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Objectives: Many studies have attempted to determine the disease severity and 
patterns of COVID-19. However, at the beginning of the pandemic, the complex 
patients’ trajectories were only descriptively reported, and many analyses were 
worryingly prone to time-dependent-, selection-, and competing risk biases. 
Multi-state models avoid these biases by jointly analysing multiple clinical 
outcomes while taking into account their time dependency, including current 
cases, and modelling competing events. This paper uses a publicly available 
data set from the first wave in Israel as an example to demonstrate the benefits 
of analysing hospital data via multi-state methodology.

Methods: We compared the outcome of the data analysis using multi-state 
models with the outcome obtained when various forms of bias are ignored. 
Furthermore, we  used Cox regression to model the transitions among the 
states in a multi-state model. This allowed for the comparison of the covariates’ 
influence on transition rates between the two states. Lastly, we  calculated 
expected lengths of stay and state probabilities based on the multi-state model 
and visualised it using stacked probability plots.

Results: Compared to standard methods, multi-state models avoid many biases 
in the analysis of real-time disease developments. The utility of multi-state 
models is further highlighted through the use of stacked probability plots, which 
visualise the results. In addition, by stratification of disease patterns by subgroups 
and visualisation of the distribution of possible outcomes, these models bring 
the data into an interpretable form.

Conclusion: To accurately guide the provision of medical resources, this 
paper recommends the real-time collection of hospital data and its analysis 
using multi-state models, as this method eliminates many potential biases. By 
applying multi-state models to real-time data, the gained knowledge allows 
rapid detection of altered disease courses when new variants arise, which is 
essential when informing medical and political decision-makers as well as the 
general population.
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1 Introduction

1.1 Background

Having emerged in December of 2019, the SARS-CoV-2 virus has 
brought with it a variety of challenges. Due to its diverse clinical 
courses and surging waves of patients, it has impeded the provision of 
appropriate resources for hospitalised patients. At the beginning of the 
pandemic, studies attempting to understand the characteristics of 
COVID-19 suffered from severe time-related types of bias due to 
length bias, immortal-time bias, competing risk bias, and selection 
bias (1). For example, Zhou et al. carried out a study in Wuhan, China, 
in which 613 cases out of 813 were excluded because these patients 
had not yet experienced an outcome (2). Similarly, in Chen et al. 525 
out of 799 patients were excluded from the analysis because they were 
still hospitalised (3). However, as Bajaj et al. argue, those in a moderate 
condition may stay in the hospital for longer than those in a poor 
condition, because the latter may succumb more quickly (4). At the 
same time, those in a good condition stay in the hospital for a shorter 
time than the ones in a moderate condition, as the former are likely to 
be discharged sooner. Thus, by ignoring all active cases, a selection 
bias arises, in which patients in a moderate condition are excluded, as 
their stay in the hospital is likely to be longest.

In addition, various studies suffered from competing risk bias. 
Competing risks refer to situations where an individual is subject to 
multiple possible events, and the occurrence of one event precludes 
the occurrence of the others (5). Assuming death is the event of 
interest, for example, the possibility of in-hospital death is eliminated 
when an individual is discharged from the hospital. Hence, being 
discharged is a competing event to dying in the hospital. In survival 
analysis, disregarding the presence of competing events can lead to a 
severe bias in the results.

To address the problem of poor data quality and biassed samples, 
this paper shows how statistical analyses can be used to avoid these 
biases in the context of the COVID-19 pandemic, following the 
example of Hazard et  al. with multi-state models (6). Multi-state 
models entail defining certain states and the transitions among them. 
Multi-state models have the advantage that they are very flexible. For 
example, depending on the desired complexity, states can easily 
be consolidated. This increases the comprehensibility of the plots and 
at the same time can simplify the analysis (7).

1.2 Research in context

Multi-state models have been used in a variety of research contexts. 
For example, in modern ecology, it is used in capture-recapture 
experiments because the multi-state models allow for simple 
incorporation of temporal variation in the transition rates by modelling 
the rates as a parametric function over time (8). Furthermore, multi-state 
models are commonly used in cancer clinical trials, where patients 
usually experience multiple disease stages (9). The complex transitions 
between these stages can be comprehensively analysed using multi-state 
models. In addition, multi-state models can be used for predictions. 

More specifically in the context of hospital data, Roimi et al. used a multi-
state model to predict individual patients’ hospital states based on their 
characteristics, such as age and gender. Furthermore, they also carried 
out analyses to predict the total hospital utilisation (10). Similarly, Keogh 
et  al. also predicted the length of stay in hospital wards during the 
COVID-19 pandemic based on the patients’ characteristics. However, 
they extended their work by introducing the concept of “conditional 
expected length of stay,” which is defined as the expected length of stay 
in a certain state, conditional on the complete pathway taken through the 
states (11). In yet another paper, the multi-state model is analysed with 
parametric methods, which has the advantage that these parameters can 
be used to carry out simulations (12). The advantages and disadvantages 
of a variety of multi-state modelling approaches are reviewed in (13).

The implication of disregarding competing events in statistical 
analyses has been discussed frequently among the research community. 
In (14), McCaw et al. outline the problem of competing risks based on two 
papers: in (15), Beigel et al. carried out a clinical trial evaluating the effect 
of remdesivir versus a placebo in hospitalised COVID-19 patients. 
Similarly, Li et al. conducted a trial to detect the effect of convalescent 
plasma as compared to the effect of the standard of care on hospitalised 
COVID-19 patients (16). In both studies, death is a competing event. In 
addition, Wolkewitz et al. carried out an analysis to determine the impact 
of the duration of mechanical ventilation on the development of 
pneumonia while considering extubation as a competing event (17). An 
unbiased result could only be obtained when the competing event was 
accounted for. Supplementary Table 2 in (18) shows an overview of papers 
published in high-impact journals with a competing risk problem. In all 
cases, being discharged alive was the competing event that should have 
been accounted for in the analysis. Ignoring this competing event led to 
an overestimation of the cumulative incidence of the event of interest 
which, in the cases of the papers mentioned in Supplementary Table 2, 
was death or a composite outcome of intubation or death. Furthermore, 
a systematic literature review of observational studies that evaluated drug 
effectiveness in patients with COVID-19, carried out by Martinuka et al. 
(19), assessed the studies on three common methodological pitfalls in 
time-to-event analyses, one of them being competing risk bias. Their 
results showed that only one paper out of 11 accounted for the competing 
risk of being discharged alive by extending the follow-up period for 
discharged patients. All the others suffered from a competing risk bias. 
This highlights the scope of the problem.

Whilst it is evident that the topic of competing risk and selection bias 
as well as the use of multi-state models for the analysis of hospital data is 
not new to the research community, the topics are rarely taken into 
consideration by clinicians. Hence, this work aims to illustrate the biases 
that early COVID-19 analyses were subject to and provide a simple and 
easily applicable solution to overcoming these sources of bias by using the 
multi-state methodology. In addition, the paper aims to show how the 
continuous use of multi-state models in hospital data analysis facilitates 
hospital planning in disease outbreak scenarios by using comprehensive 
data visualisation techniques, thereby enhancing pandemic preparedness.

2 Methods

2.1 Data

The data used to demonstrate the advantages of multi-state 
models was collected in the form of a nationwide Israeli COVID-19 

Abbreviations: ELOS, Expected length of stay; M/S, Moderate/severe; ICU, Intensive 

care unit.

https://doi.org/10.3389/fmed.2024.1390549
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Lucke et al. 10.3389/fmed.2024.1390549

Frontiers in Medicine 03 frontiersin.org

registry. It was previously used by Roimi et al., who conducted a multi-
state analysis to predict hospital capacity utilisation in Israel. The data 
was collected in real-time and includes the day-to-day clinical course 
of patients hospitalised for at least 1 day between March 1st and May 
2nd of 2020. It furthermore includes information on the patients’ age, 
sex, and initial admission date.

2.2 Multi-state models

In the model, four states are defined: moderate/severe (M/S), 
critical, discharge, and death. A patient starts in M/S or critical and 
can change between these two states an unlimited number of times 
before either dying in the hospital or being discharged. Death and 
discharge were defined as absorbent states, forbidding any transition 
away from these states. Supplementary Figure 1 illustrates the multi-
state model. One important characteristic of multi-state models is that 
they allow the inclusion of competing events. In this model, discharge 
is the competing event of death. It is important to classify discharge as 
a competing event because being discharged alters the probability of 
death, i.e., persons discharged from the hospital are likely to 
be healthier and therefore have a lower probability of dying than those 
hospitalised (5). Disregarding this in the analysis would bias the 
results. Supplementary Table 1 shows example clinical courses of 3 
patients through this multi-state model.

As von Cube et al. described, the analysis of multi-state models 
implies the calculation of transition probabilities and transition-
specific hazard rates (20). In this paper, transition probabilities are 
calculated using transition hazards, which are defined as the 
instantaneous risk of moving between two states. Moreover, in our 
model, the calculation of the transition probabilities is dependent on 
all hazard rates of the transitions. Further mathematical details of 
multi-state models are explained in von Cube et al. (20) and Wolkewitz 
et al. (21).

2.3 Statistical analyses

We used two different approaches to highlight the advantages of 
multi-state models over standard analysis techniques. In the first 
approach, we illustrated the bias which arises by excluding all active 
cases as was done in Zhou et al. and Chen et al. (2, 3). To do so, 
we excluded all active cases from our data and carried out a logistic 
regression for the outcome of “death.” Based on this regression, 
we predicted the probability for the event “death” to have occurred by 
May 2nd, 2020 for the different age groups. We stratified this analysis 
for the state at initial admittance. We then compared the results to the 
probability of dying using the multi-state model to highlight the 
discrepancies in the results if active cases are excluded. In the second 
approach, we demonstrated the bias that arises if competing events are 
censored. This means that only the event of interest, death, was 
considered. We created cumulative incidence curves for this model 
and compared them to the cumulative incidence curves obtained 
when considering the competing event of being discharged. This 
analysis was also stratified by age groups and the initial state of 
admittance. The methodology is displayed in Figure 1.

In addition, we  analysed the multi-state model using stacked 
probability plots. Transition probabilities were calculated using the 
mstate package in R (Version 4.3.1) and the code created by Hazard 
et  al. (6). First, cause/transition-specific Cox regressions were 
calculated. Cox models are a popular regression method in survival 
analysis. They are used when the effect of covariates on censored 
survival times is analysed. Cox regressions are calculated to compare 
how covariates affect the instantaneous risk of a transition between 
two states, i.e., the hazard ratio. For simplicity, the transitions M/S to 
critical and M/S to death were merged into one transition, to model 
how covariates affect the risk of clinical decline from the M/S state. 
Similarly, the transitions critical to M/S and critical to discharge were 
merged into one transition to model the effect of the covariates on an 
improvement from the critical state. To measure the effect of the 

FIGURE 1

Methodology for the statistical analysis of the data set.
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month of admittance, a binary variable was used differentiating 
between admission in March and admission in April. The few cases 
that were admitted in May were included in April. After performing 
Cox regression, the baseline hazard was calculated, which is the 
hazard of the event of interest occurring at a certain point in time if 
the effect of all other covariates is zero. Then, the transition 
probabilities were calculated based on the baseline hazards. Finally, 
the transition probabilities were used to calculate the expected length 
of stay (ELOS) as shown in Hazard et al.

3 Results

The dataset included 2,675 patients of which 1,319 were younger 
than 60, 870 were between 60 and 80, and 486 were over the age of 80. 
2,480 patients were originally admitted in an M/S state and only 195 
patients were in a critical state at the time of admittance. By May 2nd, 
2020, 198 patients had died and 311 patients (11.6%) were still active. 
Hence, by excluding all active cases, the data was reduced to 2,364 
patients with 1,233 below 60, 734 between 60 and 80, and 397 over the 
age of 80. Of the 2,364 patients, 2,233 were initially in an M/S state and 
131 in a critical state.

3.1 Bias in research during the COVID-19 
pandemic

3.1.1 Selection bias
Figure 2 depicts the predicted 30-day hospital mortality obtained 

using a logistic regression model when excluding all active cases from 
the data. As a comparison, it also shows the predicted 30-day hospital 
mortality obtained when the entire cohort was analysed using multi-
state models. The graph shows that when excluding active cases from 
the analysis the probability of death is overestimated in the groups of 
patients where more deaths occurred, such as in the older age groups 

and in those who were initially admitted in a critical state. For 
example, when analysing the biassed cohort, the probability of death 
of the patients between 60 and 80 who were initially admitted in a 
critical state is 0.63. In comparison, when including all individuals 
initially admitted in a critical state, the probability of death is 0.34. The 
same pattern is seen for patients above 80 when initially admitted in 
a critical state. All numeric values of the 30-day hospital mortality can 
be found in Supplementary Table 6.

3.1.2 Competing risk bias
Figure 3 shows the cumulative incidence curves of two different 

models. Whilst the event of interest in both models was “death,” the 
event “discharged” was only classified as a competing event in one 
model (“Accounting for competing risks”). In the other, this competing 
event was ignored (“Ignoring competing risks”). The results show that 
especially for the patients who were initially admitted into a moderate/
severe state, there are large discrepancies in the cumulative incidence 
curves between these two models. The method where competing risks 
are ignored overestimates the cumulative incidence of the event 
“death.” For example, the cumulative incidence of death after 30 days 
when ignoring the presence of competing risks is 0.37 whereas the 
cumulative incidence when considering the competing risk is 0.24.

3.2 Advantages of multi-state methods to 
avoid bias

Having demonstrated the bias that arises through standard 
methods of analysis that were used at the beginning of the COVID-19 
pandemic, the following results highlight the advantages of using 
multi-state models.

3.2.1 Planning bed capacity
Figure 4 shows the estimated probabilities in each state over 

time stratified for age groups and initial state of admittance. The 

FIGURE 2

The probability of dying stratified by the initial state of admittance and age group, calculated once based on a subsample that excluded all active cases 
(Logistic Regression) and once based on the full cohort using multi-state methods (Multi-state). The numbers underneath each bar indicate the 
amount of people in the respective group.
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estimated probability of each state on any day can be determined. 
Figures 4A–C shows the predicted proportions of patients admitted 
in a moderate/severe condition in each state over time stratified by 
age group. For patients between 60 and 79, 30 days after 
hospitalisation 3.5% are in M/S, 4.7% are in critical, 85.9% are 
discharged and 5.9% are dead. This information is valuable for the 
standard care units. Similarly, Figures 4D–F shows the estimated 
probabilities in each state over time of those patients being 
admitted in a critical state. This information is relevant for the 
intensive care wards as it indicates how long patients stay in a 
particular condition and more importantly, in which condition the 
patients leave the ward. For example, for patients between 60 and 
79, 30 days after hospitalisation 8.5% are in M/S, 16.4% are in 
critical, 45.5% are discharged, and 29.6% are dead. Thus, not only 
are these graphs useful when it comes to the planning of the 
different wards in the hospital, but by comparing the wards 
(standard care and ICU) with one another they can be useful in 
identifying disease patterns.

In addition, four different Cox regressions were constructed based 
on the model. As explained, for simplification purposes transitions 
one and three (as depicted in Supplementary Figure 1) were merged 
into one model as well as transitions four and five. The age group, sex, 
and initial admission date were included in the model as covariates. 
Overall, the age group and the binary covariate indicating the 
admission date (March versus April) were significant in most 
regressions. An increased age was associated with an increased hazard 
rate of transitions from M/S to critical or death, and from critical to 
death. The full result of the regressions is included in the 
Supplementary Tables 2–5 and it shows how multivariable Cox 
regressions can be  used as an outlook to analyse how certain 
characteristics are risk factors for a specific transition.

Furthermore, to show how the multi-state models can be used to 
prepare healthcare providers for future COVID-19 waves, the ELOS 
in the two non-absorbent states was calculated as an example for 
patients between 60 and 80. For those admitted in a M/S condition, 
the ELOS in M/S is 9.28 days and the ELOS in the critical state is 
2.75 days. In contrast, those admitted in a critical condition have an 

ELOS of 4.96 days in the M/S state and an ELOS of 15.91 days in the 
critical state, when estimating from the first day of hospitalisation. 
Supplementary Figure 2 shows the days in the M/S and critical state 
for each age group of the entire cohort.

3.2.2 Analysis to study the most recent 
developments in real-time

In addition, multi-state models allow the study of the most recent 
disease developments in real time. As an example, Figure 5 shows the 
stacked probability plots for the whole population stratified by the 
admittance date and initial admittance state. By stratifying for the 
hospital admission date, we show real-time changes in the clinical 
patterns of COVID-19. For those admitted in the M/S state, the 
mortality is higher when admitted in April/May than in March. This, 
however, is different when starting in the critical state. Here, the 
mortality seems to be lower for those admitted in April/May and the 
estimated probabilities over time in the critical condition are lower 
than for those admitted in March. Such information helps to clarify 
any observed differences in severity between the regular and the 
intensive care ward.

4 Discussion

In this paper, we compared standard survival analysis methods used 
for the analysis of COVID-19 hospital data in the beginning of the 
pandemic with advanced multi-state models. Supplementary  
Figure 2 and Supplementary Table 6 showed that selection bias led to an 
overestimation of death in the groups where many deaths occurred. As 
explained above, Bajaj et al. pointed out that excluding active cases biases 
the cohort towards the very ill and those that are only very lightly diseased. 
In our analysis, we manage to separate the severely ill from those that have 
a light course of the disease by stratifying for the initial state of admittance. 
Hereby, we show that our results support the claim of Bajaj et al., as 
Figure  2 shows that the probability of dying is overestimated in the 
patients admitted in a critical state, thus in the severely ill patients. These 
results are only partly reproducible in the opposite sense, i.e., showing that 

FIGURE 3

Cumulative incidence of dying stratified for age group and initial state of admittance. Solid lines show the results in which the competing risk of being 
discharged is accounted for, whereas the dashed lines show the results where the competing risk was not accounted for.
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the probability of death is underestimated in the patients initially admitted 
in a M/S state. Whilst we see an underestimation for patients above 80 
admitted in an M/S state, this cannot be observed for the other age groups. 
This could perhaps be explained by the small percentage of patients 
admitted in M/S that died, leading to an imprecise prediction of the 
probability of dying. In addition, Figure 3 shows that competing risk bias 
also leads to an overestimation of death because when ignoring competing 
risks, the model does not differentiate between being discharged and 
being hospitalised. Thus, those discharged are assumed to have the same 
risk of the event of interest as those who are still hospitalised. 
Consequently, the cumulative incidence is overestimated. In contrast, the 
cumulative incidence curves for the patients initially admitted in the 
critical state are very similar, as fewer patients are discharged. These results 
suggest that numerous analyses carried out at the beginning of the 

pandemic overestimated the severity of the disease. This is relevant as the 
overestimation may have led to some of the harsh public health measures, 
such as the closure of schools, which have, in retrospect, faced criticism 
for having been disproportionate (22). Hence, this example highlights the 
importance of obtaining unbiased information on disease severity, in 
which, as outlined above, multi-state models prove to be very useful.

In addition to highlighting the benefits of multi-state models in 
eliminating sources of bias, this paper also described further 
advantages of using multi-state models and corresponding stacked 
probability plots. One advantage is the potential these models have to 
assist the resource organisation of the hospital. By integrating stacked 
probability plots into the analysis, vital information on patients’ 
clinical courses over time can be  displayed comprehensively and 
concisely. Furthermore, through the use of Cox regressions and the 

FIGURE 4

Predicted probabilities of being in each state at specific times for the patients admitted in a moderate state (A–C) and those admitted in a critical state  
(D–F).

https://doi.org/10.3389/fmed.2024.1390549
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Lucke et al. 10.3389/fmed.2024.1390549

Frontiers in Medicine 07 frontiersin.org

calculation of the ELOS, risk factors can be identified and the disease 
courses of individual patients can be predicted, thereby facilitating the 
planning of the hospital wards.

Additionally, stacked probability plots are easily interpretable and 
thereby facilitate communication with the general public. As van 
Schalkwyk et al. writes, the COVID-19 pandemic came at a time when 
distrust in institutions among the population was growing, for 
example through a change of government (23). This distrust worsened 
during the pandemic, as information from the media or research 
community was misunderstood by the population. However, stacked 
probability plots facilitate the interpretation of information conveyed 
by professionals. For example, Berger et al. carried out a country-level 
analysis of hospital capacity and utilisation. Besides measuring how 
different countries increased their ICUs as a response to COVID-19, 
they compared how long patients stayed in the ICU (24). However, the 
length of stay in the ICU can only be compared among countries if the 
mortality rate is the same. Otherwise, the comparison of ICU stations 
would not be meaningful because patients may leave the ICU due to 
death or due to discharge. The stacked probability plots manage to 
depict this idea by showing that the length of stay in the critical ward 
is determined by the occurrence of other states.

The utility of the plots to analyse real-time clinical patterns is 
especially highlighted in Figure 5, where the plots are stratified by 
admittance date. This is particularly clinically informative when new 
variants arise. Throughout the pandemic, various SARS-CoV-2 
variants have emerged. The Delta variant was termed a variant of 
concern after its identification in India in May of 2021. It has increased 
transmissibility and virulence, as seen by elevated death and 

hospitalisation rates (25). However, there is no difference in 
characteristics between the wild-type virus and the Delta variant when 
compared by age and sex (26). In November of 2021, the Omicron 
variant was labelled a variant of concern. Whilst this variant showed 
a reduced severity overall, it led to increased hospitalizations in 
children under the age of 1 year (27). It is crucial to have this 
information in real-time because, based on such knowledge, 
policymakers could implement rules protecting small children and 
their parents, e.g., by allowing home office. Thus, it can be seen how 
multi-state models and stacked probability plots facilitate the 
communication of the disease and its real-time developments to the 
general public. This highlights that in the context of pandemic 
preparedness, it is imperative to collect high-quality hospital data 
continuously and promptly to understand the characteristics of the 
virus and to plan health care provision accordingly.

The strengths of this study are that it uses examples from the first 
pandemic wave to illustrate the extent to which the two forms of bias, 
selection bias, and competing risk bias, impact the results obtained 
from COVID-19 hospital data. Furthermore, the study provides an 
alternative approach that solves the shortfalls of standard methods and 
is therefore ideal for use in survival analysis in settings with more than 
one possible event. The limitation of the study is that it only includes 
data collected during the first pandemic wave. Our research would 
greatly benefit from analysing the clinical course of SARS-CoV-2 
variants, as this would further illustrate the potential to detect 
differences in clinical characteristics using multi-state methods. 
However, whilst other data sets may exist of the time when variants 
were circulating, they could only be used if they are comparable to the 

FIGURE 5

Stacked probability plots stratified by admittance date and initial state.
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Israeli data set of the first wave in terms of the characteristics of the 
population and the hospital service. Otherwise, false conclusions 
would be drawn. As such comparable data was unavailable, further 
variants were not included in the analysis.

5 Future works and conclusion

With enhanced data collection across Europe, future works could 
aim to demonstrate the effectiveness of multi-state models in detecting 
differences in clinical courses over longer periods. In addition, in 
future disease outbreak scenarios, e.g., influenza outbreaks, additional 
covariates can be incorporated into the analysis. These variables could 
aim at capturing differences in the risk profiles between the patients. 
Examples include demographic factors and health access disparities. 
Upon integration of such factors, the prediction of hospital capacity 
utilisation will become more accurate and thus, more personalised 
care can be provided to the patients.

In summary, this paper shows that in the context of pandemic 
preparedness, it is crucial to collect the right type of data to carry out 
appropriate, unbiased analyses, and thus aid efforts to overcome 
further pandemic waves. Hence, by showing the simple but detailed 
analyses that can be carried out with routine hospital registries as 
collected in Israel, this paper aims to improve the statistical analysis 
techniques used, thus obtaining unbiased information on the disease 
of interest in a timely manner so that public health measures can 
be implemented accordingly.
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