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Background: Prior investigations have indicated associations between Knee 
Osteoarthritis (KOA) and certain inflammatory cytokines, such as the interleukin 
series and tumor necrosis factor-alpha (TNFα). To further elaborate on these 
findings, our investigation utilizes Mendelian randomization to explore the 
causal relationships between KOA and 91 inflammatory cytokines.

Methods: This two-sample Mendelian randomization utilized genetic variations 
associated with KOA from a large, publicly accessible Genome-Wide Association 
Study (GWAS), comprising 2,227 cases and 454,121 controls of European descent. 
The genetic data for inflammatory cytokines were obtained from a GWAS 
summary involving 14,824 individuals of European ancestry. Causal relationships 
between exposures and outcomes were primarily investigated using the inverse 
variance weighted method. To enhance the robustness of the research results, 
other methods were combined to assist, such as weighted median, weighted 
model and so on. Multiple sensitivity analysis, including MR-Egger, MR-PRESSO 
and leave one out, was also carried out. These different analytical methods are 
used to enhance the validity and reliability of the final results.

Results: The results of Mendelian randomization indicated that Adenosine 
Deaminase (ADA), Fibroblast Growth Factor 5(FGF5), and Hepatocyte growth 
factor (HFG) proteins are protective factors for KOA (IVWADA: OR  =  0.862, 
95% CI: 0.771–0.963, p  =  0.008; IVWFGF5: OR  =  0.850, 95% CI: 0.764–0.946, 
p  =  0.003; IVWHFG: OR  =  0.798, 95% CI: 0.642–0.991, p  =  0.042), while Tumor 
necrosis factor (TNFα), Colony-stimulating factor 1(CSF1), and Tumor necrosis 
factor ligand superfamily member 12(TWEAK) proteins are risk factors for KOA. 
(IVWTNFα: OR  =  1.319, 95% CI: 1.067–1.631, p  =  0.011; IVWCSF1: OR  =  1.389, 95% CI: 
1.125–1.714, p  =  0.002; IVWTWEAK: OR  =  1.206, 95% CI: 1.016–1.431, p  =  0.032).

Conclusion: The six proteins identified in this study demonstrate a close 
association with the onset of KOA, offering valuable insights for future therapeutic 
interventions. These findings contribute to the growing understanding of KOA at 
the microscopic protein level, paving the way for potential targeted therapeutic 
approaches.
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1 Introduction

Knee osteoarthritis (KOA) is a common degenerative joint disease 
characterized by subchondral bone remodeling (1), meniscal 
degeneration (2), and inflammation of the infrapatellar fat pad and 
synovium (3), significantly impacting people’s health and quality of 
life. Studies indicate that over 80% of KOA patients are over 60 years 
old, and the condition significantly contributes to annual hospital 
admissions in developed countries (4). The onset of KOA is associated 
with factors such as aging (5, 6), obesity (7), diabetes (8), joint trauma 
(6, 9), and overuse, which lead to cartilage damage, inflammation, and 
a loss of the knee joint’s homeostasis. Symptoms typically include knee 
pain (10), swelling (11), and crepitus (11). The development of this 
pathological condition is closely tied to the regulation of intrinsic 
mechanisms, and only by understanding these mechanisms can 
we precisely and effectively halt the further progression of KOA.

In recent years, the research in the field of KOA has been 
increasingly in-depth. Current studies focus on cytokines, particularly 
those crucial to inflammation (12, 13), as well as the mechanisms of 
gene expression (14, 15) and signal transduction pathways (16–18). 
The TNF family and MMP enzyme series have been frequently 
reported to be associated with KOA (13, 19–22). While there is no clear 
consensus on the pathogenesis of KOA, there is widespread support 
for inflammatory changes playing a key role in its development. KOA 
is thought to result from an imbalance between anti-inflammatory and 
pro-inflammatory factors (6, 23–25). Therefore, this study employs 
Mendelian randomization analysis to comprehensively explore the 
causal relationships between various inflammatory factors and KOA, 
aiming to provide a reference for the future treatment of KOA.

Mendelian randomization (MR) serves as a potent analytical tool 
employed to infer the causal impact of an exposure on an outcome by 
leveraging genetic variations within non-experimental datasets (26). 
The random allocation of alleles during meiosis equips MR with the 
unique capability to address both conventional confounding variables 
and reverse causation, thereby furnishing more robust evidence for 
causal inference (27). The use of a two-sample MR analysis enhances 

researchers’ ability to scrutinize the relationships between instruments 
and exposures, as well as instruments and outcomes, across distinct 
population samples, thereby amplifying the versatility and efficacy of 
the analysis (28). In this study, we meticulously extracted authentic 
genetic variants from the summary data of a genome-wide association 
study (GWAS) comprising 91 inflammatory cytokines, with the aim 
of exploring their intricate correlations with KOA.

2 Materials and methods

2.1 MR assumptions

Three fundamental assumptions underpin MR analyses, 
specifically relevance, independence, and exclusion restriction (29). 
The foundational premise is that the selected genetic variants 
demonstrate an association with the risk factor (relevance), remain 
unaffected by any confounding factors in the risk factor–outcome 
association (independence), and exert no influence on the outcome 
through pathways other than the targeted risk factor (exclusion 
restriction). In this study, two GWAS were employed to identify 
genetically significant single nucleotide polymorphisms (SNPs) 
associated with 91 inflammatory cytokines and KOA. An overview of 
the study design is illustrated in Figure 1.

2.2 Instrumental variable selection

Initially, a genome-wide significance threshold of p < 5 × 10−6 was 
established to identify strongly associated SNPs with inflammatory 
cytokines and KOA. Subsequently, to mitigate the impact of linkage 
disequilibrium, we performed clumping on these SNPs (kb = 5,000, 
r2 = 0.01). Palindromic SNPs were excluded from the analysis due to 
uncertainty regarding their alignment in the same direction for 
exposure and outcome in the GWAS of systemic inflammatory 
regulators. In the third step, the R2 value of each SNP was utilized to 

FIGURE 1

Schematic representation of study design in Mendelian randomization (MR) analysis. Significant instrumental variables were chosen for 91 inflammatory 
cytokines and KOA, facilitating an examination of the potential causal relationships between each protein and the occurrence of KOA. This flowchart 
illustrates the three basic assumptions of MR analysis, namely, dependence, independence, and exclusion restrictions.
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calculate the proportion of variance in exposure, and the F-statistic 
was employed to estimate the instrument strength, thereby preventing 
potential biases associated with weak instruments.

2.3 Data source

The dataset encompassing GWAS for 91 circulating inflammatory 
cytokines was obtained from the investigation conducted by Zhao 
et al. (30). In their research publication, the authors conducted protein 
quantitative trait loci (pQTL) mapping in a cohort of 14,824 
individuals of European ancestry. The primary objective was to 
identify genetic variants linked to circulating inflammatory proteins 
by summarizing pQTL information within ±1 megabase surrounding 
91 candidate genes associated with these proteins. Additionally, the 
GWAS summary statistics for KOA are accessible for download from 
the study by Jiang et  al. (31). This dataset includes 2,227 cases of 
European ancestry with KOA and 454,121 controls of European 
ancestry. Importantly, there is no overlap in the selection of 
populations between the exposure group and the outcome group.

2.4 Statistical analysis

The Inverse Variance-Weighted analysis (IVW), a classical 
method in MR, mandates strict adherence to the fundamental 
assumptions of instrumental variables for all SNPs. The IVW method 
yields consistent estimates of causal effects with robust testing power 
when these instrumental variable assumptions are met. Therefore, the 
results of the IVW method were taken as the main results in our study. 
Despite its widespread use in practical applications, the IVW method’s 
assumption that all genetic variations serve as valid instrumental 
variables may face practical challenges (32). Consequently, this study 
incorporated supplementary MR methods based on distinct 
assumptions. The Weighted Median (WM) requires that 50% or more 
of SNPs function as valid instrumental variables to ensure the stability 
of effect values. The core idea behind WM is to utilize the median of 
Wald estimates from all SNPs as the ultimate MR effect value (33). 
This effectively mitigates the impact of outlier SNPs on results, 
enhancing result robustness. In situations where significant 
heterogeneity is observed in IVW estimation results, median-based 
methods can offer a valuable supplementary approach. In contrast to 
IVW, the MR-Egger method modifies the conventional requirement 
for the regression line to pass through the origin. This is achieved by 
introducing an intercept term in weighted linear regression to examine 
and correct overall horizontal pleiotropy (34). MR-Egger regression 
relaxes the exclusivity assumption of instrumental variables in MR 
methods. MR-Egger can generate consistent estimates of causal effects 
only when the direct effects of SNPs on outcomes are independent of 
the associations between SNPs and exposures (34). However, utilizing 
the same SNPs for IVW analysis when the intercept term is non-zero 
or statistically insignificant may introduce bias into results. Compared 
to other methods, MR-Egger exhibits lower testing power, potentially 
resulting in wider confidence intervals. Moreover, the method’s 
assumptions require that SNPs exhibit the same horizontal pleiotropy, 
a condition challenging to fully satisfy in practical applications.

Sensitivity analysis encompasses heterogeneity testing and 
pleiotropy testing, primarily investigated from three perspectives. (a) 

Heterogeneity testing aims to evaluate disparities among various 
instrumental variables (IVs). The Q-test method is applied to assess 
heterogeneity in both the MR-IVW model and MR-Egger model, 
conducting tests among instrumental variables using distinct statistical 
analysis methods. A p-value exceeding 0.05 indicates the absence of 
heterogeneity. In cases where heterogeneity is identified among 
instrumental variables, a random effects model (REM) based on the 
IVW method is employed to evaluate the impact of exposure on the 
outcome. (b) Pleiotropy testing primarily scrutinizes whether multiple 
IVs display horizontal pleiotropy, i.e., whether SNPs functioning as IVs 
are associated with other unrelated variables. The MR-Egger method 
is commonly utilized for assessing horizontal pleiotropy, where the 
intercept term indicates its presence if significantly different from zero 
(p < 0.05) (34). Additionally, the MR-PRESSO is utilized to identify and 
eliminate outlier SNPs, correcting horizontal pleiotropy and providing 
more robust causal estimates between exposure and outcome (35). (c) 
Leave-one-out sensitivity testing involves systematically removing each 
SNP locus using the leave-one-out method. MR analysis is then 
conducted using the remaining SNP loci to assess whether a specific 
SNP locus introduces bias into the results. Analyses were implemented 
by the package TwoSampleMR (version 0.4.25) and MR-PRESSO 
(version 1.0) in R (version 4.3.1).

3 Result

3.1 The selection results of instrumental 
variables

In adherence to the specified criteria for instrumental variable 
selection, we  conducted a meticulous screening of the dataset 
encompassing diverse proteins to identify instrumental variables 
meeting the necessary conditions. Here, we present the outcome data 
solely for positively associated proteins. Taking the ADA protein as an 
illustrative case, we identified 21 SNPs from the GWAS dataset that 
exhibited close associations (p < 5 × 10−6), demonstrated no linkage 
disequilibrium, and overlapped with the dataset for KOA. We excluded 
one palindrome SNP (rs2620728). Using the PhenoScanner database,1 
we  searched for secondary phenotypes of the selected SNPs and 
excluded the potential confounding SNP (rs1608554). The F-statistic 
values for the remaining SNPs ranged from 20.91 to 1180.03, 
confirming the absence of weak instrumental variables in the MR 
analysis. Simultaneously, MR-PRESSO analysis identified no outliers. 
Ultimately, 19 SNPs were selected as instrumental variables for 
evaluating the association between ADA protein and 
KOA. Comprehensive information regarding SNPs for other positively 
associated proteins is presented in Table 1.

3.2 Outcomes of Mendelian randomization

The IVW method unveiled a potential inverse association 
between genetically determined elevated levels of ADA protein 
(corresponding to a one-standard-deviation increase) and a 13.8% 

1 http://www.phenoscanner.medschl.cam.ac.uk/upload/
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reduction in the odds of developing KOA (OR = 0.862, 95% CI: 
0.771–0.963, p = 0.008). This finding was corroborated by results 
from the weighted median method (OR = 0.866, 95% CI: 0.758–
0.991, p = 0.037). Although MR-Egger analysis did not identify a 
statistically significant association, it indicated a consistent trend 
(OR = 0.875, 95% CI: 0.759–1.009, p = 0.083). Similar causal 
associations were observed for FGF5 protein and KOA (IVW: 
OR = 0.850, 95% CI: 0.764–0.946, p = 0.003; weighted median: 
OR = 0.814, 95% CI: 0.709–0.934, p = 0.003). The HGF protein was 
identified as a potential protective factor for KOA (IVW: OR = 0.798, 
95% CI: 0.642–0.991, p = 0.042; weighted median: OR = 0.786, 95% 
CI: 0.576–1.072, p = 0.129).

In contrast to the aforementioned proteins, our study revealed a 
significant increase in the risk of KOA associated with TNF (IVW: 
OR = 1.319, 95% CI: 1.067–1.631, p = 0.011; weighted median: 
OR = 1.356, 95% CI: 0.995–1.848, p = 0.054), CSF1 (IVW: OR = 1.389, 
95% CI: 1.125–1.714, p = 0.002; weighted median: OR = 1.544, 95% CI: 
1.135–2.099, p = 0.006), and TWEAK (IVW: OR = 1.206, 95% CI: 
1.016–1.431, p = 0.032; weighted median: OR = 1.267, 95% CI: 0.997–
1.610, p = 0.053). These proteins may serve as potential risk factors for 
the development of KOA. Results from the MR analysis of all 
inflammatory factors are depicted in Figure 2. The scatter plots of 
Mendelian randomization analyses for the aforementioned six 
proteins are exhibited in Figure 3.

3.3 Quality assurance

To assess the robustness of our findings, sensitivity analyses were 
performed using MR-Egger regression and Cochran’s Q test. The 
results demonstrate the absence of heterogeneity and pleiotropy in this 
study, as presented in Table 2. Furthermore, leave-one-out analysis 
indicates the consistent nature of the results even after systematically 
excluding individual SNPs, as illustrated in the figure. This consistency 
aligns with the outcomes of the earlier MR-PRESSO analysis. 
Collectively, these methodologies offer compelling evidence 
supporting the robustness of the study results. The diagram of leave-
one-out analysis method for those six aforementioned proteins is 
illustrated in Figure 4.

4 Discussion

Recent studies have demonstrated a close association between the 
occurrence and progression of KOA and inflammatory cytokines (23). 
Therefore, in this two-sample MR analysis, we  screened 91 
inflammatory factors for potential causal associations with KOA, 
aiming to comprehensively identify factors closely related to the 
disease. The results indicate that ADA, FGF5, and HGF may serve as 
potential protective factors against KOA, while TNF, CSF1, and 
TWEAK may be considered as risk factors for KOA. Following this, 
we  will endeavor to elucidate the potential mechanisms through 
which each factor may operate within the context of KOA.

Studies have conducted proteomic analysis on synovial fluid 
proteins in patients with psoriatic arthritis (PsA) and observed 
significant changes in the expression of ADA protein levels in 
synovial fluid with the progression of arthritis, suggesting a potential 
involvement of ADA protein in the immune processes of arthritis 
(36). A multi-omics study of serum ADA activity in rheumatoid 
arthritis patients found elevated levels of TNFα, IFN γ, and IL-10 in 
patients with hyperactive ADA, exacerbating inflammation, 
promoting osteoclast differentiation, and negatively impacting bone 
metabolism (37, 38). However, there is also research supporting the 
viewpoint that ADA protein acts as a protective factor in KOA. ADA 
is a key enzyme in purine metabolism, converting adenosine to 
inosine through its deaminase activity (39). In a mouse model of 
osteoarthritis, Mistry et  al. observed that MC615 chondrocytes 
treated with adenosine exhibited significant apoptosis (40), 
suggesting cytotoxicity due to excessive intracellular adenosine levels 
(41). This apoptotic phenomenon was similarly observed in equine 
chondrocytes (42). Our study results align with the latter perspective, 
indicating ADA as a protective factor in KOA. However, the 
underlying mechanisms require further in-depth investigation 
for clarification.

Macrophage Colony-Stimulating Factor (M-CSF), also known as 
CSF1, is a member of the hematopoietic colony-stimulating factor 
(CSF) family (43). Under normal physiological conditions, M-CSF 
binds to the CSF1R receptor on the surface of macrophages, facilitating 
the differentiation of monocytes into mature macrophages and playing 
a crucial role in immune modulation (43) and tissue repair (44). Basic 
research has uncovered that synovial fibroblasts in patients with 

TABLE 1 Summary of protein causally associated with knee osteoarthritis.

Data Proteins Initial / Final 
SNPs

MR-PRESSO 
P-Global

F Confounding 
SNPs

Palindrome 
sequence

GCST90274759 ADA (Adenosine Deaminase) 21/19 0.632 20.91–1180.03 rs1608554 rs2620728

GCST90274776 CSF1 (Colony-stimulating factor 1) 20/17 0.617 20.88–203.64 rs116443177

rs2523992

NA

GCST90274790 FGF5 (Fibroblast Growth Factor 5) 35/31 0.658 20.85–1233.21 NA rs10961630

GCST90274793 HGF (Hepatocyte growth factor) 23/19 0.745 20.89–86.58 rs851612 NA

GCST90274839 TNF (Tumor necrosis factor) 18/18 0.561 20.86–27.16 NA NA

GCST90274846 TWEAK (Tumor necrosis factor 

ligand superfamily member 12)

34/23 0.458 20.86–27.16 rs11738159

rs13107325

rs2738752

rs579459

rs74351250

rs73133996
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rheumatoid arthritis and osteoarthritis actively produce M-CSF, 
leading to the differentiation of synovial macrophages into osteoclasts 
(45). Research has found that TNF-α acts through M-CSF expressed 
by bone marrow stromal cells and stimulates the expression of the 
M-CSF gene (46, 47). In animal models, the exacerbation of collagen-
induced arthritis (CIA) severity is observed upon the exogenous 
administration of CSF1. Conversely, the knockout or neutralization of 
CSF1 demonstrates a distinct therapeutic effect (48–50). Notably, 
Giordano et al. reported a significant upregulation of CSF1 expression 
in the serum of KOA patients (51). Linear regression analysis further 
revealed a positive correlation between CSF1 levels and pain intensity 
(52). These findings not only position CSF1 as a contributory risk 
factor in the pathogenesis of KOA but also suggest that reducing CSF1 
levels holds promise as a potential therapeutic target for this 
debilitating condition.

Research indicates that synovial-like fibroblast cells (FLS) from 
osteoarthritis patients secrete more growth factors, including 
Fibroblast Growth Factor 5 (FGF5), upon exposure to 
pro-inflammatory stimuli (53). Clase et al. propose that FGF5, as a 
mitogenic stimulus for mesenchymal fibroblasts, promotes the 
proliferation of these fibroblasts, contributing to the formation of 
connective tissues such as the synovium (54). The findings of our 
study suggest that FGF5 may serve as a potential protective factor in 
KOA. Therefore, we  hypothesize that FGF5 might delay the 
progression of osteoarthritis by participating in the repair of the 
synovium, and further investigations are warranted to validate 
this assumption.

Hepatocyte growth factor (HGF) is a potent mitogen that plays 
a key role in the growth and differentiation of various tissues (55, 
56). Its anti-inflammatory activity has been reported in several 

FIGURE 2

Result of the two-sample MR analysis of 91 and KOA: ADA (IVW: OR  =  0.862, 95% CI: 0.771–0.963, p  =  0.008; WM: OR  =  0.866, 95% CI: 0.758–0.991, 
p  =  0.037). FGF5 (IVW: OR  =  0.850, 95% CI: 0.764–0.946, p  =  0.003; WM: OR  =  0.814, 95% CI: 0.709–0.934, p  =  0.003). The HGF (IVW: OR  =  0.798, 95% 
CI: 0.642–0.991, p  =  0.042; WM: OR  =  0.786, 95% CI: 0.576–1.072, p  =  0.129).TNFα (IVW: OR  =  1.319, 95% CI: 1.067–1.631, p  =  0.011; WM: OR  =  1.356, 
95% CI: 0.995–1.848, p  =  0.054), CSF1 (IVW: OR  =  1.389, 95% CI: 1.125–1.714, p  =  0.002; WM: OR  =  1.544, 95% CI: 1.135–2.099, p  =  0.006), TWEAK (IVW: 
OR  =  1.206, 95% CI: 1.016–1.431, p  =  0.032; WM: OR  =  1.267, 95% CI: 0.997–1.610, p  =  0.053).CD5 (MR Egger: OR  =  0.621, 95% CI: 0.400–
0.964,p  =  0.046), CXCL6 (MR Egger: OR  =  1.452, 95% CI: 1.205–1.749, p  =  0.046), FGF19 (MR Egger:OR  =  1.780, 95% CI: 1.126–2.815, p  =  0.023), IL18 
(MR Egger:OR  =  0.878, 95% CI: 0.777–0.991,p  =  0.044),TRAIL (MR Egger:OR  =  0.808, 95% CI: 0.661–0.988, p  =  0.049).
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disease animal models and across multiple organ systems (57). 
Research indicates that HGF significantly induces FLS to secrete 
chemokine MCP-1, promoting the migration of monocytes and 
macrophages to sites of inflammation or injury (58). These cells 
then secrete TGF-β1 and BMP-2, contributing to the formation of 
osteophytes (58). Adding HGF to in vitro cultures of primary 
chondrocytes from rabbits and rats leads to a substantial increase 
in proteoglycan synthesis and cell proliferation rates, demonstrating 
its role in supporting articular cartilage repair (59). Mohammad 
A. J. and colleagues (60) found that HGF works in conjunction with 
TGF-β and IDO, immune-regulatory enzymes, to enhance the 
immunosuppressive properties of human mesenchymal stem cells 
(MSCs). This results in a reduction in the infiltration of 
inflammatory cells and supports tissue repair and regeneration. This 
is consistent with the findings of our study, suggesting that HGF is 

a protective factor in KOA. HGF may potentially delay disease 
progression by participating in the regulation and repair of articular 
cartilage homeostasis.

Tumor Necrosis Factor-α (TNFα) is a common inflammatory 
factor and a crucial participant in osteoarthritis. Terkeltaub R’s 
team (61) reported that their studies on primary chondrocytes 
from humans and mice revealed that TNFα can induce the 
production of matrix metalloproteinases (MMPs), prostaglandin 
E2 (PGE2), and nitric oxide (NO), leading to a decrease in 
chondrocytes and joint cartilage destruction. The infrapatellar fat 
pad can also produce TNF-α, and this autocrine effect plays an 
important role in the pathological changes seen in KOA (62). 
Studies have shown a significant increase in TNF-α expression in 
tissues from OA patients compared to normal subjects, and 
elevated levels of TNF-α in joint fluid may accelerate the 

FIGURE 3

Scatter plots of Mendelian randomization analyses between KOA and 91 inflammatory cytokines. Individual inverse variance (IV) associations with KOA 
risk are displayed versus individual IV associations with cytokines in black dots. The 95%CI of the odds ratio for each IV is shown by the vertical and 
horizontal lines. The slope of the lines represents the estimated causal effect of the MR methods. (A–F): ADA, CSF1, FGF5, HGF, TNFα, and TWEAK.

TABLE 2 Pleiotropy and heterogeneity test for 91 inflammatory cytokines on knee osteoarthritis.

Proteins Pleiotropy Test Heterogeneity Test Cochran’ Q

MR-Egger-
intercept

MR-Egger_P MR-PRESSO_P MR Egger_Q MR Egger_P IVW_Q IVW_ P

ADA −0.006 0.740 0.632 16.988 0.455 17.102 0.516

CSF1 0.021 0.477 0.617 14.338 0.500 14.870 0.534

FGF5 0.010 0.519 0.658 25.721 0.640 26.147 0.668

HGF 0.010 0.694 0.745 13.224 0.721 13.384 0.768

TNF −0.003 0.885 0.561 15.528 0.486 15.550 0.556

TWEAK −0.008 0.720 0.458 21.955 0.402 22.093 0.454
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progression of OA (12). A meta-analysis on TNF-α gene 
polymorphism and the risk of KOA indicated a close association 
between TNF-α expression levels and genetic polymorphism. 
Patients carrying alleles such as TNF-α-G308A exhibited higher 
TNF-α levels and a heightened risk of developing osteoarthritis 
(63). Clinical research indicates that targeting TNFα with 
adalimumab (64) and natural extracts such as curcumin (65) and 
Aflapin (66) can provide safe and effective relief from pain and 
other symptoms associated with KOA. This aligns with the results 
of our study: TNFα is a risk factor for KOA. Strategies to reduce 
TNF expression levels may be a potential avenue for the treatment 
of this condition.

Tumor necrosis factor ligand superfamily member 12, also 
known as tumor necrosis factor-like weak inducer of apoptosis 
(TWEAK), is associated with inflammation and plays a role in 
immune regulation, cell apoptosis, and tissue recovery and 
reconstruction before the onset of inflammation (67). Research has 
revealed that upon binding to its receptor Fn14, TWEAK induces 
the generation of matrix metalloproteinase-1 (MMP1) (68, 69). 
While MMP-1 maintains low expression in normal cells and 
promotes the regeneration of healthy cartilage, pathological 
conditions can lead to its overexpression. This excess expression 
results in the degradation of type I, II, and III fibers in the 
extracellular matrix, facilitating cartilage destruction and 
exacerbating the progression of OA (70). Additionally, TWEAK is 
believed to inhibit cartilage and bone formation, further 
intensifying the likelihood of cartilage degradation (71). Hwang 
et  al. assessed TWEAK levels in joint fluid from patients with 
different stages of OA (72). They highlighted that high levels of 
TWEAK are linked to pro-inflammatory responses and accelerated 

cartilage destruction, particularly during the early stages of the 
disease. This interaction may be  facilitated by the relationship 
between TWEAK and MMP1. Therefore, as a relevant risk factor 
for KOA, the expression levels of TWEAK can serve as an early 
screening marker for this condition.

In this investigation, we utilized Mendelian randomization to 
evaluate the causal association between KOA and 91 inflammatory 
cytokines. Regarding the interactions among the few factors 
mentioned in the article, we conducted further analysis to explore 
potential mediating effects. The results continue to support our 
original conclusions. (Refer to the Supplementary material for 
details) However, several limitations need consideration. Firstly, 
when selecting an SNP filtering threshold, a stringent threshold may 
lead to an insufficient number of SNPs available for analysis, resulting 
in inaccurate estimates of causal effects. Therefore, we opted for a 
more lenient threshold, which increased the number of SNPs 
included in the analysis within a certain range. However, this may 
introduce weak instrumental variables and increase interference from 
confounding factors and horizontal pleiotropy. To address this, 
we filtered out weak instrumental variables based on the F-value 
calculation and conducted sensitivity tests to exclude horizontal 
pleiotropy. We  adopted a relatively strict confounder removal 
standard, though there may still be omissions, especially when SNPs 
are associated with unreported confounding factors. Secondly, our 
survey data originated from two extensive GWAS, and the absence of 
specific demographic information and clinical records for study 
patients hindered subgroup analysis. Thirdly, caution is warranted 
regarding potential racial bias, as the subjects exclusively belonged to 
European descent, limiting the generalizability of results to other 
ethnicities. Further studies are crucial to validate our findings and 

FIGURE 4

Analysis diagram of leave-one-out method: (A–F): ADA, CSF1, FGF5, HGF, TNFα, and TWEAK.
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explore their applicability to clinical diagnostic procedures and 
treatment options.
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