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Aims: Vitamin D deficiency (VDD) is prevalent in the population, with inadequate 
intake, impaired absorption and metabolism as the main causative factors. VDD 
increases the risk of developing chronic diseases such as type 2 diabetes mellitus 
(T2DM) and diabetic nephropathy (DN), but the molecular mechanisms underlying 
this phenomenon are not known. The aim of this study was to investigate the 
association and potential mechanisms of vitamin D levels with the progression of 
DN by analyzing general clinical data and using bioinformatics methods.

Methods: The study included 567 diabetes mellitus type 2 (T2DM) patients from 
the Rocket Force Characteristic Medical Center as the case group and 221 healthy 
examinees as the normal control group. T2DM patients were categorized into 
T2DM, early diabetic nephropathy (EDN), and advanced diabetic nephropathy 
(ADN) based on the progression of diabetic nephropathy. The renal RNA-seq 
and scRNA-seq data of patients with DN were mined from public databases, 
and the differential expression of vitamin D-related genes in normal-EDN-
ADN was analyzed by bioinformatics method, protein interaction network was 
constructed, immune infiltration was evaluated, single cell map was drawn, and 
potential mechanisms of VD and DN interaction were explored.

Results: Chi-square test showed that vitamin D level was significantly negatively 
correlated with DN progression (p  <  0.001). Bioinformatics showed that the 
expression of vitamin D-related cytochrome P450 family genes was down-
regulated, and TLR4 and other related inflammatory genes were abnormally up-
regulated with the progression of DN. Vitamin D metabolism disturbance up-
regulate “Nf-Kappa B signaling pathway,” B cell receptor signaling pathway and 
other immune regulation and insulin resistance related pathways, and inhibit a 
variety of metabolic pathways. In addition, vitamin D metabolism disturbance 
are strongly associated with the development of diabetic cardiomyopathy and 
several neurological disease complications.

Conclusion: VDD or vitamin D metabolism disturbance is positively associated 
with the severity of renal injury. The mechanisms may involve abnormal 
regulation of the immune system by vitamin D metabolism disturbance, 
metabolic suppression, upregulation of insulin resistance and inflammatory 
signalling pathways.
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1 Introduction

Diabetes is a complex multifactorial metabolic syndrome 
characterized by hyperglycemia resulting from insufficient insulin 
secretion or insulin resistance, with 90% of diabetic patients diagnosed 
with diabetes mellitus type 2 (T2DM) (1, 2). Diabetic nephropathy 
(DN) is a chronic kidney damage caused by diabetes, occurring in 
approximately 40% of T2DM patients, characterized by increased 
proteinuria, decreased glomerular filtration rate (GFR), and renal 
failure (3). It has been reported that the number of DN patients will 
increase with the rising prevalence of diabetes globally, and the 
progression of DN can lead to severe infections and cardiovascular 
diseases (4). Therefore, there is an urgent need to clarify the pathogenic 
mechanisms of DN, identify more targeted treatment methods, and 
delay or prevent the deterioration of renal function.

Vitamin D is an essential nutritional supplement, with 25-OH-D3 
being the primary form of vitamin D in the body. Clinical assessment of 
vitamin D levels is often done by measuring the concentration of 
25-OH-D3  in serum. However, vitamin D deficiency (VDD) is 
widespread in the population, primarily due to inadequate intake, 
absorption, and metabolic disturbance. Meta-analyses have shown that 
supplementing vitamin D for individuals at risk of diabetes can reduce 
the risk of developing T2DM (5). Additionally, vitamin D can regulate 
the renin-angiotensin-aldosterone system (RAAS) to protect the kidneys, 
indicating potential applications in the prevention and treatment of DN 
(6). Other studies have suggested an association between high doses of 
vitamin D and improved progression in DN patients with type 1 diabetes 
(T1DM) (7). Low vitamin D levels have been correlated with the 
progression of DN and a decline in estimated glomerular filtration rate 
(eGFR) in DN patients (8). However, whether increasing vitamin D levels 
can reduce the risk of DN in diabetic patients and the underlying 
mechanisms remain unclear. There is currently no consensus on the 
predictive and therapeutic potential of vitamin D levels in the progression 
of DN. This study aims to explore the correlation between VDD and the 
progression of DN, combining single-cell RNA sequencing and bulk 
RNA-seq analyses to uncover the potential mechanisms through which 
VDD influences the progression of DN, providing new experimental 
evidence for the prevention and treatment of DN.

2 Materials and methods

2.1 Study subjects

This study included 567 patients diagnosed with T2DM and DN 
who sought medical care at PLA Rocket Force Characteristic Medical 
Center from January 2019 to January 2023. Additionally, 221 healthy 
individuals undergoing routine health examinations were enrolled as 
the control group. The inclusion criteria for cases were based on the 
diagnostic standards for diabetes care set forth by the American 
Diabetes Association (ADA) (9).

Diagnosis of DN: DN-diagnosed patients met the following 
criteria (10). Urinary albumin/creatinine ratio (UACR) ≥30 mg/g in 
at least 2 measurements over a period of 3 to 6 months. eGFR <60 mL/
min/1.73 m2 sustained for more than 3 months. Renal biopsy 
pathology changes consistent with DN.

Exclusion criteria: Systolic blood pressure ≥140 mmHg, diastolic 
blood pressure ≥90 mmHg. Age ≤30 years or ≥90 years. BMI ≥35 or 

≤18.5 kg/m2. Diabetes induced by corticosteroids. Gestational 
diabetes. Chronic kidney disease caused by other aetiology. Malignant 
tumors. Infectious diseases. Thyroid dysfunction. Acute or chronic 
inflammation. Patients who had taken vitamin D or calcium 
supplements within 6 months.

T2DM patients were categorized based on at least two random 
measurements of urine albumin creatinine ratio (UACR) and 
continuous monitoring of estimated glomerular filtration rate (eGFR) 
for over 3 months. According to the Chinese Guidelines for the 
Prevention and Treatment of Diabetic Kidney Disease, diabetes patients 
were classified into T2DM, EDN, and ADN groups based on the risk of 
DN progression, T2DM group was defined as UACR <30 (mg/g) and 
eGFR ≥60 (mL/min/1.73m2), EDN as 30 ≤UACR <300 (mg/g) or 45 
≤eGFR <60, and ADN as UACR >300 (mg/g) or eGFR <45 (mL/
min/1.73m2) (10). We  measured total combined 25-OH-D3  in the 
serum. Following the clinical practice guidelines of the Endocrine 
Society, vitamin D levels were categorized as extreme deficiency (vitamin 
D <10 ng/mL), deficiency (10 ≤ vitamin D < 20 ng/mL), insufficient (20 
≤ vitamin D < 30 ng/mL), and normal (vitamin D > 30 ng/mL) (11).

2.2 Experimental methods and instruments

Upon admission, professional healthcare personnel measured and 
calculated baseline physiological indicators, including age, sex, blood 
pressure (BP), and body mass index (BMI).

Biochemical and immune assays were conducted as follows: fasting 
blood glucose (GLU) was measured using the glucose oxidase method. 
glycated hemoglobin (HbA1c) levels were determined through high-
performance liquid chromatography. Prothrombin time (PT) was 
assessed using coagulation methods. Total triiodothyronine (TT3) levels 
were measured by competitive assay. Thyroid-stimulating hormone 
(TSH), parathyroid hormone (PTH), and bone gla protein (BGP) were 
analyzed using the sandwich immunoassay method. C-peptide (C-P) 
was assayed using sandwich immunoassay. Blood calcium (Ca) was 
determined using the phenolphthalein complex copper method. Blood 
uric acid (UA), blood creatinine (Scr), high-density lipoprotein (HDL), 
low-density lipoprotein (LDL), triglycerides (TG), and total cholesterol 
(CHOL) were measured using homogeneous enzymatic colorimetry. 
Serum 25-OH-D3 concentration was assayed using 
electrochemiluminescence immunoanalysis. Random urine albumin/
creatinine ratio (UACR) was determined using immunoturbidimetry. 
All biochemical and immune assay reagent kits were sourced from 
Roche and were tested on the Roche Cobas 8000 fully automated 
biochemical and immune flow line. The estimated glomerular filtration 
rate (eGFR) was calculated using the modified MDRD equation:
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2.3 Vitamin D-related gene sets and 
sequencing data acquisition

The vitamin D-related gene set was assembled by consolidating 
information from the Comparative Toxicogenomics Database (CTD) 
and Genecards. For gene expression data, two datasets were sourced 
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from the Gene Expression Omnibus (GEO) database.1 GSE142025: 
this dataset encompasses gene expression microarray data from 21 
ADN, 6 EDN, and 9 normal samples. GSE111154: This dataset 
provides gene expression microarray data from 4 EDN samples. 
scRNA-seq data were obtained from the GSE195460 dataset, including 
scRNA-seq data from 5 patients with DN. The sample data in the open 
database above were obtained from kidney tissue biopsies.

2.4 Selection and temporal trend analysis 
of vitamin D DEGs

The combat function from the sva package (version 3.46.0) was 
employed to mitigate batch effects between the two gene expression 
array datasets. Visualization of the data was carried out using the 
scatterplot3d package (version 0.3–43) for principal component 
analysis (PCA). Differential expression analysis was performed using 
limma (version 3.54.2) between the EDN group and the normal group, 
as well as between the ADN group and the EDN group (p-value <0.05, 
|log2FC| > 1) (12). The resulting set of differentially expressed vitamin 
D-related genes was obtained. The stages of normal-EDN-ADN were 
delineated, and the Mfuzz package was utilized to analyze the gene 
expression trends of vitamin D DEGs across these three stages. 
Visualization and analysis of the clusters were conducted using 
ClusterGVis (version 0.0.9). Enrichment analysis was performed on 
the clustered genes, and enriched pathways were examined.

2.5 Patient stratification and differential 
enrichment analysis in DN patients

The expression matrix of vitamin D DEGs in ADN patients 
underwent dimensionality reduction using the Uniform Manifold 
Approximation and Projection (UMAP) algorithm. Subsequently, sample 
clustering was performed using the k-means algorithm. The number of 
clusters is set to 2, and samples with similar expression patterns will 
be clustered together, while those with dissimilar expression patterns will 
be separated. Finally, cluster 1 and cluster 2 have different expression 
patterns of vitamin D related DEGs. Limma differential analysis was 
conducted between the two groups (p-value <0.05, |log2FC| > 1). Gene 
set enrichment analysis (GSEA) was employed to explore activated and 
inhibited pathways related to the DGEs. Additionally, the gene set 
variation analysis (GSVA) algorithm (version 1.46.0) was utilized to 
calculate pathway scores within different patient subgroups.

2.6 Construction and visualization of PPI 
network

The protein–protein interaction network (PPI) was constructed 
using the STRING database.2 The MCODE plugin was applied to 
identify core subnetworks within the PPI network, with specific 
parameters set as follows: degree cut-off = 2, node density cut-off = 0.1, 

1 https://www.ncbi.nlm.nih.gov/geo/

2 https://www.string-db.org/

node score cut-off = 0.2, k-core = 2, and maximum depth = 100. The 
hub genes in the PPI network were identified using the MCC 
(Maximal Clique Centrality) algorithm within the CytoHubba plugin. 
Cytoscape was employed for visualizing the network, and Metascape3 
was utilized for enrichment analysis.

2.7 Immune infiltration analysis

The ESTIMATE algorithm (13) was employed to calculate the 
overall immune score for the two groups of DN patients. Subsequently, 
the ssGSEA algorithm (14) was utilized for infiltration analysis of 28 
immune-related cell types, providing insights into the immune 
infiltration status of various cellular subgroups.

2.8 Construction of scRNA-seq Atlas

The Doubletfinder algorithm (15) was applied for doublet 
removal, and quality control (QC) was conducted with specific 
conditions (nFeature RNA >300 & nFeature RNA <4,000 & mt percent 
<10 & HB percent <3). Subsequently, the harmony algorithm (16) was 
utilized for the integration of scRNA-seq samples. The Seurat package 
(17) was then used for dimensionality reduction, clustering, and 
subsequent single-cell analysis. Relevant markers were obtained from 
the Cellmaker2.0 database (18) to assign names to the clustered 
subpopulations. The Scissor algorithm (19) was employed to integrate 
bulk RNA-seq and vitamin D phenotype with scRNA-seq data. The 
Findmarker function was used for differential analysis of Scissor cells, 
followed by enrichment analysis.

2.9 Statistical methods

Statistical analyses were performed using functions in R software 
(version 4.2.3). For normally distributed data, the student’s t-test and 
ANOVA were employed. In the case of non-normally distributed data, 
the Wilcoxon rank-sum test and Kruskal–Wallis test were applied. 
Pearson correlation coefficient was utilized for normally distributed 
data, while Spearman correlation coefficient was used for non-normally 
distributed data. A chi-square test was performed for the correlation of 
vitamin D levels between different periods of T2DM and DN. A 
significance level of p < 0.05 was considered statistically significant.

3 Results

3.1 Analysis of general clinical data

A total of 567 T2DM patients were assessed, comprising 277 
males and 290 females. With the progression of diabetic nephropathy, 
age, uric acid (UA), serum creatinine (Scr), UACR, C-P, and glycated 
hemoglobin (HbA1c) in the EDN and ADN groups were significantly 
higher than those in the T2DM group (p < 0.05). Conversely, vitamin 

3 https://metascape.org/gp/
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D levels and eGFR were significantly lower in the EDN and ADN 
groups compared to the T2DM group (p < 0.001). There were no 
statistically significant differences in indicators such as GLU, PT, TT3, 
TSH, BGP, Ca2+, HDL, LDL, TG, CHOL, BP, etc., among the T2DM-
EDN-ADN three groups (p > 0.05) (Table 1).

Analysis of vitamin D levels among different groups revealed that 
the normal group had significantly higher vitamin D levels compared 
to both the T2DM and DN groups. Additionally, the ADN group 
exhibited lower vitamin D levels compared to the T2DM and EDN 
groups (Figures 1A,B). Furthermore, as kidney disease progressed, the 
proportion of severely vitamin D-deficient patients in the ADN group 
increased compared to the T2DM and EDN groups. Chi-square 
analysis indicated a significant statistical difference (X-squared = 61.885, 
df = 12, p-value = 1.021 × 10−8) (Figure  1C). Correlation analysis of 
various clinical indicators revealed a significant negative correlation 
between vitamin D levels and UACR (r = −0.45) (Figure 1D). However, 
no significant correlation was observed between vitamin D levels and 
estimated glomerular filtration rate (eGFR).

Analysis of vitamin D levels among different groups revealed that 
the normal group had significantly higher vitamin D levels compared 
to both the T2DM and DN groups. Additionally, the ADN group 
exhibited lower vitamin D levels compared to the T2DM and EDN 
groups (Figures 1A,B). Furthermore, as kidney disease progressed, the 

proportion of severely vitamin D-deficient patients in the ADN group 
increased compared to the T2DM and EDN groups. Chi-square 
analysis indicated a significant statistical difference (X-squared = 
61.885, df = 12, p-value = 1.021 × 10−8) (Figure  1C). Correlation 
analysis of various clinical indicators revealed a significant negative 
correlation between vitamin D levels and UACR (r = −0.45) 
(Figure 1D). However, no significant correlation was observed between 
vitamin D levels and estimated glomerular filtration rate (eGFR).

3.2 Selection of 209 vitamin D DEGs

With an interaction count cutoff set at 2, 1626 vitamin D-related 
genes were obtained from the comparative CTD. Setting the relevance 
score cutoff at 5, 1,812 vitamin D-related genes were obtained from 
Genecards. Venn analysis of both databases identified 451 vitamin 
D-related genes, including VDR and CYP27B1, which were collectively 
termed the vitamin D-related gene set. After integrating and batch effect 
removal of RNA-seq data from GSE142025 and GSE111154, PCA was 
performed and visualized using the scatterplot3d package 
(Figures 2A,B). The intersection of the DEGs between EDN and normal 
(|log2FC| > 1, p-value <0.05) with the vitamin D-related gene set yielded 
65 differentially expressed vitamin D-related genes. Additionally, the 

TABLE 1 Analysis of clinical indicators in different classifications of patients.

Clinical indicator Normal (221) T2DM (N  =  379) EDN (N  =  148) ADN (N  =  40) F/χ2 value p-value

Sex (male/female) 110/111 191/188 64/84 22/18 18.173 0.41

Age (years) 59.57 ± 14.13 58.5 ± 12.7 61.8 ± 11.6 67.5 ± 11.4 11.91 <0.05

SBP (mmHg) 124 ± 14.1 122.33 ± 12.6 122.18 ± 11.2 126.57 ± 11.6 1.888 0.152

DBP (mmHg) 74.83 ± 11.21 70.97 ± 10.27 72.35 ± 9.07 70.19 ± 9.85 1.014 0.363

BMI (kg/m2) 22.25 ± 2.97 25.4 ± 3.33 25.6 ± 4.04 25.3 ± 4.57 0.157 0.854

LDL (mmol/L) 2.38 ± 0.99 2.7 ± 0.95 2.66 ± 0.91 2.64 ± 1.27 0.12 0.886

HDL (mmol/L) 1.24 ± 0.51 1.09 ± 0.32 1.12 ± 0.32 1.05 ± 0.31 0.915 0.401

TG (mmol/L) 2.35 (1.96, 2.62) 1.5 (1.06, 2.03) 1.37 (0.98, 2.06) 1.55 (1.17, 1.93) 0.11 0.9

CHOL (mmol/L) 4.19 ± 1.05 4.22 ± 1.22 4.22 ± 1.13 4.23 ± 1.49 0.033 0.967

UA (umol/L) 235.5 ± 79.23 315.1 ± 87.23 312.6 ± 85.22 375.4 ± 92.81 9.093 <0.05

ALB (g/L) 42.8 ± 6.5 42.1 ± 4.16 41.4 ± 4.04 37.3 ± 5.28 24.555 <0.001

Scr (mg/dL) 0.63 ± 0.19 0.75 ± 0.16 0.74 ± 0.22 1.21 ± 0.53 82.507 <0.001

TT3 (ng/mL) 0.98 ± 0.35 1.04 ± 0.25 1.02 ± 0.386 0.92 ± 0.32 2.677 0.07

PTH (pg/mL) 33.98 ± 13.13 33.92 ± 11.63 35.45 ± 11.22 34.13 ± 13.76 1.222 0.295

TSH (mU/L) 1.21 (1.08, 1.32) 1.9 (1.31, 2.72) 1.85 (1.19, 2.72) 2.21 (1.23, 3.34) 1.44 0.237

CA (mmol/L) 2.29 ± 0.17 2.35 ± 0.13 2.24 ± 0.12 2.19 ± 0.11 0.3042 0.738

PT (sec) 11 ± 1.41 10.6 ± 0.93 10.6 ± 0.83 10.3 ± 0.64 2.265 0.104

C-P (ng/mL) 2.06 (1.51, 2.59) 2.14 (1.32, 2.83) 1.88 (1.41, 2.84) 2.46 (1.65, 3.72) 3.101 <0.05

BGP (ng/mL) 7.64 (6.43, 8.61) 11.23 (9.01, 14.2) 11.24 (8.36, 14.89) 11 (8.66, 15.14) 2.6 0.075

GLU (mmol/L) 4.98 (4.72, 5.36) 7.5 (6.43, 9.71) 9.20 ± 4.73 9.69 ± 4.05 0.542 0.581

HbA1c (%) 5.1 ± 1.2 8.44 ± 2.13 9.17 ± 2.28 9.84 ± 2.43 11.35 <0.05

25-OH-D3 (ng/mL) 30.88 ± 7.67 14.3 ± 7.31 11.0 ± 6.33 6.99 ± 3.19 27.807 <0.001

eGFR (mL/min/1.73m2) 104.71 (101.21, 108.34) 116.58 (98.19, 133.10) 113.48 (93.85, 139.45) 59.6 (45.09, 106.9) 34.569 <0.001

UACR (mg/mmol) 4.84 (3.49, 6.22) 9.76 (5.94, 15.5) 62.35 (40.95, 97.43) 367.1 (138.8, 681.63) 24.772 <0.001

Statistical analysis was performed among T2DM-EDN-ADN patients. χ2-test was used for sex and F-test was used for other indicators. Normal distribution data were expressed as mean ± SD, 
and skewed data were expressed as median (quartile 1 and quartile 3).
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ADN-EDN comparison resulted in 188 differentially expressed vitamin 
D-related genes (|log2FC| > 1, p-value < 0.05). The union of these two 
sets finally yielded 209 vitamin D-related DEGs (Figures 2C,D).

3.3 Downregulation of cytochrome P450 
family genes and upregulation of 
inflammation-related genes in vitamin D 
DEGs

The expression trends of vitamin D DEGs were analyzed using 
Mfuzz across the normal-EDN-ADN stages, as shown in Figure 3. 
Vitamin D DEGs were clustered into 8 groups, with some genes 
annotated on the heatmap. A significant continuous downregulation 
(cluster C1) was observed in a subset of vitamin D-related 
cytochrome P450 family genes, such as CYP27A1, CYP27B1, and 
CYP3A4. Enrichment analysis revealed that these genes inhibit the 
vitamin D receptor and oxidative metabolism pathways. Furthermore, 

certain vitamin D DEGs associated with inflammation, such as TLR4 
and TNFRSF11B, showed a significant upregulation with the 
progression of kidney disease. This suggests that changes in vitamin 
D levels in DN patients may influence both metabolic and 
inflammatory pathways.

3.4 Upregulation of immune-related and 
insulin resistance-related pathways with 
inhibition of glucose metabolism in vitamin 
D metabolic disturbance

The expression matrix of vitamin D related DEGs in the kidney of 
ADN patients underwent dimensionality reduction and then sample 
clustering was performed. Twenty-one ADN patients (Figure 4A) 
were classified into two distinct clusters. Limma differential analysis 
on these clusters identified 296 upregulated genes and 473 
downregulated genes (|log2FC| > 1 and p-value < 0.05) 

FIGURE 1

Clinical data analysis. (A) Differences in vitamin D levels among clinic normal, T2DM, and DN patients. (B) Differences in vitamin D levels between clinic 
T2DM and DN patients at different stages from (A). The Wilcox test was used to analyze inter group differences. (C) Differences in VD typing between 
patients with DM and different stages of DN. The horizontal axis represents the proportion of patients with various VD subtypes, and the vertical axis 
represents the type of patients. The chi square test is used to analyze differences in grouped variables. (D) Correlation analysis of all clinical indicators 
of patients. The Spearman correlation coefficient is used to analyze correlation. p  <  0.05 is considered statistically significant. nsp  >  0.05, *p  <  0.05, 
**p  <  0.01, ***p  <  0.001, and ****p <  0.0001. T2DM, diabetes mellitus type 2; DN, diabetic nephropathy; EDN, early diabetic nephropathy; ADN, 
advanced diabetic nephropathy.
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(Supplementary Figures S1A,B). KEGG enrichment analysis through 
GSEA revealed the inhibition of vitamin binding pathways in cluster 
1 (Figures 4B,C). Using the GSVA algorithm, scores for two vitamin 
D metabolic pathways—WP VITAMIN D METABOLISM and HP 
ABNORMALITY OF VITAMIN D METABOLISM—were 
significantly lower in cluster 1, indicating a relatively severe vitamin 
D metabolic disturbance (Figures 4D,E, p < 0.001).

GSEA analysis on KEGG pathways demonstrated that vitamin 
D metabolic disturbance upregulated various inflammatory and 
immune signaling pathways, such as “Nf-Kappa B signaling 
pathway,” “B cell receptor signaling pathway,” “TNF signaling 
pathway,” and “Toll-like receptor signaling pathway” (Figure 5A). 
Simultaneously, it downregulated multiple metabolic pathways 
involved in maintaining glucose homeostasis and inhibiting 
inflammation, such as “PPAR signaling pathway,” as well as those 
participating in glucose metabolism, including “oxidative 
phosphorylation,” “citrate cycle (TCA cycle),” and “carbon 
metabolism” (Figure  5B). Furthermore, vitamin D metabolic 
disturbance upregulated several insulin resistance-related pathways, 

such as PI3K-AKT, JAK/STAT, MAPK, and ECM receptor-related 
signaling pathways (Figure 5C).

GSEA analysis on GO terms revealed that vitamin D metabolic 
disturbance upregulated immune components in CC (cellular 
component), such as “T cell receptor complex” and “immunological 
synapse,” while downregulating necessary components in sugar 
metabolism processes like “mitochondrial intermembrane space” and 
“mitochondrial tricarboxylic acid cycle enzyme” 
(Supplementary Figure S1C). In BP (biological process), it upregulated 
immune mechanisms like “adaptive immune response,” “B cell 
activation,” and “lymphocyte proliferation,” while simultaneously 
downregulating processes related to sugar metabolism, such as 
“cellular response to insulin stimulus” and “response to 
monosaccharide” (Supplementary Figure S1D). In MF (molecular 
function), there was an upregulation of factors related to chemotaxis 
and cytokine activity, such as “chemokine binding” and “cytokine 
activity,” while inhibiting activities related to transporter receptors, 
like “passive transmembrane transporter activity” and 
“transmembrane transporter activity” (Supplementary Figure S1E).

FIGURE 2

Gene expression chip data analysis of normal, EDN, and ADN patients. (A) Box plot of overall gene expression data for each sample after batch 
correction. All samples starting with A, B, and N are from GSE142025, while samples starting with GSM are from GSE111154. (B) 3D PCA analysis of gene 
expression levels in all samples. Different colors represent different sample types. (C) Venn diagram of the intersection of VD related genes and 
differentially expressed genes between EDN patient samples and normal samples. (D) Venn diagram of the intersection of VD related genes and 
differentially expressed genes between ADN patient samples and EDN patient samples. VD, VD related genes; EDN-normal, differentially expressed genes 
between EDN patient samples and normal samples; ADN-EDN, differentially expressed genes between ADN patient samples and EDN patient samples.
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3.5 PPI network reveals dysregulation of 
immune system and inflammation induced 
by vitamin D metabolic disturbance

The DEGs of cluster 1 and cluster 2 construct the PPI network, 
and 18 MCODE sub-networks (Figure  6A). MCODE1 network 
primarily consisted of immune-inflammatory genes like CD69, 
CD3D, IL2RB, and CCR7, all upregulated in patients with vitamin 
D metabolic disturbance (Figure 6B). Enrichment analysis of this 
network indicated an upregulation of immune pathways, such as 
“lymphocyte activation” and “T cell receptor signaling pathway,” 
contributing to dysfunctional Th1 and Th2 cell functions 
(Figure 6E).

MCODE2 network, composed of CYB family genes and other 
metabolism-related genes, demonstrated downregulation of gene 
expression in patients with vitamin D metabolic disturbance 
(Figure 6C). Enrichment analysis of MCODE2 network highlighted the 
inhibition of pathways like “biological oxidations” and “PPARA activates 
gene expression,” suggesting suppression of oxidative metabolism 
pathways (Figure 6F). Hub genes identified by the CytoHubba plugin 
showed high similarity to genes in MCODE1 subnetwork (Figure 6D). 
These findings collectively indicate that vitamin D metabolic disturbance 

in DN patients predominantly activate immune and inflammatory 
pathways, leading to immune system imbalance and inflammation.

3.6 Immune cell activation in DN patients 
with vitamin D metabolic disturbance

Both KEGG and PPI network analyses have revealed immune 
system imbalance and activation of various inflammatory pathways in 
patients with vitamin D metabolic disturbance in DN. This observation 
is further validated by immune infiltration analysis. ESTIMATE immune 
infiltration analysis demonstrates a significantly higher immune score 
in DN patients with vitamin D metabolic disturbance compared to those 
with relatively normal vitamin D metabolism (p = 0.0015), indicating 
abnormal activation of various immune functions in these patients 
(Figure 7A). Using the ssGSEA algorithm for infiltration analysis of 28 
immune-related cell types, most immune cells show significantly higher 
expression in patients with vitamin D metabolic disturbance. Only a few, 
such as “CD56 bright natural killer cells,” exhibit a noticeable decrease 
in patients with vitamin D metabolic disturbance. This specific subset of 
NK cells, characterized by minimal differentiation in the blood, may play 
a distinctive role in DN (Figures 7B,C).

FIGURE 3

Time trend analysis of vitamin D-related DEGs in Figure 2 normal, EDN, and ADN samples. The left part shows the expression clustering of vitamin 
D-related DEGs, showing 8 gene expression trend clusters. In the middle are the expression status of genes and the enrichment pathways of genes of 
each cluster. The right section shows the −log10 (p-value) of each pathway.
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3.7 Construction of scRNA-seq Atlas for 15 
cell types in DN patients

After integrating and filtering scRNA-seq data from 5 DN patients, 
a total of 16,084 cells were obtained. Comparative analysis with 
existing kidney tissue markers ultimately identified 15 distinct cell 
types (Figures 8A–D): PT, proximal tubule; PT VCAM1, VCAM1(+) 
proximal tubule; PEC, parietal epithelial cells; TAL CLDN16(−), thick 
ascending limb; TAL CLDN16(+), thick ascending limb; DCT, early 
distal convoluted tubule; PC, principal cells; ICA, type A intercalated 
cells; ICB, type B intercalated cells; PODO, podocytes; ENDO, 
endothelial cells; FIB-MES, fibroblasts and mesangial cells; LEUK, 
leukocytes; DTL, descending thin limb; plasma, plasma cells.

3.8 Scissor analysis reveals that vitamin D 
metabolism disturbance induce the 
aggregation of immune cells and are 
associated with renal injury

Using the Scissor algorithm, the analysis revealed that the 
combination of bulk RNA-seq and vitamin D phenotype with 
scRNA-seq data from 21 DN patients resulted in 1273 Scissor (+) cells 
positively correlated with vitamin D metabolism disturbance and 593 
Scissor (−) cells negatively correlated (Figure 8E). Notably, vitamin D 
metabolism disturbance predominantly inhibited a subset of proximal 
tubule (PT), while the Scissor (+) cells promoted by vitamin D 
metabolism disturbance were distributed in PT VCAM1, PEC, LEUK, 

FIGURE 4

Differential and enrichment analysis of ADN patients. (A) Visualization results after using UMAP dimensionality reduction and k-means clustering. Use the 
vitamin D-related DEGs expression matrix of 21 ADN patients in Figure 2. The sample is divided into two groups: cluster 1 and cluster 2. Cluster 1 and 
cluster 2 have different expression patterns of vitamin D-related DEGs. (B) KEGG pathways enriched in GSEA. The horizontal axis NES represents 
enrichment score, positive numbers represent pathway activation, and negative numbers represent pathway suppression. (C) Vitamin D related pathways 
inhibited by cluster 1 compared to cluster 2. The first part is the line graph of gene enrichment score. The horizontal axis represents each gene in the gene 
set, and the vertical axis represents the corresponding running enrichment score. The peak value of the line graph is the enrichment score, which is the 
NES value of the gene set. The genes before the peak value are the core genes in the gene set. The middle part of the second part marks the genes located 
under the gene set. The third part is a distribution map of rank values for all genes, with the vertical axis reflecting the relative expression levels of each 
gene in the gene set. (D,E) GSVA scores for pathways WP vitamin D metabolism and HP abnormality of vitamin D metabolis in two groups. The Wilcox test 
was used to analyze inter group differences. p  <  0.05 is considered statistically significant. nsp  >  0.05, *p  <  0.05, **p  <  0.01, ***p  <  0.001, and ****p  <  0.0001.
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DTL, and PC (Figures 8F–H). Importantly, almost half of the cells in 
the LEUK subset showed a positive correlation with vitamin D 
metabolism disturbance, indicating that vitamin D metabolism 
disturbance promotes the aggregation of immune cells. Additionally, 
PT VCAM1 represents a distinct subset of PT cells with abnormal 
expression of VCAM1 and HAVCR1, which is a specific cell subset 
associated with kidney damage in DN patients. Vitamin D metabolism 
disturbance exerted opposite effects on two distinct subsets of PT and 
PT VCAM1, with only vitamin D metabolism-negative cells present 
in PT and only vitamin D metabolism-positive cells in PT VCAM1 
(Figure 8G). This suggests that vitamin D metabolism disturbance 

may inhibit the function of normal PT cells while promoting the 
generation of abnormal PT cells, exacerbating kidney damage in 
DN patients.

3.9 Vitamin D metabolism disturbance are 
associated with various complications in 
DN patients

Further exploration of the differences between Scissor cells and 
corresponding normal cells in different renal tissue compartments 

FIGURE 5

The GSEA enrichment pathways of differentially expressed genes. (A) Inflammation and immune signaling pathways activated by cluster 1 compared to 
cluster 2. (B) Metabolic related pathways inhibited by cluster 1 compared to cluster 2. (C) Insulin resistance related pathways activated by cluster 1 
compared to cluster 2. The first part is the line graph of gene enrichment score. The horizontal axis represents each gene in the gene set, and the 
vertical axis represents the corresponding running enrichment score. The peak value of the line graph is the enrichment score, which is the NES value 
of the gene set. The genes before the peak value are the core genes in the gene set. The middle part of the second part marks the genes located under 
the gene set. The third part is a distribution map of rank values for all genes, with the vertical axis reflecting the relative expression levels of each gene 
in the gene set.
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related to vitamin D metabolism disturbance was conducted through 
differential enrichment analysis, as illustrated in Figure  9A. It was 
observed that Scissor-cells in the PT exhibit an upregulation of the 
AMPK signaling pathway compared to normal PT cells, suggesting that 
vitamin D metabolism disturbance downregulate the normal 
expression of this pathway in PT. In PT VCAM1, DTL, and PEC 
subsets, vitamin D metabolism disturbance-positive cells activate the 
PI3K-AKT signaling pathway and ECM receptor pathway, indicating 
an enhancement of insulin resistance in these segments (Figure 9B). 
Additionally, the “AGE-RAGE signaling pathway in diabetic 
complications” is significantly upregulated in PT VCAM1. In the LEUK 
cell subset, the positive portion of vitamin D metabolism disturbance 
significantly upregulates various immune and inflammatory pathways, 
including NF-κB pathways. Meanwhile, the downregulated genes in PT 
show enrichment in various diseases, such as “diabetic cardiomyopathy” 
and various neurological disturbance (Figure  9C), suggesting that 
vitamin D metabolism disturbance may induce neurologic disturbances 
and increase the risk of neurological complications in DN patients.

4 Discussion

DN is a slowly progressive disease and a leading cause of renal failure 
worldwide. Epidemiological studies indicate that 25 to 40% of patients 

with type 1 diabetes mellitus (T1DM) and 5 to 40% of those with T2DM 
ultimately develop DN (20). Previous research has suggested a potential 
protective role of vitamin D levels in the development of diabetes (21), 
but its specific role in DN remains to be  investigated. Vitamin D is 
converted to 25-OH-D by hydroxylation in the liver, 25-OH-D includes 
25-OH-D2 and 25-OH-D3, 25-OH-D3 is the main form of vitamin D 
in the body, and it is a common clinical indicator of vitamin D deficiency 
(VDD). In this study, the analysis of clinical data from normal, T2DM 
and DN patients showed that DN patients had lower levels of 25-OH-D3 
compared to T2DM patients and normal subjects, and the proportion of 
patients with extreme vitamin D deficiency increased with the 
progression of DN, and the progression of diabetic nephropathy was 
significantly positively correlated with VDD. The kidney is the main 
metabolising organ of vitamin D. When the kidney is damaged by DN, 
not only vitamin D metabolism and activation will be disturbed to a 
certain extent, but also the glomerular filtration rate will be increased 
and tubular reabsorption is impaired, resulting in the loss of the protein-
bound 25-OH-D3 due to proteinuria, and the level of 25-OH-D3 is 
negatively correlated with the UACR and positively correlated with the 
blood albumin, which is in agreement with our results. This is consistent 
with our results. It should be noted that there was a significant difference 
in age between T2DM, EDN and ADN (p < 0.05). The reason may 
be that DN belongs to a kind of chronic kidney disease, which gradually 
progresses from EDN to ADN with the prolongation of the disease, and 

FIGURE 6

Construction and analysis of PPI network. (A) The PPI network of differentially expressed genes between cluster 1 and cluster 2, where each node 
represents a protein corresponding to a gene, and connections represent interactions between proteins. (B,C) The sub network with the highest and 
second scores calculated using the MCODE plugin. Red represents gene upregulation, blue represents gene downregulation. (D) Calculate the top 20 
hub genes using the MCC algorithm in the CytoHubba plugin. (E,F) The enrichment pathway of genes in two MCODE sub networks. The horizontal 
axis is −log10 (p), and the vertical axis is the enriched pathway.
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the patients’ renal function continues to decline, resulting in a higher age 
percentage of ADN patients relative to T2DM and EDN.

Increasing evidence suggests that the activation of the vitamin 
D receptor (VDR) signaling pathway has various renal protective 
effects in DN patients, including anti-inflammatory, anti-
proteinuria, anti-fibrotic, and protection against podocyte injury to 
maintain their survival (22, 23). Genetic trend analysis of 209 
vitamin D DEGs obtained from public databases showed that some 
of the consistently down-regulated vitamin D DEGs were enriched 
in the “WP VITAMI D RECEPTOR PATHWAY” pathway. Recent 
studies have indicated that vitamin D/VDR can downregulate the 
expression of FOXO1 in diabetic patients, inhibiting iron-deficiency 
anemia in pancreatic β-cells (24). Furthermore, it is well known that 
cyp24A1 of the Cyp450 family is involved in the degradation of 
25-OH-D-vitamins and is increased in damaged kidneys. However, 
the results of our analyses did not reveal differential expression of 
cyp24A1 during the progression of normal-EDN-ADN, which 
requires further attention.

As one of the characteristics of T2DM, immune activation and 
inflammation are highly correlated with an increased risk of diabetes 
(25). In vitamin D metabolism disturbance in DN patients, pathways 
such as “Nf-Kappa B signaling pathway,” “B cell receptor signaling 
pathway,” “TNF signaling pathway,” and “Toll-like receptor signaling 
pathway” are significantly upregulated. These pathways play crucial 
roles in immune responses (26–29). Immune infiltration analysis 
corresponds to these results, showing that the immune score of most 
immune cells in vitamin D metabolism disturbance patients is 
significantly higher than that in patients with relatively normal 
vitamin D metabolism, except for a few, such as “CD56 bright natural 
killer cell,” which is significantly reduced in vitamin D metabolism 
disturbance patients. CD56 bright natural killer cells are a small subset 
of CD56 NK cells that produce numerous cytokines to regulate the 
immune system (30). The role of this mechanism in DN is still 
unknown and requires further research. In recent decades, research 
on vitamin D has confirmed its important interactions with the 
immune system (31). The impact of vitamin D on the immune system 

FIGURE 7

Immune infiltration analysis. (A) The immune scores for cluster 1and cluster 2 were calculated using the ESTIMATE algorithm. Immune score refers to 
the degree of infiltration of immune cells in tumor tissue, with larger values indicating higher levels of infiltration. (B) Heat maps of immune component 
scores calculated using ssGSEA. (C) Box plots of 28 immune related cell scores in patients with cluster 1 and cluster 2 calculated using the ssGSEA 
algorithm. p  <  0.05 is considered statistically significant. nsp  >  0.05, *p  <  0.05, **p  <  0.01, and ***p  <  0.001.
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in patients with DN is not yet clear. Our bioinformatics analysis 
showed that vitamin D metabolism disturbance is closely related to 
the abnormal regulation of the immune system, which can provide a 
new reference for immunotherapy in patients with DN.

Furthermore vitamin D metabolism disturbance down-regulate 
various metabolic pathways such as “PPAR signaling pathway,” “oxidative 
phosphorylation,” “citrate cycle (TCA cycle),” and “carbon metabolism.” 
Peroxisome proliferator-activated receptor gamma (PPARγ) is a 

FIGURE 8

Single cell atlas of DN patients. (A) UMAP dimensionality reduction clustering diagram of 16,084 cells from DN patients, consisting of 15 cell types. PT, 
proximal tubule; PT VCAM1, VCAM1(+) proximal tubule; PEC, parietal epithelial cells; TAL CLDN16(−), thick ascending limb; TAL CLDN16(+), thick 
ascending limb; DCT, early distal convoluted tubule; PC, principal cells; ICA, type A intercalated cells; ICB, type B intercalated cells; PODO, podocytes; 
ENDO, endothelial cells; FIB-MES, fibroblasts and mesangial cells; LEUK, leukocytes; DTL, descending thin limb; plasma, plasma cells. (B) Specific 
genes of each cell subgroup compared to other cell subgroups. (C) A marker bubble chart for identifying cell types. The markers for each cell 
subpopulation are from the Cellmarker 2.0 database. (D) The expression of some marker genes on the UMAP map. (E) UMAP graph combining scRNA 
seq of DN patients with RNA seq of previous ADN patients using Scissor algorithm, where Scissor (+) represents a positive correlation with vitamin D 
metabolism disturbance phenotype and Scissor (−) represents a negative correlation. Zero represents cells that are not significantly correlated with 
vitamin D metabolism disturbance. (F) Stacked bar charts showing the proportion of different cell types in Scissor (+) and Scissor (−) cells. (G) Balloon 
plot of the number of cell subpopulations in Scissor (+) and Scissor (−) cells. (H) Bar charts showing the number of different cell types in Scissor (+) and 
Scissor (−) cells.
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ligand-activated nuclear receptor that regulates glucose and lipid 
metabolism (32). Insulin can enhance anti-inflammatory effects by 
upregulating the expression of PPAR-γ (33). Additionally, studies have 
shown that vitamin D can increase PPAR-γ coactivator 1α (PGC-1α) 
levels to reduce insulin resistance (34). Insulin resistance is a key factor 
leading to elevated blood sugar in patients with type 2 diabetes (35). 
We found abnormal upregulation of P13K-AKT, JAT/STAT, MAPK, and 
ECM receptor-related signaling pathways associated with insulin in 
vitamin D metabolic disturbance (36–38). Currently, only a small 
amount of basic and clinical research results support the beneficial effects 
of vitamin D in reducing insulin resistance (39, 40). However, the specific 
mechanisms remain unclear, and our analysis results can provide 
guidance in this direction.

scRNA-seq analysis validated the results of bulk RNA-seq, 
revealing that nearly half of the cells in the immune cell subset 

LEUK were positively correlated with vitamin D metabolism 
disturbance, and vitamin D metabolism disturbance positive cells 
significantly activated various immune and inflammatory pathways. 
Furthermore, it is intriguing that vitamin D metabolism disturbance 
is closely associated with the production of a specific cell 
subpopulation, PT VCAM1, that highly expresses the kidney injury 
factor HAVCR1. Previous studies have shown that HAVCR1 is one 
of the key factors in renal tubular injury, PT cell cycle arrest, and 
secondary glomerulosclerosis (41). Current studies suggest that 
vitamin D may be a potential therapeutic target for acute kidney 
injury (42), but the relationship between vitamin D and kidney 
injury in DN has not yet been reported. This discovery may provide 
clues for slowing the development of DN and rescuing kidney 
injury. Moreover, we found that the downregulated genes in vitamin 
D metabolism disturbance negative cells in PT were enriched in 

FIGURE 9

Differential and enrichment analysis between Scissor cells and normal cells. (A) Differential expression genes between Scissor cells and normal cells in 
PT, PT_VCAM1, PEC, PC, DTL and LEUK. (B) Common and different KEGG enrichment pathways enriched by upregulated genes of various cell types. 
(C) Common and different KEGG enrichment pathways enriched by downregulated genes of various cell types. The size of bubbles represents the 
proportion of enriched genes, and the color represents significance.
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various neurological diseases, indicating that vitamin D metabolism 
disturbance may induce neurological disturbance, increasing the 
risk of nerve damage in DN patients, which is consistent with 
previous research results (43).

VDD or vitamin D metabolism disturbance is positively associated 
with the severity of renal injury. The mechanisms may involve 
abnormal regulation of the immune system by vitamin D metabolism 
disturbance, metabolic suppression, upregulation of insulin resistance 
and inflammatory signalling pathways. Further clinical and basic 
studies are needed to explore the interactions and molecular 
mechanisms of vitamin D and DN.
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