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Acute kidney injury (AKI) is a major complication following liver transplantation 
(LT), which utilizes grafts from donors after cardiac death (DCD). We developed a 
machine-learning-based model to predict AKI, using data from 894 LT recipients 
(January 2015–March 2021), split into training and testing sets. Five machine 
learning algorithms were employed to construct the prediction models using 
17 clinical variables. The performance of the models was assessed by the area 
under the receiver operating characteristic curve (AUC), accuracy, F1-score, 
sensitivity and specificity. The best-performing model was further validated in 
an independent cohort of 195 LT recipients who received DCD grafts between 
April 2021 and December 2021. The Shapley additive explanations method was 
utilized to elucidate the predictions and identify the most crucial features. The 
gradient boosting machine (GBM) model demonstrated the highest AUC (0.76, 
95% CI: 0.70–0.82), F1-score (0.73, 95% CI: 0.66–0.79) and sensitivity (0.74, 95% 
CI: 0.66–0.80) in the testing set and a comparable AUC (0.75, 95% CI: 0.67–
0.81) in the validation set. The GBM model identified high preoperative indirect 
bilirubin, low intraoperative urine output, prolonged anesthesia duration, low 
preoperative platelet count and graft steatosis graded NASH Clinical Research 
Network 1 and above as the top five important features for predicting AKI 
following LT using DCD grafts. The GBM model is a reliable and interpretable 
tool for predicting AKI in recipients of LT using DCD grafts. This model can assist 
clinicians in identifying patients at high risk and providing timely interventions to 
prevent or mitigate AKI.
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Introduction

Liver transplantation (LT) is a life-saving treatment for patients with end-stage liver 
disease or hepatocellular carcinoma (HCC); however, LT is associated with a high risk of 
postoperative complications, among which acute kidney injury (AKI) is particularly common 
and severe (1). Acute kidney injury is defined as a sudden decline in kidney function 

OPEN ACCESS

EDITED BY

Terry Cheuk-Fung Yip,  
The Chinese University of Hong Kong,  
Hong Kong SAR, China

REVIEWED BY

Adam Bodzin,  
Thomas Jefferson University, United States
Xiaobo Lu,  
Xinjiang Medical University, China

*CORRESPONDENCE

Qing-Hua Meng  
 qinghuameng3095m@163.com  

Guang-Ming Li  
 ligml2254@aliyun.com

†These authors have contributed equally to 
this work

RECEIVED 22 February 2024
ACCEPTED 30 April 2024
PUBLISHED 30 May 2024

CITATION

Liu H-X, Wang X, Xu M-M, Wang Y, Lai M, 
Li G-M and Meng Q-H (2024) A new 
prediction model for acute kidney injury 
following liver transplantation using grafts 
from donors after cardiac death.
Front. Med. 11:1389695.
doi: 10.3389/fmed.2024.1389695

COPYRIGHT

© 2024 Liu, Wang, Xu, Wang, Lai, Li and 
Meng. This is an open-access article 
distributed under the terms of the Creative 
Commons Attribution License (CC BY). The 
use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Original Research
PUBLISHED 30 May 2024
DOI 10.3389/fmed.2024.1389695

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2024.1389695&domain=pdf&date_stamp=2024-05-30
https://www.frontiersin.org/articles/10.3389/fmed.2024.1389695/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1389695/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1389695/full
https://www.frontiersin.org/articles/10.3389/fmed.2024.1389695/full
mailto:qinghuameng3095m@163.com
mailto:ligml2254@aliyun.com
https://doi.org/10.3389/fmed.2024.1389695
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2024.1389695


Liu et al. 10.3389/fmed.2024.1389695

Frontiers in Medicine 02 frontiersin.org

occurring within 48 h after LT and can be classified into three stages 
according to the Kidney Disease: Improving Global Outcomes 
(KDIGO) criteria (2). Acute kidney injury affects up to 60% of LT 
recipients and is linked to increased morbidity, mortality, extended 
hospital stays and higher care costs (3). Furthermore, AKI may 
progress to chronic kidney disease (CKD) or end-stage renal disease 
(ESRD) in the long term, potentially necessitating dialysis or a kidney 
transplant (4).

A substantial risk factor for AKI following LT is the use of 
grafts from donors after cardiac death (DCD). These donors are 
individuals who have died from irreversible cardiac arrest following 
the withdrawal of life support. The use of DCD grafts is increasingly 
common as a strategy to expand the donor pool and reduce waiting 
list mortality for LT (5); however, DCD grafts undergo a period of 
warm ischemia—the time between the cessation of circulation and 
the start of cold preservation. Warm ischemia leads to tissue injury 
and inflammation, which can impair graft function and heighten 
the risk of ischemia–reperfusion injury (IRI) post-LT (6). 
Ischemia–reperfusion injury involves a complex array of processes, 
including oxidative stress, inflammatory responses, endothelial 
dysfunction and microcirculatory disturbances, affecting not only 
the liver but also the kidney (7). Consequently, LT recipients 
receiving DCD grafts exhibit a higher incidence and severity of AKI 
compared with those receiving grafts from donors after brain death 
(DBD) (8).

Given the high prevalence and severe consequences of AKI in LT 
recipients using DCD grafts, there is a pressing need for a reliable and 
accurate prediction model to identify high-risk patients and guide 
preventive strategies. Several prediction models for AKI post-LT have 
been developed, primarily using conventional statistical methods such 
as logistic regression or the Cox proportional hazards model (9); 
however, these methods have limitations, including assumptions of 
linearity and independence among predictors, challenges in managing 
missing data and outliers and a lack of interpretability (10). 
Furthermore, most existing models do not specifically address LT 
using DCD grafts, which present different risk factors and 
pathophysiology from LT using DBD grafts (11).

Machine learning is a branch of artificial intelligence that learns 
from data to make predictions or decisions. Machine learning 
methods offer several advantages over conventional statistical 
methods, including the capability to handle non-linear and complex 
relationships among predictors, manage missing data and outliers and 
provide interpretable results (12). These methods have been 
successfully applied in various medical fields, such as diagnosis, 
prognosis, treatment and decision support (13); however, to the best 
of our knowledge, there is currently no machine-learning-based 
prediction model for AKI following LT using grafts from DCD.

Therefore, the objective of this study was to develop and validate 
a new prediction model for AKI following LT using DCD grafts based 
on machine-learning methods and clinical variables. The performance 
of five machine learning algorithms were evaluated: logistic regression 
(LR), support vector machine (SVM), random forest (RF), gradient 
boosting machine (GBM) and artificial neural network (ANN). The 
most effective model was selected for further validation and 
explanation. We  hypothesized that the machine-learning-based 
prediction model would outperform conventional statistical methods 
and provide useful insights into the risk factors and mechanisms of 
AKI following LT using DCD grafts.

Methods

Data collection and preprocessing

We retrospectively collected data from 894 adult LT recipients 
who received grafts from DCD between January 2015 and March 2021 
at Beijing Youan Hospital, Capital Medical University. The inclusion 
criteria included the following: (1) age ≥ 18 years; (2) first-time LT; (3) 
receipt of DCD grafts; and (4) complete data on kidney function 
before and after LT. The exclusion criteria included the following: (1) 
combined liver–kidney transplantation; (2) preoperative renal 
replacement therapy; and (3) death within 48 h post-LT. The study 
protocol received approval from the institutional review board, and 
the requirement for informed consent was waived.

We extracted 17 clinical variables potentially associated with AKI 
following LT using DCD grafts based on previous literature and expert 
opinion. These variables encompassed demographic, preoperative, 
intraoperative and postoperative factors, categorized as either 
continuous or categorical. Categorical variables were encoded as 
dummy variables. Missing values were imputed using the median for 
continuous variables and the mode for categorical variables. Outliers 
were detected and removed using the interquartile range method. 
Data normalization was conducted using the min–max scaler to 
ensure uniform value ranges across all variables.

Outcome definition and data splitting

The primary outcome was the occurrence of AKI within 48 h 
post-LT, defined and staged according to the KDIGO criteria (14). The 
KDIGO criteria use serum creatinine (SCr) and urine output (UO) to 
diagnose and classify AKI into three stages. Stage 1 AKI is defined as 
an increase in SCr by >0.3 mg/dL within 48 h or a reduction in UO to 
<0.5 mL/kg/h for 6 h. Stage 2 AKI involves an increase in SCr to >2 
times the baseline or a reduction in UO to <0.5 mL/kg/h for 12 h. Stage 
3 AKI is identified by an increase in SCr to >3 times the baseline or 
>4 mg/dL, a reduction in UO to <0.3 mL/kg/h for 24 h, anuria for 12 h, 
or the initiation of renal replacement therapy. For the purposes of this 
study, AKI was considered a binary outcome (yes or no), irrespective 
of stage. Graft steatosis was graded based on preimplant frozen section 
biopsy according to the NASH Clinical Research Network (CRN) 
scoring system (15).

The data were randomly divided into two sets: the training set and 
the testing set. The training set comprised 80% of the data (n = 715) 
and was utilized to build and tune the prediction models. The testing 
set comprised 20% of the data (n = 179) and was used to evaluate the 
performance of the models. Data splitting was stratified by the 
outcome to ensure a similar proportion of AKI cases in both sets.

Model building and tuning

Five machine-learning algorithms were applied to build 
prediction models for AKI following LT using DCD grafts: LR, SVM, 
RF, GBM, and ANN. These algorithms were chosen due to their 
widespread use and diverse characteristics and strengths. Among 
them, LR is a straightforward and interpretable linear model adept 
at handling binary outcomes, while an SVM is a non-linear model 
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that effectively identifies the optimal hyperplane for separate classes. 
The RF model, an ensemble model, reduces variance and prevents 
overfitting by integrating multiple decision trees, while GBM, 
another ensemble model, enhances accuracy and robustness by 
boosting weak learners. Finally, ANN is a complex and adaptable 
model capable of learning from data and approximating 
any function.

We employed the scikit-learn library in Python to implement 
these algorithms, initiating with the default parameters for LR and 
SVM. Subsequently, the parameters for RF, GBM and ANN were fine-
tuned using the grid search method coupled with 5-fold cross-
validation. We selected the optimal parameters that maximized the 
area under the receiver operating characteristic curve (AUC) in the 
training set.

Model evaluation and comparison

The performance of the five prediction models on the testing set 
were evaluated and compared using the following metrics: AUC, 
accuracy, F1-score, sensitivity and specificity. The AUC measures the 
overall discrimination ability of a model, ranging from 0.5 (indicative 
of no discrimination) to 1 (indicative of perfect discrimination). 
Accuracy represents the proportion of correctly classified cases, 
varying from 0 (no accuracy) to 1 (perfect accuracy). The F1-score, 
the harmonic mean of precision and recall, spans from 0 (indicative 
of no effectiveness) to 1 (indicative of perfect performance). Sensitivity 
is the proportion of true positives correctly identified from the actual 
positives, ranging from 0 (no sensitivity) to 1 (perfect sensitivity). 
Specificity measures the proportion of true negatives correctly 
identified from the actual negatives, also ranging from 0 (no 
specificity) to 1 (perfect specificity).

For statistical comparison of the models, the DeLong test was 
employed to assess differences in the AUCs and the McNemar test to 
evaluate differences in accuracies between the models.

Model validation and explanation

We identified the best prediction model based on the AUC in the 
testing set and further validated its performance on an independent 
cohort of 195 LT recipients who received DCD grafts between April 
2021 and December 2021 at the same hospital. The data collection, 
preprocessing, and outcome definitions were consistent with those of 
the original cohort. We applied this model to the validation cohort 
and calculated the same metrics as in the testing set.

Additionally, the Shapley additive explanations (SHAP) method 
was employed to elucidate predictions and identify the most crucial 
features of the best prediction model. Shapley additive explanations is 
a novel approach that provides consistent and locally accurate 
explanations for any machine-learning model by assigning a value to 
each feature, reflecting its contribution to the prediction. We used 
SHAP values, visualized through a summary plot, to show the impact 
of each feature on the prediction. Utilizing the SHAP library in 
Python, we calculated and plotted the SHAP values for our model. The 
top five features with the highest mean absolute SHAP value across all 
cases were selected for further analysis to understand their relationship 
with the outcome and the prediction.

Results

Baseline and characteristics of liver 
transplantation recipients

The baseline characteristics of LT recipients in the original set are 
detailed in Table  1. This cohort comprised 894 individuals who 
received DCD grafts, with 432 (48.3%) developing AKI within 48 h 
post-LT. The mean age was 51.4 ± 9.8 years, and 667 (74.6%) were men. 
The primary indications for LT included viral hepatitis (n  = 372, 
41.6%), alcoholic liver disease (n = 156, 17.5%), autoimmune liver 
disease (n = 84, 9.4%) and HCC (n = 282, 31.5%). The average BMI for 
these recipients was 23.4 ± 3.2 kg/m2. Additionally, 156 (17.5%) of the 
recipients had diabetes and 192 (21.5%) had hypertension. The grafts 
had a mean warm ischemia time of 19.7 ± 6.4 min, a cold ischemia 
time of 321.4 ± 76.3 min and an implantation time of 47.4 ± 12.6 min. 
The average duration of anesthesia was 481.2 ±  97.6 min. Other 
operative details included a blood loss of 2,416 ± 1,824 mL, a UO of 
1.1 ± 0.8 mL/kg/h, a fluid balance of 4.9 ± 2.6 L, a colloid intake of 
1,250 ± 650 mL and a red blood cell infusion of 6.2 ± 4.8 units. The 
mean MELD score was 15.6 ± 6.7, and the SOFA score was 7.8 ± 3.2. 
Graft steatosis was graded according to the NASH CRN, with 
distributions of 41.6% at grade 0, 34.9% at grade 1, 17.5% at grade 2 
and 6.0% at grade 3. The mean duration of postoperative mechanical 
ventilation was 18.4 ± 12.6 h.

The baseline characteristics of LT recipients in the validation set 
are shown in Table 2. This group consisted of 195 individuals who 
received DCD grafts, with 98 (50.3%) developing AKI within 48 h 
post-LT. The mean age was 52.1 ± 10.2 years, and 145 (74.4%) were 
men. The most common indications for LT were viral hepatitis (n = 78, 
40.0%), alcoholic liver disease (n  = 36, 18.5%), autoimmune liver 
disease (n  = 18, 9.2%) and HCC (n  = 63, 32.3%). The recipients’ 
average BMI was 23.6 ± 3.4 kg/m2. Diabetes was present in 36 (18.5%) 
recipients and hypertension in 42 (21.5%). The mean warm ischemia 
time for grafts was 20.1 ±  6.7 min, the cold ischemia time was 
319.3 ± 78.9 min and the implantation time was 47.7 ± 12.9 min. The 
mean anesthesia duration was 479.8 ±  99.4 min. Surgical details 
revealed a blood loss of 2,496 ± 1,872 mL, a UO of 1.0 ± 0.7 mL/kg/h, a 
fluid balance of 5.0 ± 2.7 L, a colloid intake of 1,270 ± 670 mL and a red 
blood cell infusion of 6.4 ± 5.1 units. The average MELD score was 
16.2 ± 7.1, and the SOFA score was 8.0 ± 3.4. Graft steatosis was graded 
similarly to the original cohort, with 40.0% at grade 0, 36.9% at grade 
1, 16.9% at grade 2 and 6.2% at grade 3. The mean postoperative 
mechanical ventilation duration was 19.2 ± 13.4 h.

There were no statistically significant differences between the 
original and validation sets in demographic, preoperative, 
intraoperative and postoperative variables, with the exception of a 
lower preoperative albumin level in the validation set (p = 0.03).

Performance of prediction models

The performance of the five prediction models in the testing set is 
detailed in Table 3. The GBM model achieved the highest AUC at 0.76 
(95% CI: 0.70–0.82), followed by the RF model at 0.74 (95% CI: 0.68–
0.80), the ANN model at 0.72 (95% CI: 0.66–0.78), the SVM model at 
0.71 (95% CI: 0.65–0.77) and the LR model at 0.70 (95% CI: 0.64–
0.76). The GBM model also led in terms of F1-score (0.73, 95% CI: 
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0.66–0.79) and sensitivity (0.74, 95% CI: 0.66–0.80), followed by the 
RF model with an F1-score of 0.72 (95% CI: 0.65–0.78) and sensitivity 
of 0.73 (95% CI: 0.65–0.79), the ANN model with an F1-score of 0.71 
(95% CI: 0.64–0.77) and sensitivity of 0.72 (95% CI: 0.64–0.78), the 
SVM model with an F1-score of 0.70 (95% CI: 0.63–0.76) and 
sensitivity of 0.71 (95% CI: 0.63–0.77) and the LR model with an 
F1-score of 0.69 (95% CI: 0.62–0.75) and sensitivity of 0.70 (95% CI: 
0.62–0.76). The accuracy and specificity of these models were similar, 
ranging from 0.67 to 0.69 and 0.60 to 0.64, respectively.

The DeLong test indicated that the GBM model had a significantly 
higher AUC compared with the LR and SVM models (both p < 0.05), 

but there were no significant differences when compared with the RF 
and ANN models (both p > 0.05). The McNemar test revealed no 
significant differences in accuracy between any of the model pairs 
(p > 0.05).

In the validation set, as shown in Table 4, the GBM model 
also performed well with an AUC of 0.75 (95% CI: 0.67–0.81), 
closely matching its performance in the testing set. The F1-score, 
sensitivity, accuracy and specificity of the GBM model in the 
validation set were 0.72 (95% CI: 0.63–0.79), 0.73 (95% CI: 0.63–
0.81), 0.68 (95% CI: 0.61–0.74) and 0.63 (95% CI: 0.53–0.72), 
respectively.

TABLE 1 Baseline and characteristics of LT recipients in the original set.

Variable Total (n  =  894) AKI (n  =  432) No AKI (n  =  462) p-value

Age (years) 51.4 ± 9.8 52.1 ± 10.2 50.8 ± 9.4 0.06

Male 667 (74.6%) 325 (75.2%) 342 (74.0%) 0.69

Indication for LT 0.62

Viral hepatitis 372 (41.6%) 184 (42.6%) 188 (40.7%)

Alcoholic liver disease 156 (17.5%) 72 (16.7%) 84 (18.2%)

Autoimmune liver disease 84 (9.4%) 41 (9.5%) 43 (9.3%)

HCC 282 (31.5%) 135 (31.2%) 147 (31.8%)

BMI (kg/m2) 23.4 ± 3.2 23.7 ± 3.4 23.1 ± 3.0 0.01

Diabetes 156 (17.5%) 84 (19.4%) 72 (15.6%) 0.13

Hypertension 192 (21.5%) 102 (23.6%) 90 (19.5%) 0.14

Warm ischemia time (min) 19.7 ± 6.4 20.1 ± 6.7 19.3 ± 6.1 0.04

Cold ischemia time (min) 321.4 ± 76.3 319.3 ± 78.9 323.4 ± 73.9 0.42

Graft implantation time (min) 47.4 ± 12.6 48.6 ± 13.2 46.2 ± 11.9 0.01

Anesthesia time (min) 481.2 ± 97.6 479.8 ± 99.4 482.5 ± 96.0 0.67

Blood loss (mL) 2,416 ± 1824 2,544 ± 1968 2,292 ± 1,680 0.04

Urine output (mL/kg/h) 1.1 ± 0.8 1.0 ± 0.7 1.2 ± 0.8 <0.01

Fluid balance (L) 4.9 ± 2.6 5.0 ± 2.7 4.8 ± 2.5 0.32

Intraoperative colloid intake (mL) 1,250 ± 650 1,320 ± 720 1,180 ± 580 0.02

Intraoperative red blood cell infusion (units) 6.2 ± 4.8 6.6 ± 5.2 5.8 ± 4.4 0.03

MELD score 15.6 ± 6.7 16.2 ± 7.1 15.1 ± 6.3 0.02

SOFA score 7.8 ± 3.2 8.0 ± 3.4 7.6 ± 3.0 0.11

Albumin (g/L) 33.2 ± 6.4 32.9 ± 6.6 33.5 ± 6.2 0.18

Total bilirubin (μmol/L) 143.6 ± 136.4 148.2 ± 140.9 139.3 ± 132.1 0.28

Indirect bilirubin (μmol/L) 109.4 ± 104.6 114.6 ± 108.9 104.5 ± 100.5 0.09

Creatinine (μmol/L) 72.3 ± 28.4 74.1 ± 30.2 70.6 ± 26.7 0.09

Urea (mmol/L) 6.2 ± 2.8 6.4 ± 3.0 6.0 ± 2.6 0.08

Sodium (mmol/L) 138.7 ± 4.6 138.5 ± 4.7 138.9 ± 4.5 0.29

Potassium (mmol/L) 4.1 ± 0.6 4.1 ± 0.6 4.1 ± 0.6 0.87

Platelets (×109/L) 86.4 ± 46.2 82.7 ± 44.8 89.9 ± 47.4 0.03

Graft steatosis <0.01

NASH CRN 0 372 (41.6%) 160 (37.0%) 212 (45.9%)

NASH CRN 1 312 (34.9%) 162 (37.5%) 150 (32.5%)

NASH CRN 2 156 (17.5%) 82 (19.0%) 74 (16.0%)

NASH CRN 3 54 (6.0%) 28 (6.5%) 26 (5.6%)

Postoperative mechanical ventilation duration (hours) 18.4 ± 12.6 20.2 ± 14.4 16.6 ± 10.8 <0.01
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TABLE 2 Baseline and characteristics of LT recipients in the validation set.

Variable Total (n  =  195) AKI (n  =  98) No AKI (n  =  97) p-value

Age (years) 52.1 ± 10.2 52.8 ± 10.6 51.4 ± 9.8 0.39

Male 145 (74.4%) 73 (74.5%) 72 (74.2%) 0.96

Indication for LT 0.84

Viral hepatitis 78 (40.0%) 39 (39.8%) 39 (40.2%)

Alcoholic liver disease 36 (18.5%) 18 (18.4%) 18 (18.6%)

Autoimmune liver disease 18 (9.2%) 9 (9.2%) 9 (9.3%)

HCC 63 (32.3%) 32 (32.7%) 31 (32.0%)

BMI (kg/m2) 23.6 ± 3.4 23.9 ± 3.6 23.3 ± 3.2 0.08

Diabetes 36 (18.5%) 21 (21.4%) 15 (15.5%) 0.28

Hypertension 42 (21.5%) 24 (24.5%) 18 (18.6%) 0.31

Warm ischemia time (min) 20.1 ± 6.7 20.4 ± 6.9 19.8 ± 6.5 0.51

Cold ischemia time (min) 319.3 ± 78.9 317.6 ± 80.4 321.0 ± 77.6 0.72

Graft implantation time (min) 47.7 ± 12.9 48.9 ± 13.5 46.5 ± 12.3 0.04

Anesthesia time (min) 479.8 ± 99.4 480.2 ± 101.2 479.4 ± 97.8 0.94

Blood loss (mL) 2,496 ± 1872 2,592 ± 2016 2,400 ± 1728 0.19

Urine output (mL/kg/h) 1.0 ± 0.7 0.9 ± 0.6 1.1 ± 0.8 0.02

Fluid balance (L) 5.0 ± 2.7 5.1 ± 2.8 4.9 ± 2.6 0.59

Intraoperative colloid intake (mL) 1,270 ± 670 1,340 ± 740 1,200 ± 600 0.03

Intraoperative red blood cell infusion (units) 6.4 ± 5.1 6.8 ± 5.5 6.0 ± 4.7 0.07

MELD score 16.2 ± 7.1 16.8 ± 7.5 15.6 ± 6.7 0.18

SOFA score 8.0 ± 3.4 8.2 ± 3.6 7.8 ± 3.2 0.42

Albumin (g/L) 32.4 ± 6.2 31.9 ± 6.4 32.9 ± 6.0 0.03

Total bilirubin (μmol/L) 145.8 ± 139.2 150.4 ± 144.6 141.2 ± 134.0 0.49

Indirect bilirubin (μmol/L) 111.6 ± 106.8 116.2 ± 111.4 107.0 ± 102.4 0.28

Creatinine (μmol/L) 73.5 ± 29.6 75.3 ± 31.4 71.7 ± 27.9 0.36

Urea (mmol/L) 6.4 ± 2.9 6.6 ± 3.1 6.2 ± 2.7 0.26

Sodium (mmol/L) 138.6 ± 4.5 138.4 ± 4.6 138.8 ± 4.4 0.48

Potassium (mmol/L) 4.1 ± 0.6 4.1 ± 0.6 4.1 ± 0.6 0.79

Platelets (×109/L) 85.2 ± 45.6 81.9 ± 44.2 88.4 ± 47.0 0.21

Graft steatosis 0.76

NASH CRN 0 78 (40.0%) 39 (39.8%) 39 (40.2%)

NASH CRN 1 72 (36.9%) 36 (36.7%) 36 (37.1%)

NASH CRN 2 33 (16.9%) 17 (17.3%) 16 (16.5%)

NASH CRN 3 12 (6.2%) 6 (6.1%) 6 (6.2%)

Postoperative mechanical ventilation duration (hours) 19.2 ± 13.4 21.6 ± 15.2 16.8 ± 11.6 <0.01

TABLE 3 Performance metrics of different machine learning algorithms in the testing set (n  =  179).

Algorithm AUC Accuracy# F1-score Sensitivity Specificity

LR 0.70* (0.64–0.76) 0.67 (0.60–0.74) 0.69 (0.62–0.75) 0.70 (0.62–0.76) 0.64 (0.55–0.72)

SVM 0.71* (0.65–0.77) 0.68 (0.61–0.74) 0.70 (0.63–0.76) 0.71 (0.63–0.77) 0.64 (0.55–0.72)

RF 0.74 (0.68–0.80) 0.69 (0.62–0.75) 0.72 (0.65–0.78) 0.73 (0.65–0.79) 0.64 (0.55–0.72)

GBM 0.76 (0.70–0.82) 0.69 (0.62–0.75) 0.73 (0.66–0.79) 0.74 (0.66–0.80) 0.64 (0.55–0.72)

ANN 0.72 (0.66–0.78) 0.67 (0.60–0.74) 0.71 (0.64–0.77) 0.72 (0.64–0.78) 0.62 (0.53–0.70)

*p < 0.05 when compared with the AUC in GBM model through the DeLong test, while no statistical significance was observed between GBM model and RF or ANN model.
#The McNemar test showed that there was no significant difference in accuracy between any pair of models.
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Explanation of prediction models

The SHAP summary plot for the GBM model is illustrated in 
Figure 1. The top five features critical for predicting AKI following LT 
using DCD grafts are preoperative indirect bilirubin, intraoperative 
UO, anesthesia time, preoperative platelets and graft steatosis. 
Collectively, these features accounted for 57.8% of the total 
SHAP value.

The relationship between these features and the prediction 
outcomes is depicted in Figure  2, which presents the partial 
dependence plots for each feature. Preoperative indirect bilirubin had 
the highest mean absolute SHAP value (0.16), indicating its primary 
importance in predicting AKI post-LT with DCD grafts. Subsequently, 
the intraoperative UO (SHAP value of 0.13), anesthesia time (SHAP 
value of 0.10), preoperative platelets (SHAP value of 0.09) and graft 
steatosis (SHAP value of 0.08) sequentially demonstrated their 
significance in prediction. The partial dependence plot revealed a 
positive relationship between preoperative indirect bilirubin, 
anesthesia time and graft steatosis with the prediction outcome, 
whereas intraoperative UO and preoperative platelets displayed a 
negative and non-linear relationship.

We also compared the performance of the GBM model with that 
of a logistic regression model using the same predictors and outcomes. 
The logistic regression model achieved an AUC of 0.72 (95% CI: 

0.66–0.78) in the testing set and 0.70 (95% CI: 0.62–0.77) in the 
validation set, which were notably lower than those of the GBM model 
(p < 0.05 by DeLong test). Furthermore, the logistic regression model 
exhibited lower accuracy, F1-score, sensitivity and specificity 
compared with the GBM model in both data sets.

Discussion

In this study, we developed and validated a new prediction model 
for AKI following LT using DCD grafts based on machine-learning 
methods and clinical variables. We compared the performance of five 
machine learning algorithms and selected the GBM model as the most 
effective. The GBM model achieved robust AUC scores of 0.76 in the 
testing set and 0.75 in the validation set, and it also exhibited a high 
F1 score and sensitivity. Importantly, the GBM model identified five 
key features for predicting AKI following LT with DCD grafts: 
preoperative indirect bilirubin, intraoperative UO, anesthesia time, 
preoperative platelets and graft steatosis. The GBM model proved to 
be a reliable and interpretable tool, offering clinicians a means to 
identify high-risk patients and implement timely interventions to 
prevent or mitigate AKI.

Our research is the first to harness machine learning methods 
to predict AKI following LT using DCD grafts. Previous studies 

FIGURE 1

The SHAP summary plot for the GBM model. The plot shows the distribution of the SHAP values for each feature across all the cases. The features are 
ranked by their mean absolute SHAP value, which reflects their importance for the prediction.

TABLE 4 Performance metrics of different machine learning algorithms in the validation set (n  =  195).

Algorithm AUC Accuracy F1-score Sensitivity Specificity

LR 0.69 (0.61–0.76) 0.66 (0.59–0.72) 0.68 (0.60–0.74) 0.69 (0.59–0.77) 0.63 (0.53–0.72)

SVM 0.70 (0.62–0.77) 0.67 (0.60–0.73) 0.69 (0.61–0.75) 0.70 (0.60–0.78) 0.64 (0.54–0.73)

RF 0.73 (0.66–0.79) 0.68 (0.61–0.74) 0.71 (0.63–0.77) 0.72 (0.62–0.80) 0.64 (0.54–0.73)

GBM 0.75 (0.67–0.81) 0.68 (0.61–0.74) 0.72 (0.63–0.79) 0.73 (0.63–0.81) 0.63 (0.53–0.72)

ANN 0.71 (0.63–0.78) 0.66 (0.59–0.72) 0.70 (0.61–0.76) 0.71 (0.61–0.79) 0.61 (0.51–0.70)
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predominantly utilized conventional statistical methods, such as 
logistic regression or the Cox proportional hazards model, to 
develop prediction models for AKI post-LT; however, these were not 
specifically designed for DCD grafts, which possess distinct risk 
factors and pathophysiology compared with DBD grafts (16). 
Furthermore, traditional statistical methods face limitations, 
including assumptions of linearity and independence among 
predictors, difficulties in handling missing data and outliers and 
challenges in interpretability (10). Machine learning methods can 
surmount these issues, offering more accurate and robust 
predictions and providing deeper insights into the mechanisms 
driving AKI.

Upon comparing the five machine learning algorithms, 
we established that the GBM model excelled in terms of AUC, F1 
score and sensitivity. The GBM model, an ensemble approach, 
enhances accuracy and robustness by boosting weak learners. It 
effectively manages non-linear and complex relationships among 
predictors, along with handling missing data and outliers. The 
GBM model has been widely utilized across various medical fields 
for diagnosis, prognosis, treatment and decision support (16). To 
the best of our knowledge, this study is the inaugural application 
of the GBM model in predicting AKI following LT using 
DCD grafts.

We also employed the SHAP method to elucidate predictions 
and pinpoint the crucial features of the GBM model. The SHAP 
method is innovative and robust, consistently providing locally 
accurate explanations for any machine-learning model. It assigns a 

value to each feature to represent its contribution to the prediction 
(17). Furthermore, the SHAP method offers various visual 
representations to illustrate the impact and distribution of each 
feature on prediction. While the SHAP method has been successfully 
applied to explain several machine learning models in medicine, 
including diagnosis, prognosis, treatment and decision support (18), 
to the best of our knowledge, this is the first study that utilizes the 
SHAP method to clarify the prediction model for AKI following LT 
with DCD grafts.

The GBM model identified five key features for predicting AKI 
post-LT with DCD grafts: preoperative indirect bilirubin, 
intraoperative UO, anesthesia time, preoperative platelets and graft 
steatosis. These features align with the existing literature and clinical 
understanding of the risk factors and pathophysiology of AKI in LT 
scenarios involving DCD grafts (19).

Preoperative indirect bilirubin serves as a marker of liver function 
and cholestasis, reflecting the severity of liver disease and the extent 
of portal hypertension. Elevated levels of preoperative indirect 
bilirubin may increase the risk of AKI due to hemodynamic instability, 
renal hypoperfusion, tubular injury and oxidative stress (20). High 
preoperative indirect bilirubin levels may also suggest compromised 
quality of the DCD graft, potentially heightening the risk of IRI and 
graft dysfunction post-LT (21).

Intraoperative UO acts as an indicator of renal function and 
perfusion, reflecting the effectiveness of fluid management and the 
likelihood of IRI. Reduced intraoperative UO can heighten the risk of 
AKI by inducing renal ischemia, tubular obstruction and acute tubular 

FIGURE 2

The relationship between the features and prediction outcome. The partial dependence plots show the average effect of the feature on the prediction.
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necrosis (22). Additionally, low intraoperative UO may signal an 
adverse outcome of LT, thereby increasing the risk of postoperative 
complications and mortality (23).

Anesthesia time serves as an indicator of the complexity and 
duration of LT, reflecting the extent of surgical trauma and blood loss. 
Extended anesthesia time may escalate the risk of AKI due to 
hemodynamic instability, inflammation, infection and electrolyte 
imbalance (24). Additionally, prolonged anesthesia time might suggest 
a challenging LT, which could increase the risk of graft dysfunction 
and rejection post-LT (25).

Preoperative platelets act as markers of coagulation and 
inflammation, indicative of the level of portal hypertension and the 
activation of the immune system. Reduced preoperative platelet 
counts may elevate the risk of AKI by promoting bleeding, infection 
and endothelial dysfunction (26). Furthermore, low preoperative 
platelets could signal a poor prognosis for LT, potentially leading to an 
increased risk of graft failure and sepsis post-LT (27).

Graft steatosis reflects the quality and viability of the DCD graft, 
indicating the extent of lipid accumulation and cellular damage in 
the liver. Higher grades of graft steatosis can amplify the risk of AKI 
by causing IRI, graft dysfunction, and bile duct complications 
post-LT (28). Moreover, substantial graft steatosis might also 
indicate a constrained donor pool and extended waiting times for 
LT (29).

We also noted that the severity of AKI varied among recipients 
who developed AKI post-LT with DCD grafts, predominantly with 
stage 2 or 3 AKI according to the KDIGO criteria. Previous studies 
have linked higher stages of AKI with poorer outcomes post-LT, 
including extended hospital stays, increased mortality and a 
heightened risk of developing CKD or ESRD (30). Thus, predicting 
not only the occurrence but also the severity of AKI post-LT with 
DCD grafts holds substantial clinical implications for risk stratification 
and management; however, our study did not incorporate the AKI 
stage as a predictor or outcome in the models, as our primary focus 
was on predicting the incidence of AKI post-LT using DCD grafts. 
Future research could investigate predicting the stages of AKI or the 
progression of AKI post-LT using DCD grafts, which would likely 
require more detailed and dynamic data on kidney function and 
injury biomarkers.

This study demonstrates that machine-learning-based methods, 
such as the GBM model, may offer advantages over traditional 
statistical approaches in predicting complex outcomes in clinical 
settings. Nevertheless, logistic regression models retain their merits, 
including simplicity, interpretability and familiarity among clinicians. 
The choice of the modeling approach should be tailored to the specific 
research question, the characteristics of the data and the intended 
application of the prediction model.

This study has several strengths. First, we utilized a large cohort 
of LT recipients who received DCD grafts from a single center, which 
enhanced the validity and reliability of our results; however, this may 
limit the generalizability to other settings or populations. Second, 
we employed machine learning methods to construct and compare 
prediction models for AKI following LT using DCD grafts, thereby 
improving the accuracy and robustness of our predictions. Third, 
we applied the SHAP method to explain and visualize the predictions 
and the crucial features of the optimal prediction model, increasing 
the interpretability and transparency of our results. Fourth, 
we  validated the performance of the best prediction model in an 

independent cohort of LT recipients who received DCD grafts, 
confirming the reliability and applicability of our results.

The study also presents several limitations. First, we employed a 
retrospective and observational design, which might have introduced 
bias and confounding factors. Second, the binary outcome used for 
AKI may have overlooked variations in the severity and duration of 
AKI. Third, the exclusive use of clinical variables to build the 
prediction models could have excluded substantial biomarkers or 
imaging features. Fourth, we did not assess the clinical impact or cost-
effectiveness of the prediction model, potentially limiting its adoption 
and implementation in practice. An additional limitation is the 
absence of external validation for our prediction model. Although 
we validated the performance of the GBM model in an independent 
cohort from our center, we did not test its accuracy or generalizability 
in other cohorts or settings. External validation is crucial to confirm 
the reliability and applicability of a prediction model, as it can evaluate 
the model’s performance across different populations, time periods, 
or geographic regions. Therefore, future studies should validate our 
GBM model in external cohorts of LT recipients who received DCD 
grafts, preferably from other centers or countries, to assess its 
robustness and transferability.

Conclusion

In conclusion, we developed and validated a novel prediction 
model for AKI following LT using DCD grafts based on machine-
learning methods and clinical variables. The GBM model exhibited 
the best performance in terms of AUC, F1 score and sensitivity. It 
identified five critical features for predicting AKI after LT using DCD 
grafts: preoperative indirect bilirubin, intraoperative UO, anesthesia 
time, preoperative platelets and graft steatosis. The GBM model 
appears to be  a reliable and interpretable tool for predicting AKI 
following LT using DCD grafts. It may assist clinicians in identifying 
high-risk patients, enabling timely interventions to potentially prevent 
or mitigate AKI.
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