condition: Diagnosis records for patients
- code→ Bind to ICD-10-CM value set

Condition
(pid, encounterId, onsetDate, icd10Code)

Procedure AIC-SurgeryPhaseDetails: Record to provide details of the main
procedure performed in surgery.
- category→ Identify a fixed SNOMED-CT code to distinguish such
records
- code→ Bind to ICD-10-PCS value set for surgery codes

Surgeries: Details of the surgery
(pid, episodeId, encounterId, startTime, endTime, isMainSurgery,
ccsCategory, mainProcedureCode, bodySite,duration,
aristotleScore, stsScore, rachs1Score, extubationStatus,
defibrillationStatus, minTemparature, cecTime, clampTime,
arrestTime)

AIC-ProcedureRelatedWithSurgicalWorkflow: Other related
procedures performed in surgery−code→ Bind to a ValueSet for
interested procedure codes in SNOMED-CT for cardiac surgeries e.g.
extracorporeal circulation procedure (cec), vascular clamp,
extubating, defibrillation, etc.

Medication
Administration

AIC-MedicationAdministration: Record indicating an administered
medication within surgical workflow in the hospital.
- medication→ Bind to ATC codes

Medications
(pid, episodeId, time, atcCode, atcCategory, dose, doseUnit)

Observation AIC-LabResultWithinSurgicalWorkflow: Record providing a related
lab result
- code→ Bind to LOINC codes for lab results and provide a ValueSet
to declare the interested lab tests for the use case

Lab
(pid, episodeId, encounterId, time, code, value, unit, interpretation)

Vitalsigns: A set FHIR standard profiles representing vital sign
measurements e.g. body weight, temperature, SPO2, blood pressure,
etc.
- Fixed LOINC codes and units for each vital sign

Vitalsign
(pid, time, code, value)

bloodpressure
(pid, time, systolic, diastolic)

AdverseEvent AIC-ComplicationAfterOperation: Record indicating an adverse
event after surgical operation.
- event→ Bind to a ValueSet including SNOMED-CT codes listing
interested complications occur after cardiac surgeries including
unexpected ICU admission

Complication
(pid, episodeId, encounterId, time, code)

pipeline for one of the use cases within the AICCELERATE project’s
pilot 1 study. This particular use case revolves around predicting
complications, specifically unexpected ICU admissions following
cardiac surgeries and specific diagnostic procedures.

For this study, the target cohort is defined as the surgical
episodes of patients who have undergone at least one
cardiothoracic surgery or diagnostic procedure, such as cardiac
catheterization or cardiac electrophysiology. These eligibility
criteria are defined using a Population definition, which filters

the FHIR EpisodeOfCare and Encounter resources based on
the service type of encounter, utilizing the corresponding
SNOMED-CT codes.

Within these episodes of care, which encompass the period
from hospital admission to discharge, various types of encounters
occur, including surgical encounters, ward stays, intensive care unit
(ICU) stays, and pre-surgery visits. The study utilizes diagnostic
data and basic patient demographic information from the pre-
surgery phase. Additionally, it incorporates details of surgical or

Frontiers in Medicine 16 frontiersin.org

https://doi.org/10.3389/fmed.2024.1393123
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/


fmed-11-1393123 July 29, 2024 Time: 10:22 # 17

Namli et al. 10.3389/fmed.2024.1393123

diagnostic procedures performed, including specific interventions
such as intubation, defibrillation, and hypothermic circulatory
arrest, which may influence post-operative complications.
Furthermore, intraoperative observations and assessments, such
as minimum temperature and related surgery risk scores, are
included in the study. For the post-operative phase, a specific set of
lab results and frequent vital sign measurements obtained during
ICU or ward stays are primarily utilized for prediction purposes.
For instance, the data provider’s dataset includes vital signs
recorded at 5-min intervals for most of the time until discharge.
To calculate outcome variables, a list of explicit complication data,
including a range of post-operative complications and unexpected
ICU admission events, is employed.

Table 7 illustrates the HL7 FHIR-based common data model
and feature group definitions provided for the use case, along
with their relationships. For instance, the FeatureGroup definitions
"icuOrWardStay" and "surgeryEncounter" are dependent on
the model described by AIC-OperationEpisodeEncounter, which
customizes the FHIR Encounter resource model. On the other
hand, the definition named "surgeries" relies on two profiles: one
customizing the record representing the main surgical procedure
and the other representing additional procedures performed in
relation to cardiac surgeries. The table also details the primary
customizations or restrictions applied to the standard resource
model for each defined profile, as well as the parameters extracted
from those records within the FeatureGroup definitions.

List of features and outcome variables that are designed for
this use case in collaboration with clinicians and data scientists
are provided in supplementary material as Supplementary
Table 1. Related definitions are available open source at
https://github.com/aiccelerate/data-extraction-suite/blob/main/
definitions/pilot1-hsjd/.

Within this pilot study, the data is provided by the project
partner Sant Joan de Deu hospital by getting data exports from
corresponding EHR database tables in CSV format. For the
transformation of data in CSV files into HL7 FHIR resources, the
open source toFHIR platform (27, 28) is used as data integration
platform, and onFHIR.io (29) is utilized as the secure health
data repository.

The onfhir-feast tool, along with the data integration platform,
is deployed on a server for demonstration and piloting purposes.
Utilizing the toFHIR tool and corresponding mapping definitions,
retrospective data provided in CSV format are transformed into
FHIR resources compatible with the CDM for the specified use
case. These FHIR resources are then stored in the onFHIR.io
repository. Table 8 provides an overview of the data size, indicating
the number of FHIR resources created as a result of the mappings.
Following this, a batch dataset extraction job is initiated on onfhir-
feast using the designed dataset preparation pipeline definition to
create the dataset for training and testing of AI models. Moreover,
the setup serves as an integral part of the prediction service
served to healthcare professionals wrapping the trained AI model.
The prediction service and UI component utilize onfhir-feast
APIs to retrieve features for a patient within a surgical episode.
Subsequently, this information is utilized for online prediction of
complications for that patient.

We conducted a basic performance test using the same setup
on a single personal computer (Lenovo ThinkPad) equipped
with an 11th Gen Intel(R) Core (TM) i7-11800H processor

TABLE 8 Number of FHIR resources created by mapping raw data and
used in dataset creation.

FHIR resource # of relevant
resources

Details

Patient 906

Episode of Care 1,022

Encounter 4,581 Surgical encounters: 1,197
ICU stays: 783

Ward stays: 1294

Condition 2,310

Medication
administration

121,188

Procedure 2,210 1,197 surgery
1,013 other procedures

records

Observation 6,972,703 6,853,917 vital sign records
76,191 lab result records

1,108 others
41,487 blood pressure

records

Adverse event 565

running at 2.30GHz. The test was carried out within a controlled
Docker environment featuring 8 CPU cores and 16GB of RAM.
Initially, we executed the synchronization job independently,
as the synchronization phase relies on the performance of the
FHIR server to respond to queries. Subsequently, the dataset
preparation job was performed, taking approximately 164 min
to complete. The resulting dataset comprises 916 variables and
141,805 entries, covering 1,022 surgical episodes belonging to 906
patients. Furthermore, the metadata generation for this dataset,
including basic statistics, required approximately 2 min. The API
for retrieving features for a patient within a surgical episode at any
chosen time demonstrated an average response time of 37 s.

4 Discussion

4.1 Principal findings

In this paper, we have introduced a declarative data preparation
pipeline definition language designed to transparently outline
each stage of the transformation process from EHR data to
AI-ready feature sets. This framework ensures traceability by
providing a clear depiction of the transformation and pre-
processing operations applied to the data, from its retrieval from
EHRs to its delivery to AI models for training.

Through our implementation in our pilot studies, we have
demonstrated that, the framework is extensive enough for defining
diverse set of features with different temporal and contextual
criteria. In the realm of applying machine learning to electronic
health record (EHR) data, researchers frequently resort to readily
extracted, manually chosen obvious features due to the time-
intensive nature of more thorough preprocessing methods (6).
The proposed dataset definition language enables researchers
to easily enumerate features with different representations and
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temporal context using FHIR Path expressions, temporal windows,
aggregation operators and window functions. Furthermore, as the
important part of the definitions are parametrized, users have the
chance to generate different versions of the datasets with different
configurations which helps them to search for optimal or suitable
solution with the underlying data. This capability is invaluable
for researchers seeking the most effective or appropriate analytical
models based on the available data, enabling a more dynamic and
exploratory approach to data analysis.

Reproducibility poses a common challenge in AI research,
with healthcare presenting a particularly pronounced instance of
this issue. The limited availability of publicly accessible medical
datasets serves as one indication of this challenge (30). While
promoting increased data sharing is crucial, establishing reusable
and standardized definitions for key concepts such as target
cohorts, phenotypes, and datasets, as advocated in this article, can
significantly enhance reproducibility in AI research. Encouraging
researchers to share such definitions for their methodologies
enables others to apply the same processes to different datasets,
facilitating result comparison and broader applicability.

Our approach facilitates reproducibility across diverse data
sources, which is essential for federated analysis of fragmented
datasets. Achieving interoperability among datasets is a crucial
requirement for federated machine learning applications, and our
solution offers a transparent and traceable pipeline to accomplish
this goal (31). Additionally, it enables validation for robustness,
bias, and fairness across different sites, thereby enhancing the
reliability and integrity of AI models deployed in healthcare
settings. The framework and its implementation serve as an
implementation guideline for EHDS vision, tackling how data sets
across different sites in Europe can be harmonized and aggregated
for secondary use purposes while also ensuring traceability and
end-to-end transparency fulfilling the requirements of AI-Act.

4.2 Limitations and future work

Currently, the definition of Target Population, Feature Group,
and Feature Set necessitates technical proficiency in crafting FHIR
query and FHIRPath expressions. To enhance user accessibility and
usability, we intend to augment the onfhir-feast implementation
with a graphical user interface. This interface will empower users
to define FHIR query and FHIRPath expressions through visual
expression builders, streamlining the process and reducing the
reliance on technical skills.

The scope of the pipeline and implementation is limited to
tabular datasets production. As foundational models are trained on
raw data for generic purposes, researchers may prefer to provide
directly the FHIR formatted data rather than a dataset tailored
for a specific AI use case. However, still there is an important use
case for generative AI where this pipeline can be useful. Recently,
synthetic data generation for privacy preserving data sharing is one
of the hot topics in healthcare AI. Our pipeline can be part of such
setups where a common dataset definition can be used in different
healthcare settings to extract harmonized datasets locally and then
apply generative AI to create synthetic datasets that maintains
the statistical properties of original datasets. Then these synthetic
datasets can be shared, combined and used in model training, and
development without exposing sensitive patient information.

Furthermore, we aim to expand the capabilities of onfhir-feast
by providing visual tools to data scientists. These tools will facilitate
querying and exploration of source data during target population
selection and feature set preparation. By offering visualizations,
data scientists can better assess the adequacy of the datasets
provided by data sources in addressing the research question
at hand, enhancing overall data exploration and analysis. The
existing implementation already includes basic statistics, such as
the number of missing values, maximum, minimum, and average
for numeric values, as well as cardinalities, within the feature set
documentation. Our objective is to expand the underlying language
and enhance the onfhir-feast implementation to enable querying
additional statistics about datasets.

We plan to leverage this extension for two primary purposes.
Firstly, we aim to utilize it for constructing a metadata catalog,
which will serve as a comprehensive repository of dataset
statistics and characteristics. Secondly, we intend to employ it
for developing data set exploration user interfaces tailored for
data analysts. These interfaces will facilitate the assessment of
data quality across various dimensions, including conformance,
completeness, and plausibility, enabling users to evaluate the
quality of datasets effectively.

5 Conclusion

In summary, the proposed methodology and models offer
significant contributions to the ML research community in
healthcare by establishing standardized, transparent, and
technology-agnostic dataset definitions. These definitions not
only characterize the datasets themselves but also delineate the
procedures for compiling them from Electronic Health Record
(EHR) systems via standard FHIR interfaces. This innovative
approach represents a crucial step towards establishing best
practices for data harmonization. By creating reusable, transparent,
and shareable dataset definitions, it addresses a critical need in
setting up federated data sharing environments for the secondary
use of EHR data, such as the European Health Data Spaces
initiative. By promoting interoperability and standardization, these
methodologies pave the way for more efficient and effective ML
research in healthcare, ultimately leading to improved patient
outcomes and advancements in medical knowledge.
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