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The repair mechanism for corneal epithelial cell injuries encompasses migration, 
proliferation, and differentiation of corneal epithelial cells, and extracellular 
matrix remodeling of the stromal structural integrity. Furthermore, it involves 
the consequential impact of corneal limbal stem cells (LSCs). In recent years, as 
our comprehension of the mediating mechanisms underlying corneal epithelial 
injury repair has advanced, it has become increasingly apparent that growth 
factors play a pivotal role in this intricate process. These growth factors actively 
contribute to the restoration of corneal epithelial injuries by orchestrating 
responses and facilitating specific interactions at targeted sites. This article 
systematically summarizes the role of growth factors in corneal epithelial cell 
injury repair by searching relevant literature in recent years, and explores the 
limitations of current literature search, providing a certain scientific basis for 
subsequent basic research and clinical applications.
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1 Introduction

The cornea, in direct contact with the external environment, stands out as one of the 
body’s tissues with the most dense innervation (1). Its structure is crucial for preserving the 
health and functionality of the ocular surface (Figure 1 shows the anatomical structure of the 
cornea). Damage to the corneal epithelium can result in corneal infections, ulcers, scar 
formation and vision loss ultimately. In recent years, factors such as surgical trauma, drug use, 
and infection have contributed to a rising number of patients with corneal epithelial injuries. 
As a result, the repair of corneal epithelial injuries has emerged not only as a prominent topic 
in basic scientific research but also as an urgent clinical problem that requires attention.

The corneal epithelium plays a crucial role in safeguarding the eye’s barrier, stabilizing the 
tear film and maintaining the microenvironment of the ocular surface (2). Currently, the 
model governing corneal epithelial homeostasis relies on the XYZ hypothesis. According to 
this framework, the migration of limbal stem cells (LSCs) towards the central region of the 
cornea (X), combined with the vertical proliferation and differentiation of basal cells (Y), 
balances with the shedding of squamous cells (Z) from the epithelial surface. Healthy eyes are 
continuously bathed in tears containing growth factors, essential substances for maintaining 
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the normal function of ocular surface tissue (3). Due to the unique 
anatomical location of the cornea, it is particularly susceptible to 
various injuries (4). When damaged, there is an upregulation of 
growth factors in tears, which target the cornea through relevant 
signaling pathways, thereby promoting corneal epithelial repair (5) 
and maintaining corneal epithelial homeostasis. Therefore, growth 
factors play a pivotal role in repairing corneal epithelial injuries and 
maintaining the normal microenvironment of the corneal epithelium.

In consideration of the aforementioned, this review aims to 
elucidate the roles played by various growth factors in the repair of 
corneal epithelial cells and comprehensively analyze their respective 
mechanisms of action. The overarching objective is to establish a 
robust scientific foundation that can serve as a springboard for 
subsequent basic research endeavors and clinical applications. The 
ensuing discussion will delve into the intricate interplay of growth 
factors within the context of repair mechanisms.

2 Growth factors involved In repair 
mechanisms

2.1 Epidermal growth factor

Epidermal growth factor (EGF) stands as one of the earliest 
identified single-chain peptides recognized for its ability to stimulate 
cell growth, playing a pivotal role in wound healing and maintaining 
tissue homeostasis by regulating cell survival, growth, motility and 
differentiation (6). In instances of corneal epithelial cell damage 
resulting from trauma, surgery or infection, EGF facilitates the 
migration and proliferation of corneal epithelial cells through the 
activation of its receptor EGFR/ErbB and subsequent binding. 
Consequently, this process promotes the effective repair of corneal 
epithelial injuries (7, 8). During the initial phases of corneal epithelial 
damage healing, EGFR1/ErbB1 tyrosine kinase instigates cellular 
signaling, activating downstream effectors such as the type III 
phosphoinositide 3-kinase (PI3K)—protein kinase B (Akt) axis and 

extracellular signal-regulated kinase (ERK). This orchestrated 
activation contributes significantly to the overall repair mechanism of 
corneal epithelial injuries (9). Furthermore, substance P also emerges 
as a noteworthy contributor to corneal epithelial injury repair, 
operating through the activation of EGFR and downstream signaling 
molecules, such as Akt (10). Abnormal activation of the EGFR-
PI3K-AKT and ERK signaling pathways may result in increased cell 
apoptosis, decreased cell proliferation and delayed wound closure 
(11). The EGFR signaling pathway can further activate nuclear factor 
kappa-B (NF-κB) and histone deacetylase 6 (HDAC6). NF-κB, in turn, 
activates the transcription inhibitor CCCTC binding factor (CTCF) 
while downregulating the paired box gene 6 (PAX6), mediating the 
migration and proliferation of corneal epithelial cells. Simultaneously, 
HDAC6 promotes the migration of corneal epithelial cells and 
contributes to injury repair (12, 13).

There are four EGF receptors, with EGFR1 showing relatively high 
expression in corneal epithelial cells and demonstrating a reparative 
effect on the cornea during epithelial injury (14). EGFR2/ErbB2 and 
EGFR3/ErbB3 have also been confirmed to be  expressed in the 
corneal epithelium, sharing a distribution pattern similar to EGFR1. 
Among them, the EGFR2/ErbB2 receptor enhances the corneal 
epithelial wound healing process by activating the ERK and PI3K 
signaling pathways (15). While the role of EGFR3/ErbB3 has not been 
fully elucidated, the existence of specific antibody inhibitors for 
EGFR3/ErbB3 has been confirmed. Utilizing these inhibitors and 
genetic techniques, studies have demonstrated that EGFR3/ErbB3 
signaling can assist in the migration of corneal epithelial cells (16, 17). 
It’s worth noting that EGFR4/ErbB4 is not expressed in the corneal 
epithelium (18).

Presently, seven EGFR ligands have been identified. In addition to 
EGF, six other endogenous ligands capable of binding to EGFR have 
been recognized, including heparin-binding EGF-like growth factor 
(HB-EGF), transforming growth factor-α (TGF-α), betacellulin 
(BTC), epiregulin, amphiregulin, and epigen. HB-EGF, integral in 
promoting growth and development, plays a crucial role, as evidenced 
by the fact that knockout mice perish shortly after birth (19). 

FIGURE 1

Histology of cornea. The cornea is structurally divided into five layers. The anterior epithelial layer comprises 5–7 layers of renewable epithelial cells. 
Behind the epithelial basement membrane lies the Bowman membrane, consisting of collagen fibers. The thickest layer, the stroma, primarily consists 
of keratocytes and collagen fibers, crucial for maintaining corneal transparency. Descemet, generated by the endothelium, is a transparent, elastic thin 
film with no distinct structure but possesses strong resistance. The endothelium is formed by a layer of hexagonal endothelial cells, incapable of 
regeneration.
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Functioning as a soluble transmembrane protein, HB-EGF binds to 
an additional domain of negatively charged polysaccharides, thereby 
enhancing in vitro cell adhesion and promoting corneal epithelial 
injury repair (20). A notable discovery in the study indicates that 
HB-EGF exhibits prolonged cell attachment compared to EGF, 
resulting in a sustained impact on wound healing following brief 
therapy (21). TGF-α, a member of the epidermal growth factor family, 
is produced by both epidermal cells and macrophages. It plays a 
crucial role in the repair of corneal epithelial injuries by initiating 
multiple signaling cascade reactions upon binding with the EGFR (18, 
22). The bidirectional interaction facilitated by TGF-α between 
corneal epithelial cells and mesenchymal cells assumes a pivotal 
morphological role in both corneal development and tissue repair. 
Any disruption in this intricate interplay can result in ocular lesions. 
Notably, TGF-α knockout mice exhibit significant ocular 
abnormalities, characterized by corneal epithelial thinning, 
inflammation, and edema (23, 24). TGF-α also promotes the 
proliferation of corneal epithelial and stromal cells (25). Additionally, 
TGF-α stimulates EGFR, facilitating the internalization and recycling 
of ligand-receptor complexes (22). Conversely, overexpression of 
TGF-α has been observed to induce corneal damage by activating 
EGFR in both corneal epithelium and stroma. This pathological 
manifestation is evident through a reduction in the number of corneal 
epithelial cell layers, corneal epithelial degeneration, 
conjunctivalization of the cornea, inhibition of the expression of the 
corneal pigment protein Kera, and a marked decrease in fibrocollagen 
types I and V collagen. Simultaneously, TGF-α overexpression can 
lead to corneal opacity by upregulating α-SMA and Wnt5a, while 
downregulating Col1a1, Col1a2, and Col5a1 (25–28). Some in vitro 
analysis of BTC indicates that BTC can expedite corneal epithelial 
injury repair and may even possess advantages over EGF in promoting 
corneal epithelial injury repair (18). LSCs, primarily located at the 
corneal-scleral junction, possess lifelong self-renewal capabilities and 
can produce transient amplifying cells (TACs). During corneal 
epithelial injury repair, TACs migrate towards the corneal center, 
proliferate, and differentiate into corneal epithelial cells, thereby 
promoting the healing of corneal epithelial wounds (29). Research has 
shown that treating injured mouse eyes with BTC results in significant 
increases in the expression of putative stem cell markers, such as 
DNp63α, ABCB5 and CK14. This suggests that BTC accelerates 
corneal LSCs proliferation and enhances mouse corneal epithelial 
repair by phosphorylating erk1/2 (30, 31). Despite the efficacy of 
various EGFR ligands in in vitro settings, in vivo wound healing is 
uniquely facilitated by EGF among the seven mentioned ligands. EGF 
also stands out as the sole ligand in human tears with an EGFR 
concentration closely aligned with the ligand Kd (18). Furthermore, 
EGFR can be  reactivated through various effectors, such as 
phospholipase D (PLD) and extracellular ATP, to foster the migration 
and proliferation of cells during the wound healing process (32). 
Transient receptor potential (TRP) non-selective cation channels 
constitute a superfamily, which contains 28 different genes, and widely 
distributed in corneal epithelial cells and endothelial cells, its 
expression in the corneal epithelial layer contributes to the 
maintenance of corneal transparency and barrier function of the 
corneal epithelium. Research has shown that TRPV1 stimulation also 
induces increases in the proliferation and migration of corneal 
epithelial cells and the release of IL-6 and IL-8, and reduces the 
formation and of corneal neovascularization (CNV) and scar through 

transactivation of the EGFR. Meanwhile, TRPC4 stimulates corneal 
epithelial proliferation and migration by transactivation of the 
EGFR. TRPV in corneal epithelium can also promote homeostasis 
under thermal stimulation (33, 34).

While EGF holds the potential to stimulate the migration and 
proliferation of corneal epithelial cells, caution is warranted, as 
excessively increasing the intensity and duration of EGF may not yield 
positive effects. An experiment assessing EGF’s effectiveness has 
revealed potential harm from continuous daily injections in rats (35). 
Furthermore, injecting recombinant EGF into the cornea post-corneal 
epithelial cell injury can lead to CNV (36). Elevated tear EGF levels 
are also associated with meibomian duct hypertrophy, contributing to 
meibomian gland hyperplasia (37). These findings underscore the 
need for caution when employing exogenous EGF in treating corneal 
injuries. Additionally, EGFR activity is a critical determinant in 
maintaining corneal epithelial homeostasis and plays a pivotal role in 
restoring damaged corneal epithelial cells. Despite the inherent 
regulatory mechanisms preventing sustained EGFR signal 
transduction, a deeper understanding of the molecular mechanisms 
governing EGFR signaling holds promise for developing new methods 
to overcome these regulatory barriers and enhance the efficacy of EGF 
(Figure 2 shows the EGF signaling pathway).

2.2 Hepatocyte growth factor

Hepatocyte growth factor (HGF) is a growth factor originating 
from fibroblasts, predominantly produced by mesenchymal cells, and 
expressed in various cell types, including corneal epithelial cells, 
keratocytes and endothelial cells. Its mode of action is paracrine, 
exerting its effects on adjacent cells (38). Structurally, HGF consists of 
α- and β-chains and serves as a mitogen and motility factor. In the 
cornea, HGF plays a significant role by binding to its receptor c-met 
and primarily participating in the proliferation, mitosis, and 
morphogenesis of corneal epithelial cells (39–41).

When the corneal epithelium undergoes damage, the expression 
of HGF in corneal epithelial cells and keratocytes is upregulated. This 
upregulation activates the signal mediators phosphatidylinositol of 
PI3K/Akt, phosphoprotein 70 ribosomal protein S6 kinase (p70s6K), 
and ERK. Consequently, it controls the cell cycle, promoting cell 
division and proliferation of corneal epithelial cells by triggering the 
activity of NF-κB. Simultaneously, it reverses the anti-proliferative 
effect of pro-inflammatory cytokines interleukin-1β (IL-1β) and 
TNF-α on these cells in the inflammatory environment, mediating 
corneal epithelial injury repair (42–46). HGF also exhibits wound 
repair effects by inhibiting the inflammatory response of corneal 
epithelial cells. Studies have demonstrated that HGF can inhibit the 
activation of immune cells and the expression of inflammatory factors. 
It further suppresses the expression of TNF-α, monocyte chemotactic 
protein-1 (MCP-1), and IL-6  in the macrophage system in vitro. 
Additionally, it promotes the production of the anti-inflammatory 
cytokine IL-10 in bone marrow-derived macrophages and dendritic 
cells stimulated by lipopolysaccharide (LPS) (43, 47–49). Evidence 
supports that HGF significantly inhibits cell apoptosis, temporarily 
downregulates the expression of cell cycle inhibitors in corneal 
epithelial cells, and upregulates cyclin and cyclin-dependent kinases. 
It also influences tumor suppressor proteins Rb and p53, which 
regulate cell cycle and apoptosis. Through these mechanisms, HGF 
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actively participates in corneal epithelial injury repair (50, 51). HGF 
also has the capability to penetrate through LPS-induced corneal 
opacity, promoting recovery, diminishing corneal fibrosis, restoring 
normal corneal tissue structure, and reestablishing immune 
quiescence after keratitis (52). In cases of diabetes-related corneal 
epithelial damage, HGF exhibits a reparative effect by restoring the 
level of c-met in the cornea of diabetic patients through downstream 
activation of p38 mitogen-activated protein kinase (MAPK) and the 
production of several putative stem cell markers. Importantly, this 
positive effect is observed in cultured corneas, regardless of whether 
gene therapy is applied to the entire corneal epithelial cells or only to 
the corneal edge area containing stem cells (53). Research indicates 
that silencing the HGF gene inhibits corneal epithelial proliferation 
and UVR-induced CNV. Additionally, HGF contributes to the 
upregulation of vascular endothelial growth factor (VEGF) and plays 
a role in angiogenesis regulation. These findings open up new avenues 
for exploring treatment strategies for CNV (54, 55).

2.3 Insulin-like growth factor

Insulin-like growth factor (IGF) belongs to the multifunctional 
cell proliferation regulatory factor, representing a group of peptide 

substances capable of promoting growth. Its secretory cells are widely 
distributed in various tissues, including the liver, kidneys, heart and 
eyes of the human body. The IGF family comprises two peptide 
ligands (IGF-1 and IGF-2), three receptors, and six binding proteins, 
collectively maintaining tissue homeostasis by regulating metabolism 
and/or mitotic pathways at the level of all corneal cells (56).

IGF-1, a multifunctional cytokine with broad biological activity, 
holds considerable promise for applications in corneal epithelial injury 
repair. By binding to the insulin-like growth factor 1 receptor (IGF-
1R), IGF-1 actively maintains and regulates corneal epithelial cell 
growth, proliferation, differentiation, maturation, migration, 
regeneration, and energy metabolism. It promotes corneal epithelial 
cell proliferation through the activation of the hybrid of IGF-1R and 
insulin receptor (INSR), leading to subsequent Akt phosphorylation. 
Additionally, IGF-1 mediates corneal epithelial cell migration through 
the PI3K/AKT pathway. Furthermore, IGF-1 promotes the expression 
of IGF receptors in corneal limbal cells, stimulating LSCs to 
differentiate into corneal epithelial cells (57, 58). Beyond its role in cell 
proliferation and migration, IGF-1 serves as a crucial neurotrophic 
factor facilitating the regeneration and restoration of nerves following 
peripheral nerve damage in the cornea (59). In combination with 
substance P, IGF-1 demonstrates a synergistic effect in promoting 
corneal epithelial injury repair. The co-application accelerates the ex 

FIGURE 2

The signaling pathway of EGF. This figure illustrates the signal transduction mechanism of EGF in corneal epithelial injury repair. EGF binding activates 
EGFR, stimulating various signaling pathways like PLCγ, Ras-GAP, Grb2, and Shc. These pathways collectively contribute to the reparative effects on 
corneal epithelial injuries.
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vivo migration of corneal epithelial cells in the injured corneal stroma. 
Mediated by the interaction between substance P and tachykinin 
receptors, it enhances the adhesion of corneal epithelium to 
fibronectin (FN) and type IV collagen, thereby augmenting the 
protective role of the corneal epithelium through the stimulation of 
wound healing (60–64). The low levels of IGF-1 in tears, particularly 
the reduced proportion of IGF-1 and IGF binding protein 3 (IGFBP-3) 
in tears of diabetic patients, have been associated with decreased 
proliferation of corneal epithelial cells and delayed wound repair. This 
change inhibits the capacity of IGF-1 to induce IGF-1R or hybrid R 
phosphorylation (65, 66). Research has demonstrated that mRNA of 
adipose-derived stem cells (ADSCs) modified with IGF-1 exhibits 
stronger cell proliferation and migration abilities, promoting wound 
repair, morphological and functional recovery, corneal nerve 
regeneration, and maintenance of corneal homeostasis after acute 
alkali burns. Importantly, it can prevent the generation of CNV and 
corneal lymphatic vessels, highlighting the crucial role of IGF-1 in the 
repair of corneal epithelial injury (60). However, the application of 
IGF-1 protein to the cornea in the form of eye drops faces limitations, 
including a limited duration of effect, elevated attrition rates, and the 
need for repeated administration. Further research is expected to 
explore new carrier forms that can overcome these shortcomings and 
enhance the effectiveness of IGF-1  in corneal injury repair. The 
expression of IGF-2 and its receptors significantly increases after 
corneal epithelial cell injury, promoting the transformation of LSCs in 
the basal layer of the cornea into corneal epithelial cells and 
subsequently supporting corneal epithelial cell repair (67). 
Additionally, both IGF-1 and IGF-2 play roles in promoting the 
proliferation of keratocytes and collagen synthesis (68).

IGFBP primarily exists in the aqueous humor and vitreous body, 
exerting unique, cell- and tissue-dependent effects through 
interactions with the IGF family via binding (69–71). The primary 
function of IGFBP is to bind to IGF-1, extending its half-life in 
circulation and preventing IGF-1R activation induced by IGF-1 (72, 
73). IGFBP-2 and IGFBP-3 play pivotal roles in corneal tissue 
homeostasis, particularly in regulating the growth of corneal epithelial 
cells and the localization of intracellular receptors (74, 75). The mutual 
regulation between IGFBP-3 and IGF-1R maintains corneal epithelial 
homeostasis. Previous studies have shown that IGFBP-3 is essential 
for inducing the transport of IGF-1R, and the absence of IGF-1R will 
downregulate IGFBP-3  in turn (76). During conditions such as 
hypoxia and hyperglycemia, the secretion of IGFBP-3 increases. For 
instance, the level of IGFBP-3 in the tears of diabetic patients rises, 
suggesting its potential role in regulating eye homeostasis in diabetic 
patients and indicating therapeutic potential in ocular surface diseases 
associated with diabetes (66).

Moreover, IGF and insulin share a close relationship, with the 
former mediating the action of insulin to promote the growth of 
corneal epithelial cells. This suggests a potential collaborative repair 
effect between the two, offering a promising avenue for future research 
exploration (77, 78).

2.4 Neurogenic growth factor

Neurogenic growth factor (NGF) belongs to the family of 
neurotrophic factors, exhibiting dual biological functions of neuronal 
nourishment and promoting synaptic growth (79). In the context of 

the cornea, signals mediated by NGF propagate through the high-
affinity receptor tropomyosin receptor kinase A (TrkA) and the 
low-affinity non-selective transmembrane glycoprotein receptor 
p75NTR. When combined with NGF, TrkA activates Ras MAPK, 
ERK, phospholipase C-γ (PLC-γ), and PI3K. This activation includes 
stimulating D-type cell cycle regulatory proteins through PI3K/Akt 
and MAPK/ERK, subsequently promoting corneal epithelial cell cycle 
progression. Simultaneously, p75NTR activates the c-Jun kinase and 
NF-kB signaling pathway, exhibiting a protective effect on corneal 
epithelial cells by inhibiting the inflammatory signaling pathway of 
NF-kB (80–82).

Research has demonstrated that NGF participates in the repair 
process of corneal epithelial and stromal damage by upregulating 
matrix metalloproteinase-9 (MMP-9) and cleaving integrins β4 to 
stimulate the migration of corneal epithelial cells, promotes the 
differentiation of keratocytes into myofibroblasts, and reduces the 
formation of corneal haze (83–85). Moreover, NGF induces the 
differentiation of goblet cells and the production of mucin through 
receptors expressed in the lacrimal gland and neural reflexes, thereby 
contributing to the maintenance of corneal epithelial function (86). In 
addition to its role in cellular functions, NGF regulates immune 
function through Toll-like receptors (TLRs) in corneal physiology and 
pathology, playing a crucial role in maintaining corneal homeostasis 
both in vivo and in vitro settings (87). NGF has also been identified as 
a key promoter for the proliferation of LSCs, the formation of colonies 
in LSCs, and the maintenance of the LSC phenotype (79). For patients 
with corneal ulcers, local application of NGF eye drops has been 
shown to improve the speed of corneal epithelial repair and the 
sensitivity of the cornea. In cases of herpes simplex keratitis (HSK), 
endogenous NGF, akin to acyclovir, significantly improves the 
condition and inhibits recurrence. Clinical studies indicate that eye 
drops containing NGF can induce complete healing in HSK patients 
resistant to acyclovir (88, 89). Treatment with recombinant human 
NGF (rhNGF) has proven effective in enhancing corneal perception 
in patients with neurotrophic keratitis (NK) by increasing the density 
and number of nerve fibers in the basal layer of the corneal epithelium. 
It also promotes the healing of persistent corneal epithelial defects and 
ulcers. Furthermore, rhNGF provides lubrication and natural 
protection against pathogen damage to the corneal epithelium by 
promoting tear secretion from the lacrimal gland. RhNGF has 
received approval as a primary therapeutic drug for NK (87, 88). 
Additionally, NGF exhibits the ability to inhibit oxidative damage 
caused by hyperosmotic stress or high glucose levels. This finding 
suggests its potential therapeutic effect on conditions such as dry eye 
syndrome and diabetic keratopathy (DK) (90, 91).

2.5 TGF-β

TGF is a protein composed of amino acids in the cytoplasm, 
belonging to the family of peptide growth factors. It includes two main 
types: TGF-α and TGF-β (92). TGF-α has been described in the EGF 
section. TGF-β is a multifunctional growth factor, further divided into 
three subtypes: TGF-β1, TGF-β2 and TGF-β3. All three subtypes and 
their receptors are expressed in corneal epithelium and keratocytes 
(93). TGF-β assumes a pivotal role in orchestrating and coordinating 
the response to corneal injury repair, exerting influence over various 
facets such as the proliferation, motility, and differentiation of corneal 
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epithelial cells. Moreover, TGF-β modulates the activity and apoptosis 
of keratocytes, as well as the development of myofibroblasts (94). By 
stimulating the migration of corneal epithelial cells through integrin 
β1, TGF-β enhances the fluidity of these cells (95). Notably, the 
conditional ablation of its type II receptor has been found to impede 
the repair of corneal epithelial wounds and the activation of p38 
MAPK, thereby hindering the migration of corneal epithelial cells 
(96). Furthermore, TGF-β2 has been substantiated to expedite the 
repair of corneal epithelial wounds in rabbits, augmenting barrier 
integrity by promoting cell adhesion to substrates and enhancing the 
functionality of corneal endothelial cells (CECs) (97). Tgfbr-2 also 
plays a crucial role in maintaining corneal stromal homeostasis, as 
studies have demonstrated that Tgfbr-2 knockout mice display 
significant corneal thinning and a potential for corneal ectasia (98). 
TGF-β3 exhibits the capability to mitigate interstitial scars induced by 
the activity of TGF-β1 and TGF-β2. Moreover, it demonstrates 
potential therapeutic effects in addressing corneal and skin wounds in 
diabetic patients, acting through the PI3K-Akt and SMAD signaling 
pathways, along with their target genes (99). Additionally, if the 
Bowman layer is damaged, corneal cells are highly susceptible to 
exposure to TGF-β. In such cases, TGF-β promotes damage repair 
through various mechanisms (100). Despite its essential role in 
corneal epithelial injury repair, TGF-β also has negative effects on the 
cornea. For instance, it can promote the aging of corneal epithelial 
cells through the NF-κB signaling pathway. This aging process can 
be alleviated by inhibiting the NF-κB signaling pathway (101). TGF-β 
is implicated in the pathogenesis of various eye diseases, including 
pterygium, vernal keratoconjunctivitis (VKC), atopic 
keratoconjunctivitis (AKC), and graft-versus-host disease (GVHD). 
Elevated levels of TGF-β are observed in the corneas of individuals 
with these diseases (102). Additionally, TGF-β regulates the 
transformation of corneal epithelial cells and corneal fibroblasts into 
myofibroblasts, and the high expression of α-SMA and F-actin in 
myofibroblasts can lead to the loss of corneal transparency and 
corresponding corneal haze (103). Moreover, TGF-β1 and TGF-β2 can 
prevent corneal epithelial cells from proliferating in vitro (104).

2.6 Platelet-derived growth factor

Platelet-derived growth factor (PDGF), secreted by epithelial cells, 
endothelial cells and inflammatory cells, serves as a potent mitogenic 
factor, existing in diverse isoforms, namely PDGF-AA, PDGF-BB, 
PDGF-CC, PDGF-DD, and PDGF-AB (105). Featuring both α and β 
types of receptors, PDGF exerts its cellular effects by inducing the 
complex formation of α-tyrosine kinase receptors and β-tyrosine 
kinase receptors. This induction, in turn, triggers processes such as cell 
growth, chemotaxis, actin recombination and protection against 
apoptosis. Analogous to TGF-β, PDGF assumes a pivotal role in 
regulating and coordinating the response to corneal wound repair. It 
influences the proliferation, motility and differentiation of corneal 
epithelial cells, while also modulating the activity and apoptosis of 
keratocytes and contributing to the development of myofibroblasts 
(94). Corneal epithelial cells express PDGF AA, PDGF BB and PDGF 
AB, which regulate the migration and proliferation of keratocytes. In 
the presence of FN, these isoforms can enhance the migration of 
corneal epithelial cells (106–108). Research indicates that PDGF-AB 
and PDGF-BB promote the migration of corneal fibroblasts in vitro, 

leading to an increase in the concentration of cytosolic free Ca2+. 
PDGF-BB also significantly stimulates DNA synthesis in bovine 
corneal endothelial cells (BCEC) and human corneal fibroblasts 
(HCF) in a dose-dependent manner (108–110). Moreover, under high 
fibroblast density, PDGF isomers act as mitogens for interstitial 
fibroblasts during wound healing, conversely, at low cell density, 
PDGF-AA and PDGF-AB can prevent cell loss during the corneal 
homeostasis process (111). The secretion of PDGF is activated during 
corneal trauma, infection, or inflammation, providing significant 
stimulation for tissue repair. However, hyperstimulation can have 
negative effects. For instance, PDGF-α hyperstimulation can promote 
the proliferation and migration of lens epithelial cells, leading to 
epithelial-mesenchymal transition (EMT) (112, 113).

2.7 Fibroblast growth factor

Fibroblast growth factor (FGF) is secreted by the hypothalamus 
and pituitary gland, serving as a broad-spectrum mitogen, currently, 
at least 23 FGF families have been identified, stimulating or 
maintaining specific cellular functions required for tissue metabolism, 
homeostasis and development through signaling axes mediated by 
their receptors (114). Corneal epithelial changes, accompanied by 
decreased vision and dry eye symptoms, have been observed after 
treatment with inhibitors of the FGF receptor (FGFR), indirectly 
indicating FGF’s involvement in corneal epithelial homeostasis (115). 
Basic FGF (b-FGF/FGF2), approved for the treatment of corneal 
damage, accelerates the repair of corneal epithelial cell damage and 
reduces keratitis by promoting the proliferation, differentiation and 
migration of corneal epithelial cells (116, 117). In experiments 
involving FGFR2 knockout mice, observations reveal localized central 
corneal thinning, along with the loss of collagen fibers and apoptosis 
of keratocytes (118). In addition, the signal transduction of FGFR2b 
promotes corneal epithelial injury repair, studies have found that 
FGFR2b knockout mice exhibit reduced proliferation of corneal 
epithelial cells, as well as loss of lacrimal gland and meibomian gland. 
FGFR2b is also necessary for the development of submandibular 
glands (119). FGF-10 plays a crucial role in the development of the 
cornea, morphogenesis and growth of the lens and induction and 
branching of the lacrimal gland and meibomian gland. Research has 
shown that FGF-10 is essential for the development of lacrimal glands 
in humans and mice (120, 121). FGF-10 can upregulate the expression 
of mucin in conjunctival epithelial cells, protecting the ocular surface 
in a dry eye model of rabbits and controlling the migration of 
epithelial cells during the process of embryonic eyelid closure (122, 
123). Additionally, FGF-10 is associated with adult tissue homeostasis 
and the function of stem cells (124). In an experimental study of DK, 
it has been found that rhFGF-21 can improve the vitality and 
migration of human corneal epithelial cells, promote the healing of 
corneal wounds and the production of tears, and improve corneal 
edema. RhFGF-21 significantly reduces the expression of 
pro-inflammatory cytokines such as TNF-α and MMPs in corneal 
epithelial cells, while increasing the level of anti-inflammatory 
molecules IL-10 and SOD-1. RhFGF-21 also inhibits excessive 
production of reactive oxygen species (ROS) and alleviates oxidative 
stress induced by hyperglycemia in corneal epithelial cells. Therefore, 
the application of drugs containing FGF-21 may be  a potential 
treatment method for DK (125, 126).
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2.8 Keratinocyte growth factor

Keratinocyte growth factor (KGF) belongs to the FGF family, 
officially known as FGF-7. It is produced by mesenchymal cells and 
acts on adjacent cells in a paracrine manner. KGF promotes the repair 
of corneal epithelial wounds through the signaling cascade of MAPK 
and PI3K/p70 S6  in corneal epithelial cells. It also inhibits the 
destruction of the barrier function caused by hypoxia in corneal 
epithelial cells by activating ERK (46, 127, 128). In vitro experiments 
have shown that KGF can protect cells from apoptosis for an extended 
period, with the final percentage of apoptosis in cells treated with KGF 
being only 10% (129). Similar to HGF, KGF has the capacity to inhibit 
UVR-induced corneal epithelial proliferation. Through gene silencing, 
it downregulates the expression of VEGF and its receptors, 
consequently mitigating CNV (48, 49). Additionally, KGF-2 exhibits 
certain effects in re-epithelialization, accelerating migration, reducing 
scar formation and edema. It is considered superior to b-FGF and 
holds potential as a new drug for treating corneal injuries (116). KGF 
also can promote the migration of LSCs, thereby promoting the repair 
of corneal epithelial damage (36).

2.9 Opioid growth factor

Opioid growth factor (OGF) is an endogenous peptide found 
together with its receptor OGFr in or on the basal layer of many 
species’ corneas, when combined, OGF regulates DNA synthesis in 
corneal epithelial cells and influences cell migration (130). 
Experimental evidence suggests that OGF inhibits cell overgrowth by 
upregulating cyclin-dependent inhibitory kinases p16 and p21, 
contributing to the maintenance of corneal epithelial homeostasis 
(131). Studies conducted on patients and rats with diabetes have 
indicated elevated levels of OGF and OGFr in serum and corneal 
epithelium. This elevation has been associated with ocular surface 
complications, including dry eyes, abnormal sensitivity of the corneal 
surface, and delayed corneal epithelial repair. In rats, an OGF-OGFr 
axis is present in the corneal limbus, and its dysregulation in 
hyperglycemia impacts the morphology of the corneal limbus, 
exacerbating diabetes-related complications on the corneal surface. 
Local application of the opioid antagonist naltrexone (NTX) has 
demonstrated improvement in this situation (132, 133). NTX disrupts 
the OGF-OGFr interaction, resulting in increased DNA synthesis in 
epithelial cells of the peripheral cornea and limbus corneae, as well as 
the proliferation of fibroblast cells. The latter plays a crucial role in 
corneal wound healing (134, 135). Additionally, the application of 
NTX significantly promotes corneal re-epithelialization and increases 
tear production (136–138). In summary, the use of eye drops 
containing opioid antagonists, such as NTX, holds promise as a novel 
therapy for treating wound repair disorders of the corneal epithelium.

2.10 VEGF

VEGF, recognized as a highly specific mitogen promoting 
endothelial cell growth, is also referred to as vascular permeability 
factor (VPF) due to its ability to significantly enhance vascular 
permeability (139). The VEGF family comprises seven subtypes: 
VEGF-A, VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F, and 
placental growth factor (PLGF). Additionally, there are three receptors, 

VEGFR-1, VEGFR-2, and VEGFR-3. Among these, VEGF-A stands 
out for its profound ability to promote angiogenesis and is the most 
prevalent subtype in the eyes (140). The VEGF family and its receptors 
are expressed in the corneal epithelium (4). Under normal 
circumstances, a delicate balance is maintained between ocular 
angiogenic factors and anti-angiogenic factors to prevent pathological 
CNV production. However, factors such as wearing contact lenses, 
inflammation, and infection can disrupt this balance and lead to CNV 
(141). Research has highlighted the crucial role of VEGF in the 
pathogenesis of CNV, making the use of anti-VEGF drugs a feasible 
therapeutic approach (142, 143). Additionally, VEGF is implicated in 
non-angiogenic functions, such as neuroprotection and serving as a 
nutritional factor for corneal nerves (144). VEGF also plays a role in 
wound repair; studies have shown that VEGF accelerates corneal 
epithelial wound healing by stimulating corneal nerve regeneration 
(145). VEGF may be linked to the pathogenesis of pterygium, with 
higher expression detected in pterygium compared to normal tissue 
(146). Pigment epithelial-derived factors (PEDFs) are closely related to 
VEGF, sharing anti-angiogenic functions and a protective role for 
corneal nerves (147). Both factors exhibit synergistic therapeutic effects 
in certain diseases. However, in pterygium, a decrease in PEDF 
expression has been observed (146). Moreover, PEDF has been found 
to promote the self-renewal and migration of LSCs, thereby facilitating 
corneal epithelial repair (148). (The expression of growth factors in the 
corneal epithelium is depicted in Figure 3, and the biological effects of 
corneal epithelial growth factor receptors are summarized in Table 1).

3 Discussion and outlook

Eye injuries often involve damage to the corneal epithelial layer, 
leading to symptoms such as eye pain, bleeding, ulcers, and vision loss, 
significantly impacting quality of life (151, 152). The repair of corneal 
epithelial injuries has emerged as a prominent research focus, with 
growing recognition of the crucial role played by growth factors in this 
process. These growth factors contribute to the wound healing of 
corneal epithelium through intricate mechanisms.

Despite the significant role of growth factors in corneal epithelial 
injury repair, there are existing limitations. The current understanding 
of the signal transduction pathways of various growth factors is not 
yet comprehensive, and their full potential as a treatment method for 
corneal epithelial injury remains to be realized. Some growth factors, 
like TGF, have stringent usage and dosage guidelines in corneal 
epithelium treatment—only within a safe usage range can they 
effectively repair the corneal epithelium. This presents a crucial and 
challenging aspect in utilizing growth factors for corneal epithelium 
treatment. For targeted repair effects of growth factors, many studies 
focus on single targets or signal pathways. The comprehensive repair 
mechanisms involving different growth factors still require further 
exploration. Additionally, some growth factors are primarily limited 
to basic research, and their potential for improving corneal epithelial 
cells in clinical practice needs further validation. Growth factors can 
be categorized into endogenous and exogenous types, with exogenous 
growth factors often utilized in experimental studies involving mice. 
However, when it comes to the role of growth factors in corneal 
epithelial injury repair, there is a noticeable gap in research and 
discussion regarding whether the mechanisms differ between the two 
types. Furthermore, in the case of the growth factor VEGF, exploring 
more suitable drug carriers could potentially enhance its therapeutic 
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efficacy. This avenue of research could lead to the development of 
more effective delivery systems for VEGF, optimizing its impact on 
corneal epithelial repair.

Future research endeavors should leverage current multi-omics 
techniques to explore and study the signaling mechanisms and 
synergistic effects of different growth factors, aiming to enhance their 
roles in corneal epithelial injury repair. Simultaneously, through 
in-depth basic and clinical research, optimizing the dosage and 
understanding side effects of growth factors can contribute to 
revealing their basic mechanisms and optimal usage methods. This 
foundational work will pave the way for the development of new 
treatment methods involving growth factors. Further research and 
exploration are essential to determine potential differences in the roles 
of endogenous and exogenous growth factors in corneal epithelial 
repair, a facet not addressed in the current study. Additionally, 
investigating ways to enhance exogenous growth factors and 

identifying more suitable drug carriers are critical for optimizing the 
use of growth factors in the future.
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FIGURE 3

Growth factor mediated repair mechanism of corneal epithelial cell injury.
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TABLE 1 Biological effects of corneal epithelial growth factor receptor.

Factor Receptor Effects on corneal wound healing References

EGF EGFR
 • Promotes migration and proliferation of epithelial cells

 • EGFR can be reactivated through various effectors
(7, 8, 12, 13, 17, 32)

HB-EGF  • Enhances cell adhesion (19)

BTC
 • Accelerates corneal epithelial injury repair

 • Accelerates the proliferation of LSCs
(18, 30)

TGF-α
 • Promotes the proliferation of corneal epithelial and stromal cells

 • Facilitates the internalization and recycling of ligand-receptor complexes
(22, 25)

HGF c-Met

 • Participates in the mitosis and morphogenesis of corneal epithelial cells

 • Promotes cell division and proliferation of corneal epithelial cells by controlling the cell cycle

 • Reverses the anti-proliferative effect of pro-inflammatory cytokines in the inflammatory environment

 • Inhibits the activation of immune cells and the expression of inflammatory factors

 • Promotes the production of anti-inflammatory cytokines

 • Suppresses apoptosis of corneal epithelial cells

 • Promotes corneal opacity recovery, reduces corneal fibrosis, normalize corneal tissue structure and 

reestablish immune quiescence post-keratitis

 • Restores the level of c-met in the cornea of diabetic patients

 • Inhibits UVR-induced corneal epithelial proliferation and CNV by HGF gene silencing

 • Participates in angiogenesis

(39–55)

IGF/INS
IGF-1R、IGF-

2R、INSR、Hybrid-R

 • Regulates metabolism and/or mitotic pathways

 • Promotes the migration and proliferation of epithelial cells

 • Facilitates the regeneration and restoration of corneal nerves

 • Accelerates the ex vivo migration of corneal epithelial cells in the injured corneal stroma

 • Enhances the adhesion of corneal epithelium to FN and type IV collagen

 • Promotes the transformation of LSCs in the basal layer of the cornea into corneal epithelial cells

 • Promotes the proliferation of keratocytes and collagen synthesis

 • Plays pivotal roles in corneal tissue homeostasis

(56–64, 67, 68, 74, 75)

NGF TrkA, p75NTR

 • Stimulates the migration of corneal epithelial cells, promotes the differentiation of keratocytes into 

myofibroblasts and reduces the formation of corneal haze

 • Induces the differentiation of goblet cells and the production of mucin regulates immune function

 • Be identified as a key promoter for the proliferation of LSCs, the formation of colonies in LSCs and the 

maintenance of the LSCs phenotype

 • Improves the speed of corneal epithelial repair and the sensitivity of the cornea of patients with corneal 

ulcers, significantly improves the condition and inhibits recurrence of HSK

 • Increases the density and number of nerve fibers in the basal layer of the corneal epithelium, promotes 

tear secretion

 • Inhibits oxidative damage caused by hyperosmotic stress or high glucose levels

(79, 83–91, 149, 150)

TGF-β
Tgfbr-1, Tgfbr-2, 

Tgfbr-3

 • Modulates the activity and apoptosis of keratocytes, modulates the development of myofibroblasts

 • Stimulates the migration of corneal epithelial cells

 • Augments barrier integrity by promoting cell adhesion to substrates and enhancing the functionality 

of corneal endothelial cells (CECs)

 • Plays an important role in corneal stromal homeostasis

 • Reduces interstitial scars promotes damage repair of Bowman layer

 • Promotes the aging of corneal epithelial cells

 • Be implicated in the pathogenesis of various eye diseases, such as pterygium

 • Regulates the transformation of corneal epithelial cells and corneal fibroblasts into myofibroblasts

 • Prevents corneal epithelial cells from proliferating in vitro

(94–103)

(PDGF) PDGF-αR, PDGF-βR

 • Promotes the proliferation, motility and differentiation of corneal epithelial cells

 • Modulates the activity and apoptosis of keratocytes and contributes to the development 

of myofibroblasts

 • Stimulates DNA synthesis in BCEC and HCF

 • Acts as mitogens for interstitial fibroblasts during wound healing

 • Prevents cell loss during the corneal homeostasis process

(94, 105–110)

(Continued)
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Glossary

EGF Epidermal growth factor

EGFR/ErbB Epidermal growth factor receptor

EGFR1/ErbB1 Epidermal growth factor receptor 1

PI3K Type III phosphoinositide 3-kinase

Akt Protein kinase B

ERK Extracellular signal-regulated kinase

NF-kB Nuclear factor kappa-B

HDAC6 Histone deacetylase 6

CTCF CCCTC binding factor

PAX6 Paired box gene 6

EGFR2/ErbB2 Epidermal growth factor receptor 2

EGFR3/ErbB3 Epidermal growth factor receptor 3

EGFR4/ ErbB4 Epidermal growth factor receptor 4

HB-EGF Heparin-binding EGF-like growth factor

TGF-α Transforming growth factor-α

BTC Betacellulin

PLD Phospholipase D

CNV Corneal neovascularization

HGF Hepatocyte growth factor

p70s6K Phosphoprotein 70 ribosomal protein S6 kinase

IL-1β Interleukin-1β

MCP-1 Monocyte chemotactic protein-1

LPS Lipopolysaccharide

MAPK Mitogen-activated protein kinase

VEGF Vascular endothelial growth factor

IGF Insulin-like growth factor

IGFBP IGF binding protein

IGF-1R Insulin-like growth factor 1 receptor

INSR Insulin receptor

LSCs Corneal LSCs

FN Fibronectin

IGFBP-3 IGF binding protein-3

ADSCs Adipose-derived stem cells

IGFBP-2 IGF binding protein-2

TrkA Tropomyosin receptor kinase A

PLC-γ Phospholipase C-γ

MMP-9 Matrix metalloproteinase-9

TLRs Toll-like receptors

HSK Herpes simplex keratitis

rhNGF Recombinant human NGF

NK Neurotrophic keratitis

DK Diabetic keratopathy

TGF Transforming growth factor

CECs Corneal endothelial cells

VKC Vernal keratoconjunctivitis

(Continued)

AKC Atopic keratoconjunctivitis

GVHD Graft-versus-host disease

PDGF Platelet-derived growth factor

BCEC Bovine corneal endothelial cells

HCF Human corneal fibroblasts

EMT Epithelial-mesenchymal transition

FGF Fibroblast growth factor

FGFR Fibroblast growth factor receptor

b-FGF/FGF2 Basic FGF

ROS Reactive oxygen species

KGF Keratinocyte growth factor

OGF Opioid growth factor

OGFr Opioid growth factor receptor

NTX Naltrexone
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