
TYPE Brief Research Report

PUBLISHED 23 May 2024

DOI 10.3389/fmed.2024.1388702

OPEN ACCESS

EDITED BY

Kuanquan Wang,

Harbin Institute of Technology, China

REVIEWED BY

Salvatore Annunziata,

Fondazione Policlinico Universitario A.

Gemelli IRCCS, Italy

Rizwan Qureshi,

Hamad Bin Khalifa University, Qatar

*CORRESPONDENCE

Svetlana Bunimovich-Mendrazitsky

Svetlanabu@ariel.ac.il

RECEIVED 20 February 2024

ACCEPTED 13 May 2024

PUBLISHED 23 May 2024

CITATION

Lazebnik T and Bunimovich-Mendrazitsky S

(2024) Predicting lung cancer’s metastats’

locations using bioclinical model.

Front. Med. 11:1388702.

doi: 10.3389/fmed.2024.1388702

COPYRIGHT

© 2024 Lazebnik and

Bunimovich-Mendrazitsky. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Predicting lung cancer’s
metastats’ locations using
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Background: Lung cancer is a global leading cause of cancer-related deaths,

and metastasis profoundly influences treatment outcomes. The limitations of

conventional imaging in detecting small metastases highlight the crucial need

for advanced diagnostic approaches.

Methods: This study developed a bioclinical model using three-dimensional CT

scans to predict the spatial spread of lung cancer metastasis. Utilizing a three-

layer biological model, we identified regions with a high probability of metastasis

colonization and validated the model on real-world data from 10 patients.

Findings: The validated bioclinical model demonstrated a promising 74%

accuracy in predicting metastasis locations, showcasing the potential of

integrating biophysical andmachine learningmodels. These findings underscore

the significance of amore comprehensive approach to lung cancer diagnosis and

treatment.

Interpretation: This study’s integration of biophysical and machine learning

models contributes to advancing lung cancer diagnosis and treatment, providing

nuanced insights for informed decision-making.

KEYWORDS

spatial biology, biophysical model, clinical computer vision, diagnosis support model,

metastasis detection

1 Background

Treating cancer is a critical challenge in modern medicine, as it affects millions of

people worldwide and can have devastating effects on both patient health and quality of

life. Lung cancer, in particular, is one of the most prevalent and deadly forms of cancer

worldwide (1). One of the major challenges in treating lung cancer is the development

of metastases, which are secondary tumors that develop from cells that have spread

from the primary tumor site to other parts of the organ (or even the body) (2–4). The

location of these metastases can greatly affect a patient’s prognosis and the effectiveness of

treatment (5).

In particular, for lung cancer diagnosis, healthcare professionals commonly use

a computed tomography (CT) and Positron Emission Tomography CT (PET-CT) to

diagnose the patient’s clinical condition (6, 7). This non-invasive imaging modality allows

for the simultaneous acquisition of functional and anatomic information, providing

detailed insights into the metabolic activity of the tumor and its relationship to

surrounding tissue. Additionally, this analysis provides the anatomy and structure

of the lung and surrounding tissue, which can be used to determine the size and

location of the tumor. Based on this data, clinicians look for the primary cancer

tumor’s as well as metastasis’ properties to determine the course of treatment (8–10).
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Recently, to partially automate the process of parsing

the required clinical data from CT imagery, researchers have

used computer vision and ML algorithms in general and to

detect lung cancer, in particular (11–14). These algorithms can

(semi-)automatically detect and classify lung nodules, reducing

the dependence on human interpretation and improving the

consistency of diagnoses. In addition, biophysical models gathering

popularity in the clinical domain as these getting better at

predicting clinical outcomes over time (15–19). For instance, Kang

et al. (20) constructs a mathematical model that integrates let-7

and miR-9 expression into a signaling pathway to generate an in

silico model for the process of epithelial-mesenchymal transition.

The authors validate their model using in vitro data collected by

testing the effects of EGFR inhibition on downstreamMYC, miR-9,

and let-7a expression. Hong et al. (21) propose a multicomponent

mathematical model for simulating lung cancer growth as well

as radiotherapy treatment for lung cancer, showing promising

predictive accuracy compared to a relatively small set of in vivo data

points.

Unfortunately, current PET-CT technology lacks the ability to

clearly capture small metastasis, usually less than 2 mm in diameter

due to the mix of cancer and healthy cells together with the

noise occurring during the sampling process (22). Missing small-

size metastasis can lead to choosing the sub-optimal course of

treatment and result in clinically catastrophic results. In this work,

we propose a bio-physical model to predict from PET-CT imagery

the locations of small-size metastasis that the current PET-CT

methods are missing. Data-driven models are increasingly being

utilized in the field of oncology (23, 24). By utilizing patient-specific

biological and clinical data, these models aim to provide a more

comprehensive representation of the disease and its progression,

thereby enabling more targeted and effective treatment strategies

(25, 26). The use of these models in the treatment of lung cancer

holds great promise, and this study aims to evaluate their ability

to predict the location of lung cancer metastases, with the ultimate

goal of improving patient outcomes (27).

The novelty of this work lies in the combination of three types

of bio-physical models associated with cancer settlement, flow in

the bloodstream, and growth inside healthy tissue. We tested the

proposed model on the historical data of 10 lung cancer patients

with metastasis, obtaining a 74% accuracy in the prediction of the

metastasis locations.

The remainder of the paper is organized as follows. Section

2 outlines the proposed bioclinical model, divided into the

biophysical model, initial condition construction from the 3D CT

image, and the metastasis probability heat-map generation process.

Section 3 presents the performance of the proposed model on real-

world clinical data. Finally, section 4 discusses the obtained results

with their clinical applications and proposes possible future work.

2 Methods

The spread dynamics of metastasis originating in the primary

tumor can be associated with three main biological processes: (1)

the flow of cancer cells in the bloodstream; (2) the settlement

of cancer cells in the tissue; and 3) the spatial spread of cancer

polyps (28–30). All these biological processes are spatio-temporal

in nature and therefore influenced by the spatial distributions

of blood vessels, healthy tissue, and the original cancer cells. To

capture these settings, we use a chest PET-CT image, obtaining

a three-dimensional (3D) gray-scale image (I ∈ R
x×y×z) where

x, y, z are the CT image’s dimensions. Using I, and by simulating

the biological and clinical occurring in vivo, one can predict the

locations of cancer’s metastasis, if these exist. A schematic view

of the model’s components and the interactions between them is

summarized in Figure 1. Namely, the algorithm can be divided into

three main components. First, biophysical modeling is responsible

for predicting the ability of cancer cells to colonize different parts of

the lungs over time. Second, the computer vision algorithm accepts

the 3D CT image and produces the parameterized initial condition

construction for the biophysical model. Finally, an algorithm that

utilizes the biophysical model to generate the metastasis heatmap.

2.1 Biophysical modeling

To capture the biological processes occurring in vivo in a

patient’s lungs in the context of lung cancer migration, we define

a model,M. Formally,M is a functionM :G× R
3 × {0, 1}x×y×z ×

R
3 → R

+ such that M(G, p[l], I, τ ) → c, where G ∈ G is the flow

graph, p[l] ∈ R
3 is the location of the primary tumor in the image I,

and I ∈ {0, 1}x×y×z is a 3D binary image with 1 for locations where

cancer cells can settle and 0 otherwise, τ ∈ R
3 is the location of

interest to evaluate in the image I, and c ∈ N is the total number of

cancer cells predicted to settle in location τ .

Formally, the model operates as follows. First, we find the blood

vessel bs ∈ Bs that is closest to the primary tumor location (p[l])

by computing the distance between the primary tumor location

and each blood vessel ∀bs ∈ Bs and taking the minimal value.

Afterward, in the same manner, the blood vessel closest to x̄. These

two locations are marked by S̄ ∈ bSs and T̄ ∈ bTs , respectively.

Afterward, we find all the paths in the flow graph (G) shorter than a

length ν such that starts at bSs and ends at b
T
s using the breadth-first

search (BFS) algorithm (31).

It is known that the cancer cell population’s size is reducing

exponentially over time (32, 33). Hence, if the absolute value

of cancer cells in the cardiovascular is less than a pre-defined

threshold ξ ∈ N, the population size is set to be zero and by that

defines the value of ν and the stop condition for this step in the

model.

Hence, we proposed a prediction algorithm A that gets as

an input the location of a primary tumor τl and its size τs, the

blood vessels, and the connections between them as a graph G =

(B,E), and a binary 3D tensor of healthy tissue cancer metastasis

can colonize and returns a 3D tensor indicating the normalized

probability that metastasis would take occur in each segment of the

lungs. Namely, one can define algorithm A as follows: A :R
x·y·z ×

R
3 × R → R

x·y·z such that A(I, τl, τs) → P(I), where I ∈ R
x·y·z is

the CT image, τl ∈ R
3 is the location of the prime tumor in I, τs ∈ R

is the size of the primary tumor, and P(I) ⊂ R
x·y·z is a distribution

function allocating a probability of metastasis occurrence for each

location in I.

A operates as follows, starting from the primary tumor, the

tumor grows according to themodel proposed byNewton et al. (34)
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FIGURE 1

A schematic view of the model’s components and the interactions between them.

until it reaches a blood vessel. At this point, cancer cells are assumed

to drop from the tumor into the bloodstream at some rate d ∈ R
+.

The cancer cells are floating in the bloodstream according to the

model proposed by Lazebnik et al. (35). In a probabilistic manner,

cancer cells leave the bloodstream toward the tissues around the

blood vessels and try to grow into a metastasis. This colonization

process is governed by the model proposed by Szomolay et al. (36).

2.2 Initial condition construction

To utilize the proposed bio-physical with an inputted PET-

CT 3D image, one first needs to process the image to the

required parameterized format that can be used as an initial

condition for the model. Namely, it is required to extract the

location and size of the primary tumor, the blood vessels in the

geometry, and the locations of healthy tissue the cancer cells

can colonize.

The first task can be achieved with relatively high accuracy

using the method proposed by Miah and Yousuf (37), extracting

its location (τl ∈ R
3) and size τs ∈ R in I.

Next, the blood vessels are defined using a graph G = (B,E)

such that E ⊂ B × B. The blood vessels graph, G, is obtained as

follows. First, a search radius R ∈ R > 0 is initialized manually

by the user to be R0. The blood vessels approximated by a cylinder

geometry from a 3D CT image are obtained using the algorithm

proposed by (38). We denoted the set of blood vessels to be Bwhere

b ∈ B : b : = (c, h, r, oxy, oxz) such that c ∈ R
3 is the blood vessel’s

center of mass, h ∈ R is the height of the blood vessel, r ∈ R is the

average radius of the blood vessel, oxy ∈ [0, 2π] is the orientation

in the xy axis, and oxz ∈ [0,π] is the orientation in the xz axis.

For convenience, we treat B as a list that is sorted according to the

h parameter, which can be obtained in O(|B|log(|B|)) operations

using Quicksort algorithm (39). For each b ∈ B, we compute

sl : = c − h/2[cos(oxy), cos(π/4 − oxy), cos(oxz)] and el : = c +

h/2[cos(oxy), cos(π/4−oxy), cos(oxz)] which stands for the start and

end locations of a cylinder blood vessel, respectively. To contractG,

we first initialize it such that B are the nodes and E is an empty edge

set. Now, interactively, we add edges to E with the following logic:

each blood vessel, b ∈ B is checked if its start, sl, is inside a 3D

sphere defined by the search radius R with either the beginning or

end location of another blood vessel. If so, we add it to the edge set,

E, such that its end is connected to the closest blood vessel b ∈ B

in terms of ||bi
sl
− b

j

el
|| where bi, bj ∈ B ∧ bi 6= bj. If no edge is

added, the search radius, R, is increased according to the formula

R ← R + δR such that δR ∈ R
+ is a pre-define hyperparameter.

Once G becomes a connected graph, the process holds. This is

because it is biologically known that the cardiovascular system is

connected and as such, once this criterion is met, it is assumed the

graph is properly constructed. Finally. we compute the maximum

(in the manner of radius) spanning tree of the graph G using the

method proposed by Al Mamun and Rajasekaran (40).

Finally, the 3D image is first divided into 2D images. Then,

the location of the healthy tissue is obtained by using a threshold-

adoptive Canny algorithm (41) to first find the edges between the

inner part of the lungs and the outer one, alongside other edges in

the image that are noise. To remove the unwanted edges, we used

Hough Transform (42) to detect two ellipsoids from the edges that

approximate the outer divide edges. Afterward, the edges connected

to the ones obtained from the Hough Transform’s ellipsoids, are

added until a close polygon is obtained. The inner side of these two

shapes is defined to be the healthy tissue area. After the two shapes

are obtained for each 2D image, we reconstruct the entire 3D shape

using the Laplacian smoothing method (43).
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TABLE 1 The patient’s socio-demographic distribution.

Patient Age Gender Smoking status

1 51 M Yes

2 62 F No

3 68 M Yes

4 43 F Yes

5 52 F Yes

6 65 F No

7 57 M Yes

8 38 F Yes

9 71 F Yes

10 63 F Yes

2.3 Metastasis heatmap generation

Hypothetically, one could solve the heatmap generation as a

regression task, solving the model numerically with a given initial

condition at time t0 ∈ R and extracting the state of themodel at any

desired time, tf > t0. However, as shown in (35), computing such

a dynamical system numerically is both computationally expensive

and unstable. The main issue lies in the graph-based Navier-Stokes

equations (44) one needs to solve. As such, to tackle this challenge,

we generate the metastasis heatmap as follows. An 3D binary (I)

is uniformly sampled with a grid � of size αx,αy,αz ∈ N for the

x, y, z axes, respectively. The probability of metastasis occurrence

in each point in� is obtained by solving the biophysical model (see

Section 2.1) with the initial condition (see Section 2.2) with one

modification. The blood flow component is computed for only the

path in G from the initial tumor location and the tested point in the

grid. Once all points in the grid are tested and the amount of cancer

cells is computed for a pre-defined stop time T ∈ R
+, the values

are normalized using the L1 metric to define probability.

3 Results

To evaluate the performance of the proposed bioclinical model,

we used samples from 10 patients. All patients are diagnosed with

metastases in the lungs in the Sheba Hospital (Israel) between 2019

and 2022. The metastasis instances have been manually tagged

by a clinician, indicating the location in the lung and the size,

alongside a manual tagging of the prime tumor’s location and size.

For these patients, a CT image before the detection of metastasis

and afterward are obtained, without treatment in between, allowing

for validation of the metastasis occurring locations without outside

influence. Table 1 shows the socio-demographic properties of the

cohort.

Table 2 outlines the result of this computation, divided into

the Hard and Soft classifier scores. Overall, the bioclinical model

shows 74% accuracy, on average, in predicting the location of lung

metastasis from lung cancer with a 1.9% standard deviation. This

indicates that the model receives stable levels of performance over

the sampled population. The scores describe the accuracy metric

TABLE 2 The proposed model’s performance in terms of the hard- and

soft-classifier, divided into patients.

Patient Hard-classifier
score

Soft-classifier
score

1 0.782 0.803

2 0.830 0.838

3 0.689 0.706

4 0.656 0.663

5 0.735 0.742

6 0.835 0.851

7 0.721 0.733

8 0.674 0.691

9 0.701 0.714

10 0.690 0.708

MEAN ± STD 0.7313± 0.0192 0.7449± 0.0193

of a Soft-classifier between two 3D images I1 ∈ {0, 1}
x·y·z and

I2 ∈ R
x·y·z where I1 is a binary image that indicates if a cell in the

image is part of a cancer polyp or not and I2 is the prediction of the

proposed model (see Section 2.3):

ds(I1, I2) : = 1−

∑
1≤i≤x

∑
1≤j≤y

∑
1≤k≤z(I1[x,y,z]−I2[x,y,z])

2

x·y·z
.

In addition, we formally define the Hard-classifier score to be

dh :{0, 1}
x·y·z × {0, 1}x·y·z × R → R such that dh(I1, I2, ζ ) : =

ds(I1, I2|ζ ) where I2|ζ is obtained by performing a threshold ζ on

the predicted image I2. I.e. each value α ∈ I2 is replaced with 1 if

α > ζ and 0 otherwise).

One can notice that the standard deviation of both theHard and

Soft classifiers are relatively small (0.0192 and 0.0193, respectively),

which indicates that the proposed model is relatively robust for this

cohort. Moreover, focusing on the Hard-classifier, the performance

ranges from 0.690 to 0.830 which indicates that outside parameters

influence the model’s performance. That said, age, gender, and

smoking status are not directly correlated to the performance based

on the obtained cohort.

4 Discussion

The spread of lung cancer from its primary site to other

parts of the lungs is a critical aspect of lung cancer progression

and is associated with decreased survival rates (45, 46). Early

identification of metastatic lesions is crucial for prompt and

effective treatment, as it can significantly impact patient outcomes

(47). However, conventional imaging techniques such as computed

tomography (CT) scans have limitations in detecting small

metastases (48, 49). In this study, we proposed a personalized

biophysical-based bioclinical mathematical model that accepts

a patient’s 3D CT image and produces a 3D heatmap of the

probability a metastasis would develop in each region of the lungs.

We tested our bioclinical model on real-world clinical data and

validated it with clinician domain experts to get a baseline. As seen
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FIGURE 2

A 2D slice of patient #2. The figure shows the four steps of the proposed method. The top-left image is the input image where the red mark is

manually tagged (the proposed model is not aware of this tag). The top-right image highlights the blood vessels detected by the model. The

bottom-left image highlights (in black) the non-lung regions removed by the proposed model. Finally, the bottom-right image shows the obtained

heatmap.

in Table 2, the proposed bioclinical model provides around 74%

accuracy in predicting the location of metastasis. This means, that

on average, three out of four predictions of the model marked

locations with metastasis in the CT that would not be marked

otherwise. However, these results do not provide a lower-boundary

accuracy measurement of the model’s performance as locations

marked by the algorithm with metastasis that was without are

either a wrong prediction or that metastasis was not found during

the validation phase and would be created given more time. For

example, let us examine a 2D slice of one of the patients in

the sample. Figure 2 shows the original CT image slice (with the

manual mark of the primary tumor), the blood vessels marked

in blue, the healthy tissue locations, and the model’s heatmap

prediction - from left to right and top to bottom. One can notice

that the model predicts metastasis for the right-top corner of

the lungs in this z-axis value. However, metastasis is not found

there. This is because either the model is mistaken or not enough

time passed from the first and second CT scans in order to allow

metastasis to grow into a detected size.

One of the key advantages of the bioclinical model is the fact

it is based on biophysical modeling of the cancer spread which

allows one to integrate diverse data sources and provides a more

comprehensive understanding of the disease compared to purely

data-driven methods. Theoretically, one could aim to develop a

data-driven solution to this time-series task using ML or deep

learning methods. However, to do so, an extensive data-gathering

process of multiple CT scans of lung cancer would be required,

which would be extremely expensive, logistically complex, and

ethically questionable. On the other hand, the proposed approach

utilizes previous biological, physical, and clinical knowledge,

resulting in a need for just a relatively small dataset, used entirely to

validate and evaluate the performance of the proposed model.

The results of this study demonstrate the potential of

mathematical models in predicting the location of lung cancer

metastases. Our findings show that the bioclinical model can

provide personalized predictions of metastatic spread with decent

accuracy. Hence, this model can potentially inform more targeted

and effective treatment strategies for lung cancer patients,

ultimately improving patient outcomes. As such, this study

provides a step forward in developing more personalized and

effective treatments for lung cancer. The use of bio-clinical

mathematical models to predict the location of metastases holds

great promise for improving patient outcomes and should be a

focus of future research efforts in this field.

However, our bioclinical model can (and should) be further

improved. First, the currently used biomathematical model

of cancer colonization on healthy tissue does not take into

consideration the spatial properties of the cancer cells. Second,

cancer cells continue tomutate over time which causes a wide range

of outcomes and can significantly alter the course of metastasis

formation. Third, taking into consideration additional clinical data

about the patient such as gender, background diseases, smoking,

and others, it will be possible to obtain more accurate the location

of cancermetastases (50). Forth, this study was limited by its sample

size (of 10 patients) and the heterogeneity of the patient population.

Thus, additional large-scale, multicentered trials are necessary to

further test the accuracy and clinical utility of the proposed model,

to obtain more statistically representative results. In addition, as
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future work, molecular dynamics simulations can be also integrated

into the proposed model to further improve its accuracy (51).

Taken jointly, the proposed bioclinical model provides a

new perspective of the metastasis location appearance for lung

cancer using PET-CT data. This model can be medically useful

for patients with stage two lung cancer where it is not clear

from the PET-CT image itself if metastasis already occurred

and is too small to detect or has not occurred yet by

highlighting potential locations in the image for medical experts,

allowing a later medical decision process with better information.

Nonetheless, further research should be made to validate the

obtained results on a larger cohort to statistically establish

its usefulness.
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