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Investigation toward the
economic feasibility of
personalized medicine for
healthcare service providers: the
case of bladder cancer

Elizaveta Savchenko and Svetlana Bunimovich-Mendrazitsky*

Department of Mathematics, Ariel University, Ariel, Israel

In today’s complex healthcare landscape, the pursuit of delivering optimal

patient care while navigating intricate economic dynamics poses a significant

challenge for healthcare service providers (HSPs). In this already complex

dynamic, the emergence of clinically promising personalized medicine-based

treatment aims to revolutionize medicine. While personalized medicine holds

tremendous potential for enhancing therapeutic outcomes, its integration within

resource-constrained HSPs presents formidable challenges. In this study, we

investigate the economic feasibility of implementing personalizedmedicine. The

central objective is to strike a balance between catering to individual patient

needs and making economically viable decisions. Unlike conventional binary

approaches to personalized treatment, we propose a more nuanced perspective

by treating personalization as a spectrum. This approach allows for greater

flexibility in decision-making and resource allocation. To this end, we propose

a mathematical framework to investigate our proposal, focusing on Bladder

Cancer (BC) as a case study. Our results show that while it is feasible to introduce

personalized medicine, a highly e�cient but highly expensive one would be

short-lived relative to its less e�ective but cheaper alternative as the latter can

be provided to a larger cohort of patients, optimizing the HSP’s objective better.

KEYWORDS

personalized medicine, healthcare economics, patient-centric care, resource-
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1 Introduction

Hospitals and other healthcare service providers (HSPs) constantly endeavor to

provide the highest quality of care to patients in a complex business and economic context

(1, 2). Personalizedmedicine emerging as a promising approach to achieving this goal since

it tailors treatments to individual patients based on their unique properties such as genetic

makeup (3), lifestyle (4), socio-demographic status (5), offering the potential to optimize

therapeutic outcomes and minimize adverse effects (6). However, the implementation of

personalizedmedicine in resource-constrained hospitals poses significant challenges (7–9).

As patients increasingly seek themost personalized and effective treatments, hospitals must

grapple with limited resources and the need to make economically viable decisions. This

setup implies a counter-intuitive scenario where the objective of the patient does not align

with the HSP while both wish to make the patient healthy again as quickly as possible (10).
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The concept of personalized medicine has garnered extensive

attention in both academia and the healthcare industry (11–13).

Previous studies have demonstrated the potential of personalized

medicine in enhancing treatment efficacy and patient satisfaction

(14–17). Researchers have explored various approaches, including

pharmacogenomics, biomarker analysis, and decision-support

systems, to identify optimal treatment strategies for individual

patients (18–20). That said, most of these works focus on the

clinical and patient levels, ignoring the operational and economic

burden associated with different levels of personalized medicine.

For example, if some illness does not require some text for

the commonly used treatment protocol while the personalized

alternative does require this test, the usage of the personalized

treatment protocol causes additional expenses in the form of more

tests.

Indeed, there is a growing body of literature about the

efficient usage of resources in the healthcare sphere, ranging

from a single patient to an entire hospital (21–28). However,

economic evaluations of personalized medicine’s economic impact

have been mostly neglected. Hence, our understanding of the

cost-effectiveness implementation of personalized treatment which

ensures their practicality in an economically-driven real-world

scenario is still lacking.

One way to tackle this challenge is using an economical-

mathematical model together with data science methods, as these

have shown to be powerful tools in similar tasks (29–32). In

practice, data science has emerged as a powerful tool in healthcare,

revolutionizing the way medical decisions are made and HSPs

are managed (21, 33, 34). Data-driven approaches allow hospitals

to identify subpopulations that would benefit the most from

personalized medicine, thus addressing the challenge of resource

scarcity (35–37).

In this work, we propose a comprehensive framework that

addresses the economic feasibility of personalized medicine in

resource-constrained healthcare settings. Our approach seeks to

strike a balance between catering to individual patient needs and

making cost-effective decisions on a broader scale. To this end, we

proposed a novel mathematical model and its implementation as a

computer simulation that aims to identify patient cohorts that are

most likely to benefit from personalized treatments, as well as allow

HSPs to choose between several levels of personalization in order

to optimize both a clinical and economical objective. In order to

investigate the model, we focused on bladder cancer (BC) disease,

simulating (pseudo-)realistic scenarios. The novelty of this work

lies in treating personalized treatment as a scale rather than a binary

option.

The remainder of this paper is structured as follows: In Section

2, we provide an in-depth review of the existing literature on

personalized medicine, highlighting relevant economic evaluations

and challenges in resource-constrained settings. In addition, a

review of treatment configurations for BC is presented. Section

3 outlines the formal model definition and its implementation

as a computer simulation. Section 4 presents the results of our

study. Section 5 discusses our findings and outlines the potential

impact of personalized medicine on the healthcare domain while

also providing suggestions for future work. Finally, Section 6

concludes the work and suggests the applied usage of the

proposed model.

2 Related work

Like clinical treatment itself, personalized treatment can be

seen as a spectrum as different methods require different amounts

and versatility of data and promise different levels of outcome

improvement as a result. In parallel, the extra effort associated with

such data gathering is an economic concern that also divides into

several sub-categories. In this section, we present the recent works

on these two fronts with a focus on their interaction with our work.

2.1 Personalized medicine

The application of personalized medicine in healthcare has

garnered significant interest due to its potential to improve patient

outcomes by tailoring treatments to individual characteristics (38–

40). Numerous studies have explored the usage of personalized

medicine in various medical conditions, providing evidence of

its effectiveness and benefits (41–43). Ce et al. (44) provided a

detailed overview of the usage of personalized medicine for brain

tumor imaging. The authors show that personalization can be

done in the diagnosis, treatment protocol decision, and even post-

treatment check-ups. For instance, Mzoughi et al. (45) proposed

a conventional neural network-based model which utilized the

whole volumetric T1 contrast-enhancement MRI sequence for

MRI gliomas brain tumor classification. The authors analyze the

performance of their model, showing it has great potential to

improve the decision-making process of clinicians. Van Netten

et al. (46) investigated the future of personalized treatment for

diabetic foot ulcer prevention, showing that using clinical and

treatment clinical outcomes of similar patients is able to improve

the treatment protocol patients obtain as both diagnosis conditions

and treatment protocols are influenced by these factors. Yaniv-

Rosenfeld et al. (47) proposed a deep-learning-based model for

BCG and IL-2 injections for BC immunotherapy treatment. The

authors show that the personalized treatment protocol, which

requires more often tests, outperforms the generic treatment

protocol with a 12 percent higher success rate. In a different work,

Yaniv-Rosenfeld et al. (47) show that using socio-demographic

data, mental health professionals can better estimate the stay

duration required by borderline personality disorder, which should

improve their overall treatment, according to the authors. In this

setting, the personalization requires one to fulfill a short personal

questionnaire which is usually part of the administration process

anyway, causing small to no additional effort to the HSPs.

2.2 Clinical resource allocation in
healthcare settings

Optimizing resource allocation in healthcare is crucial to ensure

the effective and efficient delivery of healthcare services, especially

in settings with limited resources (48–51). Recently, multiple works

have focused on resource allocation from an economic perspective,

with the goal of maximizing patient benefits and healthcare system

efficiency (52–54). For instance, Ashana et al. (55) study the

correct resource allocation protocol for hospitals in the United
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States, revealing these may lead to racial disparities in resource

allocation. The authors suggested that more equitable mortality

prediction scores are needed which can be partially achieved

by computational models rather than post-hoc human decision

making. In a similar manner, Farrell et al. (56) reviewed the

age-based resource allocation during the COVID-19 pandemic,

statistically showing the utilized programs are sub-optimal as age

does not found to be a good indicator for the resources a patient

needs.

To address resource allocation challenges within hospitals,

optimization models have been proposed (57). Lazebnik (21),

proposed a deep reinforcement learning-based model that uses

agent-based simulation with limited historical data to suggest

stuff and recourse allocation policies for a wide range of

objectives. The model considered factors such as patient demand,

resource availability, and treatment priorities, resulting in an

optimal allocation of beds, staff, and medical supplies to improve

patient care. In a related study, Elitzur et al. (7) demonstrated

the synergy of predictive analytics methods utilizing machine

learning algorithms with optimal pre-test screening protocols.

This fusion aims to enhance test efficiency and potentially enable

healthcare practitioners to render treatment-related decisions

leveraging partial test results without significantly diminishing

overall treatment effectiveness. Likewise, Xu et al. (58) introduced a

model grounded in reinforcement learning to manage an elective

surgery backlog post-pandemic disruptions. The model’s efficacy

was tested using simulated datasets derived from a China-based

hospital’s elective surgery backlog in the aftermath of the COVID-

19 outbreak. Notably, these works consider the patient population

to be identical, different only by their clinical needs, assuming static

clinical practices over time as well as ignoring entirely possible

personalized medicine requirements.

2.3 Bladder cancer personalized
treatments

Bladder cancer (BC), a prevalent malignancy, has garnered

substantial attention in the realm of personalized medicine due to

its clinical heterogeneity and varying treatment responses (59). A

comprehensive review of existing literature reveals diverse efforts

aimed at tailoring treatments to individual patients (60–62). BC

can be classified into non-invasive muscle cancer (NMIBC) or

muscle-invasive bladder cancer (MIBC) subtypes depending on

genetic background and clinical prognosis. Until now, the gold

standard and confirmed diagnosis of BC is cystoscopy, and the

main problems of BC are the high recurrence rate and high costs

in the clinic (63).

For the first group, the standard treatment involves surgical

removal of the visible tumor (i.e., transurethral resection) (64).

NMIBC tends to progress, so transurethral resection is usually

followed by a 6-weekly immunotherapy treatment (65). For some

patients, this standard treatment is ineffective. For them, multiple

clinical options are developed to stop the progress of cancer (66),

“Nadofaragene Firadenovec” gene therapy (67, 68), maintenance

therapy (69), and anticancer chemotherapy drugs (70). For the

same purpose, to stop the BC progress, RNA-binding proteins

are being studied, which play a critical and multifaceted role in

oncogenesis, and in the prognosis of BC, and, apparently, are most

suitable for personalized, say, initial treatment, i.e. changes in the

general protocol treatment (71, 72). In addition, recent molecular

and genetic studies have identified new biomarkers and potential

therapeutic targets for BC. Indeed, Kiselyov et al. (73) show the

combination of the mathematical methods with molecular and

cellular biology insight in the clinical input to receive the individual

protocol for every BC patient. Similarly, Blanca et al. (74) reveal

the understanding of miRNAs mechanisms and cell distribution

provides new opportunities for diagnosis, prognostic, disease

monitoring, and personalized therapy of BC patients. In addition,

multiple computational and mathematical models investigate the

possibility to integrate more advanced personalization systems for

BC treatment (75–77). For instance, Bunimovich-Mendrazitsky

and Shaikhet (78) used ordinary differential equations as the guide

to find the calculation of optimal treatment protocol. Lazebnik et al.

(79) used partial differential equations to find the optimal treatment

protocol considering the location of the tumor and its size.

For the second group, there is a limited number of variations

in treatment types (80). Multimodal treatment involving radical

cystectomy with neoadjuvant chemotherapy offers the best chance

for cure, in this case (81). However, the treatment protocol is

not personalized and as such (partially) results in a wide range

of clinical outcomes. Recently, Su et al. (60) proposed new

therapies based on deep knowledge of molecular mechanisms of

carcinogenesis that have emerged in the clinic, which improved the

accuracy of MIBC treatment, and improved prognosis. In a similar

manner, Kiselyov et al. (82) show that a multidisciplinary approach

involving simulation, molecular biology, and clinical science may

yield a real opportunity to increase the disease-free and overall

survival of patients.

3 Model definition

Intuitively, hospitals are aiming to save the lives of as

many of their patients under strict economic constrain. In

this setup, healthcare professionals are able to decide the level

of personalization they provide to each patient under some

pre-defined set of available treatment configuration for each

illness. Each treatment configuration can be associated with two

parameters: the clinical success rate (CSR) and the operation and

economic burden (OEB). More often than not, as the CSR of a

treatment configuration is higher than its alternative its OEB is

also higher as well. Moreover, different illnesses has different set

of available treatment configurations. Figure 1 presents a schematic

view of two sets of treatment configurations such that the x-

axis indicates the operation and economic burden associated with

some treatment configuration while the y-axis indicates the clinical

success rate of such treatment. The dots of the same color indicate

different levels of personalization for the same treatment. The boxes

sounding the dots present the different versatility of this treatment

configuration in terms of both the CSR and OEB metrics.

Formally, the model is focused on the resource allocation of a

HSP at some point in time to treat a set of patients. As each patient

p ∈ P from a population of size n ∈ N is associated with some

illness from a finite set, I. For each illness i ∈ I, there is a finite set of
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FIGURE 1

A schematic view of the proposed model’s settings. The dots of the

same color indicate di�erent levels of personalization for the same

treatment. The boxes sounding the dots present the di�erent

versatility of this treatment configuration in terms of both the CSR

and OEB.

treatments represented by a tuple (c, o) where c ∈ [0, 1] is the mean

CSR and o ∈ R
+ is the mean OEB. Overall, for all illnesses, there is

a finite set of size z ∈ N of treatment protocols available to the HSP.

The HSP needs to provide each patient treatment from the available

set of treatments aiming to increase the CSR of the patient while

also satisfying a limited budget constraint b ∈ R
+. Therefore, let us

define xi,j a binary integer variable that indicates that the ith patient

obtains the jth treatment configuration. In addition, if a treatment

j is not relevant to the illness that the ith patient has, its CSR is set

to 0. Notably, each patient is allowed to obtain only one treatment.

Hence, the proposed models take the following form:

maxxi,j
∑n

i=1

∑z
j=1 cjxi,j

s.t.∑n
i=1

∑z
j=1 xi,j < b,

∀j ∈ [0, . . . , z] :
∑n

i=1 ojxi,j = 1,

∀i ∈ [0, . . . , n] ∧ j ∈ [0, . . . , z] : xi,j ≤ 1,

∀i ∈ [0, . . . , n] ∧ j ∈ [0, . . . , z] : xi,j ≥ 0.

4 In-silico analysis

For the purpose of investigating the proposed model in a

realistic (yet simplified) scenario, we focused on the bladder cancer

types of illnesses. First, we outline the setup of the in silico

experiment with all the model’s parameter values. Then, we present

the obtained results and their analysis.

4.1 Setup

In order to investigate the proposed model, one is required

to realize a realistic configuration for the model and solve it.

Focusing on the latter, as the proposed model takes the form of an

integer programming, one can efficiently solve it using the Simplex

algorithm (83). The result of such computation is a map function

between a patient and the treatment configuration. We shall refer

to it as the HSP’s policy. For the purpose of realizing a realistic

HSPs’ requirement to treat a patient population, we used the data

and synthetic data simulator proposed by Lazebnik (21) which is

based on real-world data from four community HSPs that includes

the patient population sizes, their illness distribution, obtained

treatments, and estimation to the overall OEB.

Nonetheless, since data about the different treatment

configurations for each illness is challenging to obtain for all the

treatments a standard HSP is providing, we focused this work

on BC diseases. To this end, following Section 2.3, we assume

two main illnesses: invasive and non-invasive cancer BC. For

the invasive and non-invasive BC, there are 3 and 2 treatment

configurations, respectively. Table 1 presents a summary of the

available treatment configuration with their respective CSR and

OEB properties. The CSR is represented as the mean ± standard

deviation as reported by the sources. Notably, as the personalized

treatment is not yet clinically validated, these results obtained from

in silico experiments and will be used lacking any more clinically-

established data. The OEB is presented after normalizing for the

non-personalized treatment protocol as a baseline. Moreover, as

the OEB may change over time, country, and even the HSP itself

we computed the OEB according to the operational cost in Israel

for 2022 based on the set of services and tests required to provide

each treatment configuration.

In order to measure the level of the policies’ personalization, we

define the following metric:

ρ : =
1

n

n∑

i=1

z∑

j=1

cj − aj

bj − aj
xi,j,

where aj : = minj cj and bj : = maxj cj. The motivation for this

metric lies in its edge cases. If all patients would get the global

treatment, then the personalization value would be 0, according to

the proposed metric. Similarly, for the other end of the spectrum,

choosing the most personalized treatment protocol for each would

result in a value 1.

In addition, one is required to define the budget available for the

HSP (b). Since we know the budget is at least large enough to cover

the global treatments of both types of illnesses, then b is larger than

the number of non-invasive BC patients multiplied by the global

treatment protocol cost plus the number of invasive BC patients

multiplied by the global treatment protocol cost. In addition, it is

known that HSPs keep an extra budget for after-treatment care and

complications (86). We assume, following common practices (87,

88), that this sum is around 15% of b, and up to half of it might be

utilized for the personalization of treatment protocols. Formally, let

us assume n1 non-invasive BC patients and n2 invasive BC patients

with associated costs b1 and b2, respectively. Hence, b : = (1+ f ) ·

(n1b1 + n2b2), where f (= 0.075) is the overhead budget provided

for the treatment personalization purpose. Moreover, we samples

Frontiers inMedicine 04 frontiersin.org

https://doi.org/10.3389/fmed.2024.1388685
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


Savchenko and Bunimovich-Mendrazitsky 10.3389/fmed.2024.1388685

TABLE 1 A summary of the treatment configurations with their CSR and OEB data used as part of the simulation.

Illness Treatment CSR Normalized OEB References

Non-invasive BC Global 0.64± 0.08 1.00 Morales et al. (84)

Initial treatment personalization 0.71± 0.07 1.07 Lazebnik (6)

During treatment personalization 0.75± 0.04 1.18 Yaniv-Rosenfeld et al. (47)

Invasive BC Global 0.32± 0.03 1.32 Kamat et al. (81)

Initial treatment personalization 0.36± 0.03 1.38 Powles et al. (85)

We used two experiments with three and two treatment protocols, respectively. The OEB is normalized to the global treatment of the non-invasive BC with the least operation and economic

burden.

n1 ∈ [20, 200] in a uniform manner. Following historical statistics,

n2 ∼ 0.08n1 (89), hence we also samples n2 ∈ [0.06n1, 0.1n1] in a

uniform manner.

Based on this configuration, we are interested to answer three

main questions:

• The relationship between an overhead budget provided for the

treatment personalization, f , and the HSP’s optimal policy’s

personalization level, ρ?

• When and howmuch each personalization treatment protocol

is preferred over the others?

• How robust are the HSP’s policies to the model’s parameters

(n, c, o)?

4.2 Results

In order to solve the proposed model for each instance, we

conducted a two-step process. We first constructed the instance

using the Python programming language (version 3.8.1) (90).

Afterward, we use the simplex solver created by IBM (91) to solve

the instance and analyze the results.

In order to answer the first question, we computed the

relationship between the overhead budget provided for the

treatment personalization, f , and the HSP’s optimal policy’s

personalization level. Figure 2 presents the results of this analysis

such that the plot indicates the mean ± standard deviation of

n = 1, 000 repetitions. The graph shows a linear correlation

between the two quantas which is ρ = 0.53f − 0.03, obtained

using the least mean square method (92) with a coefficient of

determination of R2 = 0.92. One can notice two sharp increases

in the policy’s personalization levels’ standard deviation, as marked

by I and II. The first increase and then decrease can be associated

with the fact that f = 0.08 allows to provide all the non-

invasive BC patients the initial treatment personalization which is

(∼ 0.4) of the personalization level for this illness due to the last

treatment in the category. By the same token, the second increase

starts right after and returns to zero when f = 0.18 allowing

to provide all patients the most personalized treatment for each

illness.

As a means to answer the second question, we ignore the

possible treatment protocols for BC (as shown in Table 1) and

generate abstract treatment protocols as follows. A treatment a is

set to be more personalized than treatment b if and only if the

latter’s OEB and mean CSR are smaller compared to those of a.

For each iteration of the model, we generate between one and four

personalized treatments such that the most personalized treatment

has an OEB of up to 25% higher than the global treatment and

20% improvement in the CSR. In addition, unlike the previous

analysis, we set f to be 0.075. Using this configuration, we store

the delta OEB and delta CSR between the chosen personalized

treatment and the global one for each patient, computing their

chosen distribution over n = 1, 000. Figure 3 shows a heatmap that

indicates the normalized number of choices with democratization

of one percent. It is easy to notice the phase transition for delta

OEB of 0.07 to 0.08. This transition can be explained by the fact

that f = 0.075 so only part of the population can obtain it and

if a less “expensive” alternative is present, the model would prefer

it to save more people, on average. Moreover, using SciMed (93)

a symbolic regression tool that utilizes a genetic-algorithm-based

approach (94) to search for an analytical function that best fits data,

we computed that for OEB of 0.07 or less, the function

count = 0.32− 1.951OEB− 0.09(1OEB)2 + 4.071CSR+

0.561OEB · 1CSR, (1)

best explains the dynamics with a coefficient of determination of

R2 = 0.88.

Regarding the third question, we computed the sensitivity

analysis of the treatment policy personalization level (ρ) with

respect to the number of patients, average delta OEB, and average

delta CSR. Figure 4 presents the results as the mean ± standard

deviation of n = 1, 000 repetitions. In particular, Figure 4A shows

that a larger number of patients allows for a slight increase in

the overall treatment policy personalization level which keeps a

similar level of stability (as indicated by the error bars). In addition,

Figure 4B shows that when theOEB is smaller than f = 0.075 all the

population can obtain the personalized treatment results in ρ = 1.

However, a linear decrease is present once the average OEB crosses

the f = 0.075 threshold. Finally, Figure 4C shows that as the CSR

increase, the treatment policy personalization level also increases.

Interestingly, the standard deviation is also increasing and even

quicker than the ρ itself.

5 Discussion

In this study, we propose a mathematical model to investigate

the usage of a spectrum of personalized treatments by a healthcare

service provider (HSP) under an operation and economic burden

(OEB) limitation as the HSP has a limited budget. The model

is formalized using an integer programming task where the

optimal allocation of treatment to a patient is computed. Using
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FIGURE 2

A function of the SP’s optimal policy’s personalization level (ρ) with respect to the overhead budget provided for the treatment personalization (f).

The results are shown as the mean ± standard deviation of n = 1, 000 repetitions.

FIGURE 3

The normalized number of choosing each treatment protocol based on its delta OEB and CSR compared to the global treatment (e.g., the

non-personalized treatment). The results are shown as the mean of n = 1, 000 repetitions.

the proposed model and (psudo-)realistic data configuration,

we investigated the proposed model and its implementation for

hospitals in the context of BC treatment (while it can be used for

any illness).

Our findings provide valuable insights into the intricate

relationship between treatment personalization and economic

considerations. Figure 2 depicts the clear linear correlation between

the overhead budget allocated for treatment personalization and

the level of personalization within the HSP’s policy. The gradual

increase in budget allocation results in a proportional rise in

the availability of personalized treatment options for patients.

To be specific, the illness with the larger patient population

dominates the other illness from the HSP’s point of view as the

overhead cost associated with these patients is less dominant in

the improvement of the HSP’s objective. In addition, as budgets

are somewhere between the cost of two personalization treatments,
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FIGURE 4

A sensitivity analysis of the treatment policy personalization level (ρ) with respect to the model’s parameters. The results are shown as an mean ±

standard deviation of n = 1, 000 repetitions. (A) Number of patients. (B) Average delta OEB. (C) Average delta CSR.

a more complex resource allocation task is raised which causes

the large differences in different instances of the model. Hence,

while larger budgets show a linear increase in the personalization

level and therefore CSR, one should take into consideration these

dynamics in allocating the budget (f ).

Furthermore, Figure 3 elucidates the dynamic interplay

between treatments increases in the clinical success rate and

their operational and economic burden. Namely, Equation (1)

shows that a second-order polynomial decrease in the HSP’s

policy personalization level as the OEB of these treatments

increases while an increase in the CSR results in an increase

in the HSP’s policy personalization level. Surprisingly, a linear

multiplication between the two also politically correlated with

the HSP’s policy personalization level. This outcome reveals the

quite straightforward result that higher CSR and lower OEB would

allow HSP’s to perform more personalized treatment. However,

the interesting outcome is that one can focus on improving the

treatment for more or less the same price and gain almost twice as

much result for small increases, as indicated by the coefficients in

the formula.

Compellingly, Figure 4A reveals that an increased number of

patients allows HSPs to utilize, on average, more personalized

treatment policies. This outcome well-aligns with known goods

production theory and practice (95–97). In a complementary

manner, Figure 4B shows that in the case that the overhead

personalization budget is larger than the personalization cost, all

patients would get it. In scenarios where this is not the case,

the portion of the two values determines the number of patients

who would get the personalized treatment. While this outcome is

somewhat trivial, it is a good sanity check for the proposed model’s

ability to capture the discussed clinical-economic dynamic. On the

other hand, as the CSR of treatment increases, it is more likely to

“justify” its CSR and be included as part of the HSP’s policy, on

average. That said, as the CSR of each such personalized treatment
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plays a central role in the decision, we can observe an increase in

the instability of the treatment policy personalization, as indicated

by the increase in the error bars.

The proposed work is not without limitations which provide

a venue for future work. First, the proposed model is focused

on a single point in time, simplifying the temporal complexity

of the task as patients’ populations and treatments change (53,

98, 99). Second, the HSP’s budget is not the only source of

support for patients’ treatment economic burden as patients may

acquire services out of pocket or through insurance. Taking these

external funding resources in a future model would make it more

realistic. Third, giving more data about the possible treatment

configurations and their OED would allow us to investigate the

proposed model on a larger and more realistic scale, obtaining

finer results. Fourth, the proposed model assumes a homogeneous

population where each individual suffers from only one illness.

Nonetheless, these two assumptions are unrealistic and should be

relaxed in future work to make the model more accurate. Finally,

patients are assumed to be homogeneous, differing only by their

illness. However, this is only an approximation that should be

relaxed in future work.

6 Conclusion

Taken jointly, our results reveal a promising future for

personalized medicine. Due to their clear clinical advantage,

policymakers in HSPs can (and should) allocate a budget,

which itself would be available as a result of decreasing

the amount of after-treatment care-related clinical services,

for personalized treatments. Moreover, we show that one can

either improve the cost of personalized medicine or its clinical

performance to allow HSPs to utilize it more. To this end,

when considering small improvement steps, the improvement

in clinical performance outperforms the improvement in cost

reduction which is known to be relatively quicker to achieve (100–

102).
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