
TYPE Original Research

PUBLISHED 18 March 2024

DOI 10.3389/fmed.2024.1381758

OPEN ACCESS

EDITED BY

Kai Jin,

Zhejiang University, China

REVIEWED BY

Lichao Yang,

Cranfield University, United Kingdom

Lei Wang,

Wenzhou Medical University, China

*CORRESPONDENCE

Quanyong Yi

quanyong_yi@163.com

Shaodong Ma

mashaodong@nimte.ac.cn

†These authors have contributed equally to

this work

RECEIVED 04 February 2024

ACCEPTED 04 March 2024

PUBLISHED 18 March 2024

CITATION

Zhu X, Huang W, Ma S and Yi Q (2024) Robust

and accurate corneal interfaces segmentation

in 2D and 3D OCT images.

Front. Med. 11:1381758.

doi: 10.3389/fmed.2024.1381758

COPYRIGHT

© 2024 Zhu, Huang, Ma and Yi. This is an

open-access article distributed under the

terms of the Creative Commons Attribution

License (CC BY). The use, distribution or

reproduction in other forums is permitted,

provided the original author(s) and the

copyright owner(s) are credited and that the

original publication in this journal is cited, in

accordance with accepted academic practice.

No use, distribution or reproduction is

permitted which does not comply with these

terms.

Robust and accurate corneal
interfaces segmentation in 2D
and 3D OCT images

Xueli Zhu1,2†, Wei Huang2,3†, Shaodong Ma2* and Quanyong Yi4*

1Department of Ultrasound, The First A�liated Hospital of Ningbo University, Ningbo, China, 2Institute

of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese

Academy of Sciences, Ningbo, China, 3Department of Biomedical Engineering, Hainan University,

Hainan, Haikou, China, 4Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China

Segmentation of corneal layer interfaces in optical coherence tomography

(OCT) images is important for diagnostic and surgical purposes, while manual

segmentation is a time-consuming and tedious process. This paper presents a

novel technique for the automatic segmentation of corneal layer interfaces using

customized initial layer estimation and a gradient-based segmentation method.

The proposed method was also extended to three-dimensional OCT images.

Validation was performed on two corneal datasets, one with 37 B-scan images

of healthy human eyes and the other with a 3D volume scan of a porcine eye.

The approach showed robustness in extracting di�erent layer boundaries in the

low-SNR region with lower computational cost but higher accuracy compared

to existing techniques. It achieved segmentation errors below 2.1 pixels for both

the anterior and posterior layer boundaries in terms of mean unsigned surface

positioning error for the first dataset and 2.6 pixels (5.2 µm) for segmenting all

three layers that can be resolved in the second dataset. On average, it takes 0.7

and 0.4 seconds to process a cross-sectional B-scan image for datasets one

and two, respectively. Our comparative study also showed that it outperforms

state-of-the-art methods for quantifying layer interfaces in terms of accuracy

and time e�ciency.
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1 Introduction

Optical coherence tomography (OCT) can produce detailed cross-sectional images of

internal structures in biological tissues (1). Because of its non-invasive and non-contact

characteristics, it has been widely used in clinical ophthalmology (1–3), particularly in the

retina (1, 2) and cornea (3). Measurements derived from OCT images, such as corneal

layer thickness and curvature, can provide important diagnostic information for the

management of ectasia, angle assessment, corneal abnormalities and anterior segment

tumors (4). Reliable and accurate segmentation methods are required for automatic

processing of corneal OCT images to obtain corneal parameters (5, 6), while manual

segmentation is not feasible due to the large volume of OCT data generated in clinics.

Several approaches to automated corneal segmentation have been proposed to

address the aforementioned issue, with varying degrees of success. Li et al. (5, 7)

proposed a fast active contour (FAC) algorithm with second-order polynomial fitting for

automated corneal segmentation. Eichel et al. (8) presented a semi-automatic segmentation

method using enhanced intelligent scissors and a global optimization method.
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Shen et al. (9) used a novel method for the anterior segment

without segmenting the posterior surface. However, none of the

above methods can effectively deal with image regions with a

low signal-to-noise ratio (SNR) or artifacts introduced during

image acquisition, such as the central and horizontal artifacts

described in Section 2. More robust methods have been proposed

in recent years. LaRocca et al. (10) presented an approach based on

graph theory and dynamic programming with better segmentation

performance in terms of robustness against artifacts. A customized

Hough transform and refinement using Kalman filtering by Zhang

et al. (11) is proposed for low computational cost. However, these

studies modeled the interface as a parabola, which is not suitable

for uneven layer interfaces. Furthermore, extrapolation into the low

SNR region is an inaccurate way to segment corneal boundaries.

William et al. proposed a level set with shape constraint model (12)

and a graph cut model (13), but both require customized optimal

weighting. Deep learning based methods have emerged in recent

years. dos Santos et al. (14) proposed a modified U-net model with

fewer parameters and fast processing speed. Unfortunately, deep

learning techniques require a large amount of labeled data and

intensive computational effort for training.

To address the above-mentioned limitations, we propose a

novel gradient-based segmentation technique for corneal layer

boundaries in this paper. It not only works in two-dimensional

(2D) B-scans, but also can be extended to three-dimensional

(3D) corneal images segmentation. The proposed method is able

to detect the corneal layer boundaries accurately with lower

computational cost compared to other state-of-the-art methods, by

equipping with novel initial estimation and refinement techniques.

The proposed method has been evaluated on two newly-

constructed AS-OCT datasets with expert manual annotation, and

the results have demonstrated the superiority.

2 Materials and methods

The proposedmethod involves three key stages: pre-processing,

estimation and refinement of the anterior corneal surface, and

estimation and refinement of the other layers including the

posterior surface and the epithelial-stromal interface (if visible).

The whole process is illustrated by the flowchart in Figure 1. In this

paper, the following notations are used to describe the proposed

segmentation technique: Y and X denote the depth and width of an

image, respectively. The width and height of an image range from

1 to X and from 1 to Y respectively. The intensity of a pixel at (x, y)

of an image I is represented by I(x, y).

2.1 Materials

This study was approved by the ethics committee of the Cixi

Institute of Biomedical Engineering, Chinese Academy of Sciences,

and adhered to the principles of the Declaration of Helsinki.

Written informed consent was obtained from each subject before

they participated in the study.

Two datasets were used in the experiments. Dataset1 consists of

37 anterior segment OCT (AS-OCT) B-scan images of healthy eyes

acquired with a Visante AS-OCT system [seeWilliams et al. (13) for

details]. Briefly, each image covers a 16mmwide region sampled by

256 A-scans of 1024 points to a depth of 8mm. The pixel resolution

is therefore 60µm×18µm. All images were manually delineated by

two ophthalmologists, one of whom marked the images twice in a

masked fashion. All 37 images were used as test data for validation.

Dataset 2 is a 3D volume scan of a porcine cornea acquired with

an in-house spectral domain OCT device at a scan rate of 100 µs

per A-scan using a light source with a central wavelength of 840

nm. It consists of 421 raster B-scan images of a 15.1 mm region.

The images have an axial resolution of 1.9 µm and a transverse

resolution of 15 µm with a gap of 20 µm between consecutive

B-scans. Three visible layer interfaces (air-epithelium, epithelium-

stroma and endothelium-aqueous) of randomly selected 6 B-

scans were manually marked twice by an experienced grader for

validation purposes.

All images in dataset 1 generated by AS-OCT were used to

evaluate the performance of the algorithm. These images were

acquired using the Visante AS-OCT system, which is a time-

domain system that acquires images at 2,000 axial scans per second

in 1,300 nm infrared light. Each B-scan, 37 B-scans in total, consists

of 816 A-scans and 406 lateral pixels in each A-scan. The scan width

and depth are 16 mm and 8 mm respectively. The pixel resolution

is therefore 19.70 µm × 19.60 µm. The layer interfaces for all 37

test datasets weremarked by three different graders simultaneously.

Test data for the second dataset, obtained from a home-made OCT,

was generated by randomly selecting 6 B-scans from a pool of

421 OCT images. The layer boundaries for the test data were then

delineated by an experienced grader. The scan rate of the home-

built spectral domain OCT system is 100 ms in each A-scan using

a light source with a central wavelength of 840 nm. Each B-scan

image contains 1000 A-scans of 15.11 mm with 1024 pixels of

1.9511 mm. The pixel resolution for the second dataset is therefore

1.905 µm× 15.113 µm.

2.2 Pre-processing

The first step is to remove unwanted structures and noise (e.g.,

the iris and high intensity artifacts at the apex position) from the

image, as shown in Figure 2, to reduce their detrimental effect on

segmentation performance. This is achieved by cropping the image,

after which all the content remaining in the image becomes a region

of interest (ROI). It is observed that the apex of the cornea in OCT

images has a relatively higher intensity than the region above it, as

the scattered light from other regions is much weaker than that

in the center. Based on this observation, the top resizing location

can be obtained by finding the first local maximum of intensity

summation in each row by the equation S(y) =
∑x=X

x=1 I(x, y) above

a threshold (in this case, mean intensity summation is used) to

reduce computational cost. Therefore, all rows 15 pixels above are

empirically cropped. Similarly, the lower resizing position can be

estimated from typical corneal thickness and the axial resolution

of the image. The left and right parts are also cropped to remove

unwanted structures and the low SNR region on both sides.

As shown in Figure 2, two main types of artifacts are present

in OCT images: horizontal artifacts and central noise artifacts. The

former appears as long horizontal stripes of high intensity, while the
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FIGURE 1

Flowchart of the proposed method to segment the corneal layer interface.

FIGURE 2

Example OCT images showing low SNR regions, horizontal artifacts, central artifacts and the iris. (A) An example image in Dataset1. (B) An

zoomed-in cornea image in Dataset2.

latter is characterized as a vertical saturation region. It is essential to

eliminate these artifacts as they have a significant negative impact

on the segmentation algorithm.

The horizontal artifact is characterized as adjacent rows with

higher mean intensity than others, an efficient way to mitigate it is

to subtract the pixel value of each row from the mean intensity of

that row.

The central noise artifact is detected by finding a sudden

increase in the average intensity of the A-scans, as it is characterized

by relatively higher intensity pixels vertically. The whole image is

divided equally into three regions and the average intensity (µ) of

the A-scans in the peripheral region is calculated. Assuming that

the central artifact only occurs in the central region, we therefore

consider the A-scan in the central region above a certain threshold

[ 43µ (10)] as the region contaminated by the central artifact. Once

the artifact is detected, the region within the artifact is not included

in the subsequent processes.

It is necessary to suppress noise in OCT images as the additive

thermal and electronic noise can degrade the performance of the

algorithm. A 5×5 Wiener denoiser (15) is used to increase the

image SNR. For simplicity, the image after artifact suppression and

denoising is still denoted as I(x, y).

2.3 Coarse segmentation of anterior
surface

In this section we will focus on approximating the position

of the anterior surface boundary, as the air-epithelium interface

is generally the region with the best quality (high SNR) in OCT

images. The main feature used in the search is the bright-to-

dark or dark-to-bright transitions in the axial (vertical) direction.

Instead of using a gradient with a directional filter to extract the

corresponding boundary (10), a novel adapted estimation method

is presented.

It is observed that relatively high pixel intensity occurs at

adjacent corneal layer boundaries as a result of over-exposure

of reflected and scattered light at the edge in the OCT system.

Therefore, the position of the anterior interface can be easily

estimated based on the prior assumption that the strongest

response of an OCT system (the pixel with the highest intensity)

in each A-scan mostly occurs near the corneal boundary instead

of random noise. In addition, only pixels with local maxima in A-

scans are considered as candidate pixels to reduce computational

cost and improve accuracy by excluding other pixels.

To estimate the anterior corneal boundary, we defined a

“boundary function” to characterize the corneal interface. In

essence, the “boundary function” is a mathematical optimisation

objective function that aims to determine the position of the

boundary in each A-scan. Therefore, the anterior boundary can be

obtained by maximizing the “boundary function” in a predefined

region according to pixel resolution and layer thickness to find the

optimal input argument. The function is defined in each A-scan in

the Equation 1.

G(x) = T+(x)− T−(x) (1)

Two constraints are used in this function to characterize the

corneal boundaries (Equation 2). T+(x) is used to account for the

difference in pixel intensity between two boundary pixels as a

result of over-exposure of scattered and reflected light. The second

constraint, T−(x), aims to test the lowest intensity of all candidate

pixels between two boundary pixels, as there is less scattered light

within the corneal layer with similar tissue. The anterior surface is
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FIGURE 3

Corneal boundaries in an A-scan.

coarsely segmented by finding the top pixel in the axial direction,

as shown in Figure 3.

T+(x) = |I(x, y1)− I(x, y2)| y1, y2 ∈ [1,Y]

T−(x) = minµ∈[y1,y2] I(x,µ)
(2)

Due to noise in low-SNR regions, the stability problem that

some candidate pixels are in random noise should be addressed. To

deal with random noise in low-SNR regions (usually in the outer

parts), a second-order polynomial approximation (5, 7, 10) is used

to fit the profile to eliminate the effect of random noise and form

a smooth boundary (other layer boundaries without a predefined

approximation model can simply use a median filter to address

this problem).

2.4 Refinement of segmentation

In this section, a novel method is proposed to refine the

boundary estimated above. In order to precisely refine the layer

boundary, the tactic used is that the latter boundary pixels are

determined based on the previously determined boundary pixels

with a constant decay weight.

The actual boundary is defined as the maximum intensity

change (dark to light or light to dark) in the axial direction.

Therefore, the actual layer boundary is found by the maximum

absolute vertical gradient. Assuming that the SNR in the center of

the corneal image is relatively high compared to the outer part, a

non-linear adjustment is considered here, which means that actual

boundary pixels at the periphery needmore actual central boundary

pixels to be confirmed, while central boundary pixels need only a

small amount of actual interface pixels to be decided. Therefore,

the whole image in the center is divided into two parts to find the

actual boundary.

First, the magnitude of the image gradient in the axial direction,

symbolized as g(x, y), is calculated using the forward difference

procedure MAXGRAD(g(x, y), fe(x)) ⊲ image

gradient:g(x, y), estimated pixels : fe(x)

limited search region: a ∈ predefined region

geometric distribution factor: p ⊲ normalized

linear distribution

fnew(x)← fe

for each pixel (I, fnew(I)), I ∈ X, from center C to

periphery do

Ta ←
∑I

i=C[g(fnew(i)+ a)× p(1− p)i−C+1] ⊲ right portion

as example

fnew(I)← argmax(Ta)

end for

return fnew(x)

end procedure

Algorithm 1. Boundary refinement.

gradient operator ∂I
∂y =

I(x,y+1)−I(x,y)
2 , and then for each of the

latter refined boundary pixels from the center to the periphery is

determined based on the maximum summation of the absolute

gradient of all previously determined boundary pixels with a

geometric distribution decay (constant p) according to Equation 3

by iteratively shifting previous refined pixels up and down in a

limited search region (in this case with 5 pixels up and down from

the approximated air-epithelium layer interface). The pseudocode

for the detailed refinement procedure is shown in Algorithm 1.

y = f (x|p) = p(1− p)x; x = 0, 1, 2, ... (3)

After the actual air-epithelium is detected with the proposed

method, to smooth the curve of the layer interface, the Savitzky-

Golay filter (16–18), with the first-order polynomial and 21-

frame length (11), is implemented. Figure 4 shows the refined

anterior surface.

2.5 Estimation of other layer interfaces

Our proposed method for approximating other layers is

based on the refined air-epithelium layer interface, as they will

have similar boundary profiles. Other layer interfaces can be

estimated by maximizing the summation of the absolute gradient,

according to the Equation 4, in a region S vertically below the air-

epithelium profile (based on typical thickness and pixel resolution).

Approximations of other layers in different datasets are shown in

Figure 4.

argmaxµ∈S
∑

g(x, f (x)+ µ) (4)

2.6 Refinement of other layer interfaces

Refinement of other layer interfaces based on the initial

estimation in Section 2.5 is performed using a similar technique

to that used to adjust the air-epithelium interface in Section

2.4. According to Liu et al. and González-Méijome et al.
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FIGURE 4

Example segmentations on di�erent datasets. Red and green lines represent the segmented anterior and posterior layer boundaries (misalignment

highlighted in cyan). The yellow line shows the epithelium-stroma interface. (A) Coarse segmentation in Dataset1. (B) Coarse segmentation in

Dataset2. (C) Final segmentation in Dataset1. (D) Final segmentation in Dataset2.

(19, 20), the cornea is relatively thinner at the center than at

the periphery, as shown in Figure 4. Therefore, a normalized

linear growth geometric distribution factor p (p ∈ [0, 1])

from the center to the periphery is used based on the locality

of the data points, which means that the approximated data

points at the periphery have more ability to explore the layer

interface instead of considering the predetermined candidate

pixels more than those at the center. However, due to the

low SNR at the periphery near the layer boundary, the issue

of segmentation stability is raised. To address this issue of

refinement flexibility, the refinement technique in the Section 2.4

is again used with a low geometric distribution factor for curve

smoothing. Figure 4 shows the final segmentation of all visual

corneal layers.

2.7 Three-dimensional segmentation

Reconstruction of 3D surface maps of the cornea follows the

method for segmentation of 2D B-scans described in the previous

sections. There are three main steps: preprocessing, estimation

and refinement.

Similar processing steps are implemented to crop the 3D

volume image to ensure that only the ROI remains and that various

artifacts are removed.

To estimate the air-epithelial interface, the “boundary function”

approximation described in Section 2.3 is used with a quadratic

surface fit to eliminate the effect of random noise. A similar

refinement technique is used in Section 2.4. In 3D segmentation,

the starting pixel is in the center of the cornea as we assume

that high resolution is presented in the center of the image while

low SNR appears in the periphery. For non-linear adaptation,

additional information from neighboring pixels was introduced.

Candidate pixels are considered using geodesic distance transform

(here the city block method is used) (21). Each candidate pixel

from the center to the periphery (the distance after transformation)

is determined based on the maximum summation of the absolute

gradient of all previously refined pixels with geometric distribution

decay in a limited region, which means that the algorithm

considers more the neighboring candidate pixels and less the

distant candidate pixels. A 3×3×3 median filter is used for

curve smoothing.

Other layer interfaces can be approximated by maximizing the

sum of the absolute gradient of all estimated pixels in a limited

region by shifting the refined air-epithelium profile, following

Equation 5.

argmaxµ∈S
∑

g(x, y, f (x, y)+ µ) (5)

Then the same refinement method mentioned above is used to

find the actual boundary pixels. The final segmentation result is

shown in Figure 5.

2.8 Experiments

The algorithm is implemented in Matlab and runs

without parallel processing on a Win10 64-bit OS

PC with Intel Core i5-7500 CPU @ 3.40 GHz and

8.00 GB RAM.

To evaluate the performance of our method and the other

(13), the segmentation results of different layer surfaces were

compared with the ground truth described in Section 2.1. The

mean unsigned surface position error (MSPE) (13) is used as a

metric to evaluate performance. In order to examine the intra-

and inter-observer agreement, for Dataset1 the annotations of the

same observers and between observers were also compared. For

Dataset2, due to data availability, only intra-observer variation

was assessed.
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FIGURE 5

Surfaces reconstructed from 3D segmentation.

TABLE 1 Results on Dataset1 in mean unsigned surface positioning error.

Corneal layer boundary Proposed
method

Williams’
method

Inter-observer
variation

Intra-observer
variation

Anterior 0.62± 0.61 1.21± 1.64 0.80± 0.90 0.92± 1.46

Posterior 2.15± 2.26 2.82± 1.26 1.25± 1.46 1.62± 2.33

3 Results and discussion

The proposed method was first compared with Williams et al.

(13), which used dataset1. The comparison results between the

proposed method and that of Williams et al. are summarized in

Table 1. A significant improvement in accuracy can be observed:

our mean ± standard deviation MSPEs on the anterior and

posterior interfaces are 0.62 ± 0.61 and 2.15 ± 2.26 pixels, while

theirs are 1.21 ± 1.64 and 2.82 ± 1.26 pixels. In addition, the

processing time of our proposed algorithm (0.74 s) is much

lower than theirs (2.53 s). Furthermore, an observer variation

test was also performed, as shown in Table 1. The mean pixel

error of our method for the anterior boundary (0.62 ± 0.61)

is lower than the interobserver variation (0.80 ± 0.90) and the

intraobserver variation (0.92 ± 1. 46), and the mean pixel error

of our method for the posterior boundary (2.15 ± 2.26) is slightly

higher than the inter-observer variation (1.25± 1.46) and the intra-

observer variation (1.62 ± 2.33). These results demonstrate the

good performance of our proposed method.

The proposed method was also tested on Dataset2 and

the results are summarized in Table 2. The MSPE in pixels

for all three layers (2.67 ± 0.40 pixels for epithelium-air, 2.30

± 0.40 pixels for epithelium-stroma and 2.62 ± 0. 44 pixels

for endothelium-aqueous) are lower than those of the intra-

observer variation (4.47 ± 5.76 pixels for epithelium-air, 5.90

± 4.25 pixels for epithelium-stroma, and 5.14 ± 3.13 pixels for

TABLE 2 Results on Dataset2 in mean unsigned surface positioning error.

Corneal layer
boundary

Mean ± standard
deviation

Intra-
observer
variation

Epithelium-air 2.67± 0.40 4.47± 5.76

Epithelium-stroma 2.30± 0.39 5.90± 4.25

Endothelium-aqueous 2.62± 0.44 5.14± 3.13

TABLE 3 3D segmentation results in Dataset2.

Mean unsigned surface positioning error (MSPE)

Corneal layer boundary Mean ± standard deviation

Epithelium-air 7.06± 9.03

Epithelium-stroma 7.03± 10.31

Endothelium-aqueous 12.47± 13.10

endothelium-aqueous). Considering the high resolution of the

images, the actual error is comparatively small, e.g. the MSPE

is 5.2 µm for the endothelium-aqueous layer interface, which

is comparable to those of other methods (10, 11, 13). The

technique has demonstrated high speed segmentation with an

average segmentation time of 0.42 seconds per image for three

visible interfaces.
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FIGURE 6

Segmentation of the epidermal layer of a fingerprint with uneven surfaces, where the red and blue curves represent the anterior and posterior layer

interfaces, respectively.

To test the performance of our extended 3D segmentation

method, the surfaces of the layer interfaces were constructed using

our proposed 2D segmentation method on each B-scan image

in Dataset2. In our experiment, B-scans from 51 to 310 were

segmented to construct the surfaces. The surfaces from the direct

3D segmentation method were compared with those from the 2D

constructed surfaces, and the results are shown in Table 3.

To further demonstrate the robustness of the proposed

algorithm, an OCT image of a fingerprint image was segmented

and the results are shown in Figure 6. Although the layer interfaces

are more irregular compared to those of the cornea, the results

are appealing and demonstrate the robustness of our method in

dealing with complex surfaces such as the diseased cornea in the

future.

4 Conclusion

A novel technique for automatic segmentation of corneal layer

interfaces in OCT images has been proposed and validated. The

proposed method outperforms state-of-the-art methods in terms

of accuracy and time efficiency. The method is extended to 3D

segmentation with relatively high accuracy. The method could

be used to segment more layer boundaries resolved by OCT

imaging techniques. Thus, the method has significant potential for

clinical care.
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