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Introduction: Sarcoidosis is a multi-system inflammatory disease of unknown 
origin with heterogeneous clinical manifestations varying from a single organ 
non-caseating granuloma site to chronic systemic inflammation and fibrosis. 
Gene expression studies have suggested several genes and pathways implicated 
in the pathogenesis of sarcoidosis, however, due to differences in study design 
and variable statistical approaches, results were frequently not reproducible or 
concordant. Therefore, meta-analysis of sarcoidosis gene-expression datasets 
is of great importance to robustly establish differentially expressed genes and 
signalling pathways.

Methods: We performed meta-analysis on 22 published gene-expression 
studies on sarcoidosis. Datasets were analysed systematically using same 
statistical cut-offs. Differentially expressed genes were identified by pooling of 
p-values using Edgington’s method and analysed for pathways using Ingenuity 
Pathway Analysis software.

Results: A consistent and significant signature of novel and well-known genes 
was identified, those collectively implicated both type I and type II interferon 
mediated signalling pathways in sarcoidosis. In silico functional analysis showed 
consistent downregulation of eukaryotic initiation factor 2 signalling, whereas 
cytokines like interferons and transcription factor STAT1 were upregulated. 
Furthermore, we  analysed affected tissues to detect differentially expressed 
genes likely to be  involved in granuloma biology. This revealed that matrix 
metallopeptidase 12 was exclusively upregulated in affected tissues, suggesting 
a crucial role in disease pathogenesis.

Discussion: Our analysis provides a concise gene signature in sarcoidosis and 
expands our knowledge about the pathogenesis. Our results are of importance 
to improve current diagnostic approaches and monitoring strategies as well as 
in the development of targeted therapeutics.
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Background

Sarcoidosis is an inflammatory disorder characterized by the 
formation of non-caseating epithelioid granulomas in various organs. 
However, the aetiology and pathogenesis of sarcoidosis are not fully 
understood. The lungs and hilar lymph nodes are most often affected, 
but almost all organs can be involved (1). The clinical presentation of 
sarcoidosis is therefore heterogeneous and can range from small 
benign skin lesions to chronic systemic inflammation. This variability 
in disease presentation makes it challenging to diagnose sarcoidosis. 
This diagnosis is mainly based on clinical and radiographic 
presentation, pathological evidence of non-caseating granulomas and 
the exclusion of other granulomatous diseases (2, 3). Even though, the 
lesions resolve spontaneously in a large portion of patients, irreversible 
tissue damage, like pulmonary fibrosis occurs in up to 20% of cases 
leading to increased morbidity and mortality (4, 5). More knowledge 
about the molecular mechanisms involved in the pathophysiology of 
sarcoidosis is warranted to develop better and more adequate 
monitoring strategies as well as treatment options.

There is a consensus that complex interactions between genetic 
and environmental triggers culminate into an aberrant immune 
response to unidentified antigens including infectious agents (6). 
Moreover, it is proposed that sarcoidosis encompasses both 
autoinflammatory and autoimmune features (7). Particularly the 
similarities of sarcoidosis with Blau syndrome (early-onset sarcoidosis), 
caused by mutations in nucleotide-binding oligomerization domain 
containing 2 (NOD2), supports an autoinflammatory hypothesis. 
Meanwhile, the association with HLA-DRB1 genotypes provides more 
evidence in the direction of autoimmunity (8). In patients with 
sarcoidosis, an altered T helper 1 (Th1) immune response is observed 
partly through activation of signal transducer and activator of 
transcription 1 (STAT1) and production of interferons (IFNs) (9, 10). 
This has led to the targeting of the Janus kinase (JAK)-STAT signalling 
pathway in sarcoidosis using inhibitors like baricitinib (11) and 
tofacitinib (12) for patients with refractory symptoms.

Gene expression studies, also referred to as transcriptomic studies, 
have been very promising and widely used to identify disease-associated 
differentially expressed genes (DEGs). Such studies can provide 
candidate targets for therapy as well as disease biomarkers. However, a 
concern about transcriptomic studies is their reproducibility and 
generalizability mainly due to differences in study design, data analysis 
strategies and limited sample size. With the increasing awareness of open 
data, more and more datasets are becoming available allowing to identify 
specific disease associated genes and pathways suitable for therapeutic 
intervention. Systematic meta-analysis of transcriptomic data for 
sarcoidosis provides a powerful tool to identify robust gene signatures. 
Therefore, we  systematically analysed sarcoidosis transcriptome by 
performing meta-analysis on 22 gene expression datasets obtained from 
various tissues, bronchoalveolar lavage fluid (BALF) and peripheral 
blood comparing sarcoidosis patients with healthy controls taking into 
account both the blood and target tissue samples.

Methods

Dataset acquisition

The genome expression omnibus (GEO) database (13) was 
queried for expression profiling by array or high-throughput 

sequencing using the following string: “Sarcoidosis [All Fields] AND 
GSE [All Fields].” Datasets containing human RNA expression were 
selected and further explored with original papers for study design. 
We excluded single-cell RNA sequencing experiments as well as those 
with unclear study design or sample annotation. Only datasets with 
more than four sarcoidosis patients and healthy controls were included 
in this comparative study. Raw data from these selected studies were 
downloaded from the GEO database and further processed.

Dataset preparation and processing

Normalization of Affymetrix and Illumina BeadChip array data 
was performed with robust microarray average (RMA) within the R 
package affy (14) and with neqc within the R package limma (15), 
respectively. Quantile normalization on the gProcessedSignal and 
subsequent log-transformation, was used for Agilent datasets. RNAseq 
count data was normalized within the R package DESeq2 (16). 
Principal component analysis was performed to assess batch effects 
and if that was suspected, the ComBat function within the SVA R 
package (17) was used for batch correction of the gene expression 
dataset. Differential expression was calculated for every dataset using 
the limma and DESeq2 R packages for array and sequencing data, 
respectively. If a dataset contained multiple cell-types or tissues, it was 
analysed separately based on the cell-types. A paired analysis was 
performed on datasets containing multiple samples from a single 
individual. We did not adjust for confounding factors like age, gender 
or ethnicity, due to the scarcity of data in the datasets, whereas 
we aimed at analysing each dataset systematically and uniformly.

Analysis of datasets for shared genes and 
signalling pathways

First, we  investigated the sarcoidosis datasets for commonly 
DEGs. In this analysis, we did not differentiate datasets based on cell 
type or tissue. A list of DEGs was obtained per dataset by setting the 
significance level of the adjusted p-value (padj) to less than 0.05 and 
subsequently annotated the acquired gene lists with HUGO gene 
symbols. Because the threshold put on the log fold change (FC) 
depends on the gene and experimental context (18), we did not use 
the log FC to determine DEGs as a standardized threshold would 
be too lenient for some datasets and too stringent for others. Ingenuity 
Pathway Analysis (IPA) (19) was used for functional core analysis of 
all acquired gene lists. A comparative analysis was performed to 
investigate the pathways and upstream regulators involved across 
datasets. Second, the gene lists of DEGs were analysed for overlapping 
genes. After the individual differential expression analyses, a meta-
analysis was performed to test the robustness of our findings. The 
p-values from the individual analyses were combined using 
Edgington’s method (20) within the R package metap (21). The 
calculated pmeta-analysis was subsequently Bonferroni corrected to adjust 
for multiple testing. Pattern of differential expression was investigated 
for each gene in the individual datasets through the log FC, where a 
positive and negative log FC were categorized as upregulation and 
downregulation of the gene, respectively. If the pattern differed in 
more than three datasets, the gene was not considered consistently 
differentially expressed and was excluded from further analysis. Thus 
an acquired gene list was loaded in IPA to build an integrated gene 
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network. Furthermore, to examine these genes in the context of JAK–
STAT pathway, IFN signalling was investigated in a separate analysis. 
These genes were loaded in a dataset (GSE110549) generated by the 
Immunological Genome Project exploring in vivo effects of IFN-α and 
IFN-γ stimulation on murine macrophages (22).

Identification of tissue-specific genes and 
pathways

Furthermore, we investigated whether there are cell type or tissue-
specific gene expression profiles in sarcoidosis to determine biological 
mechanisms of granulomatous inflammation and find specific targets 
for therapy. Because the majority of datasets contained blood samples, 
we  made a distinction between blood and other cell types. 
We  investigated the acquired gene lists for genes exclusively 
differentially expressed in the affected sarcoidosis tissues. Finally, 
identified genes that were exclusively up- or downregulated in tissues 
were uploaded in IPA to investigate possible tissue-specific pathways, 
upstream regulators and gene networks.

Results

Search and analysis of GEO database

A systematic search was conducted in the GEO database for 
sarcoidosis specific datasets. Up until January 2024, our search 
strategy retrieved 80 datasets worldwide, of which 22 datasets (23–41) 
were selected and subjected to further analysis after rigorous exclusion 
criteria (Table 1 and Figure 1). In these 22 datasets, a total of 461 
sarcoidosis and 497 healthy control samples across multiple tissues 
and cell types were analysed. Thirteen datasets used blood derived 
cells for their analysis, whereas 8 datasets were derived from lung, 
BALF, nasal brush, lymph node and skin tissue. One dataset contained 
both blood and BALF samples, which were analysed as separate 
datasets. Besides diagnostic parameters, clinical details were often not 
included or reported for individual samples. According to the original 
manuscripts, 11 out of 22 datasets contained at least one sample that 
used immunosuppressive therapy for sarcoidosis. Analysis of 
individual datasets for DEGs (padj < 0.05) revealed altered expression 
of a large number of genes. Thus derived lists of DEGs per dataset 
ranged from zero to thousands of genes, including two out of 22 
datasets that did not show any DEGs (Figure 1).

Genes and signalling pathways associated 
with sarcoidosis

In order to allow cross-platform comparison of the data sets, 
we annotated the lists of DEGs using the platform identifier with 
HUGO gene nomenclature. Highly consistent DEGs were 
identified: 30 genes were differentially expressed in at least 13 
datasets, of which 20 showed very consistent pattern of differential 
expression (if the pattern of differential expression differed in more 
than three datasets, the gene was not considered as a DEG) across 
the datasets (Table 2). These genes were differentially expressed in 
both blood-derived datasets as well as in datasets derived from 

affected tissues. Guanlytate-binding protein 1 (GBP1), STAT1 and 
tryptophayl-tRNA synthetase 1 (WARS1) showed most consistent 
differential expression in 16 out of 22 datasets and expression levels 
were found predominantly upregulated in sarcoidosis. Differential 
expression of genes high-affinity gamma FC receptor I (FCGR1A 
also referred as CD64), GBP2, and vesicle-associated membrane 
protein 5 (VAMP5) was observed in 15 datasets. Interestingly, 
STAT1, GBP1, GBP2 and GBP5 were upregulated in all datasets 
(Table 2).

Next, we integrated all the datasets to perform meta-analysis on 
the p-values to identify additional consistent DEGs as some genes 
could not be investigated on all transcriptomic platforms due to their 
varied design. Pooling of p-values with Edgington’s method and 
subsequent Bonferroni correction resulted in 36 significantly 
expressed genes. Of these 36 genes, 12 displayed variable pattern of up 
or down regulation and hence, they were excluded from further 
analysis (Table  3). To investigate the relationship between the 
remaining 24 genes, a connectivity plot was generated in IPA 
(Figure 2). Remarkably, more than half (14 out of the 24) of the genes 
were well connected in the connectivity network. STAT1, IL-12, and 
IFN signalling pathways appeared centrally positioned within the 
network and were predicted to be  activated. Also insulin was 
positioned in the network. Both type I IFN (IFN-α and IFN-β) and 
type II IFN (IFN-γ) were predicted to be  upregulated within the 
connectivity network. Therefore, we explored this further in a murine 
dataset specifically on IFN signalling (GSE110549) where we verified 
that half of the genes identified in the meta-analysis were upregulated 
upon IFN stimulation, advocating for a pivotal role of altered IFN 
signalling in sarcoidosis (Supplementary Figure S1).

In silico functional analysis for the 
signalling pathways

All individual gene lists of DEGs were loaded into IPA for functional 
pathway analyses. Eukaryoitc initation factor 2 (EIF2) signalling pathway 
was consistently predicted to be  downregulated across datasets in 
sarcoidosis patients as compared to healthy controls. On the other hand, 
pro-inflammatory pathways like IFN-signalling, neuro-inflammation 
and hypercytokinaemia/hyperchemokinaemia were predicted to 
be  activated in sarcoidosis patients (Figure  3A). This was further 
indicated by the upstream regulators found within IPA analysis. 
Pro-inflammatory transcription factors and cytokines (i.e., STAT1, TNF, 
IL-6 and IL-1β) were consistently predicted to be activated (Figure 3B). 
Also type I and type II IFNs were consistently predicted to be upregulated, 
strongly suggesting activation of the IFN-STAT1 pathway. Only a few 
upstream regulators were consistently downregulated after stringent 
filtering within IPA. Inhibitors like, PD98059 U0126 and LY294002 
(Figure 3B) target the MAPK/ERK and PI3K/AKT/mTOR pathways, 
suggesting that these chemical compounds could inhibit these activated 
signalling pathways in sarcoidosis. These pathways often run in parallel 
and converge to regulate important cellular processes.

Identification of tissue-specific DEGs

Finally, we  investigated tissue-specific gene signatures in 
sarcoidosis. We hypothesized that DEGs in affected tissues may play 
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TABLE 1 Included datasets and their characteristics.

GSE Accession 
No

Organism Technique Array/Sequencing technology Tissue Sarcoidosis (n=) Control (n=) Treated samples 
(at least one)

Reference

GSE83456 Human Array Illumina HumanHT-12 V4.0 Whole blood 49 61 Unknown (24)

GSE37912 Human Array Affymetrix Human Exon 1.0 ST PBMC 39 35 Yes (37)

GSE19314 Human Array Affymetrix Human Genome U133 Plus 2.0 PBMC 38 20 Yes (31)

GSE42832 Human Array lllumina HumanHT-12 V4.0 PBMC subsets 30 30 Yes (25)

GSE32887 Human Array Affymetrix Human Genome U133 Plus 2.0 Skin 26 5 Yes (30)

GSE73394 Human Array Affymetrix Human Gene 1.0 ST BALF 26 20 Unknown (34)

GSE42826 Human Array Illumina HumanHT-12 V4.0 Whole blood 25 52 Yes (25)

GSE42830 Human Array Illumina HumanHT-12 V4.0 Whole blood 25 38 Yes (25)

GSE34608 Human Array Agilent-014850 Whole Human 4x44K G4112F PBMC 18 18 Unknown (33)

GSE75023 Human Array Affymetrix Human Genome U133A BALF 15 12 Yes (28)

GSE119136 Human Array Affymetrix Human Gene 1.0 ST Nasal brushings 14 12 Yes (29)

GSE18781 Human Array Affymetrix Human Genome U133 Plus 2.0 Whole blood 12 25 Yes (39)

GSE1907 Human Array Affymetrix Human Genome U95A PBMC 12 12 Unknown (38)

GSE42825 Human Array Illumina HumanHT-12 V4.0 Whole blood 11 23 Yes (25)

GSE105149 Human Array Affymetrix Human Genome U133 Plus 2.0 Lacrimal gland 8 7 Yes (36)

GSE56998 Human Array Affymetrix Human Exon 1.0 ST Array CD4 T cells 8 8 Unknown (23)

GSE16538 Human Array Affymetrix Human Genome U133 Plus 2.0 Lung 6 6 No (27)

GSE174659 Human Sequencing Illumina HiSeq 4,000 Whole blood & BALF 62 76 Unknown (32)

GSE155644 Human Sequencing Illumina MiSeq Whole blood 14 14 No (41)

GSE174443 Human Sequencing Ion Torrent Proton Lymph node 10 7 Unknown (35)

GSE148036 Human Sequencing Illumina HiSeq 3,000 Lung 5 5 No (26)

GSE192829 Human Sequencing Illumina NextSeq 500 PBMC 8 11 No (40)

https://doi.org/10.3389/fmed.2024.1381031
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org


van Wijck et al. 10.3389/fmed.2024.1381031

Frontiers in Medicine 05 frontiersin.org

a crucial role in granuloma formation and their maintenance. Nine 
datasets were retrieved from tissues, of which 8 showed DEGs. A 
disintegrin and metalloprotease like decysin 1 (ADAMDEC1) and 
WD repeat and SOCS box-containing protein 1 (WSB1) were 
differentially expressed (upregulated) in seven datasets, however, these 
were also differentially expressed in a few blood datasets. The most 
consistent tissue-specific DEG was matrix metallopeptidase 12 
(MMP12), which was highly upregulated in 6 tissue-derived datasets 
(two BALF, two lung, one lacrimal gland and one lymph node derived 
dataset) and in no blood-derived dataset. In five of the tissue-specific 
datasets C-X-C motif chemokine receptor 6 (CXCR6) and syntrophin 
beta 2 (SNTB2), whereas in four datasets colony stimulating factor 2 
(CSF2), fatty acid desaturase 1 (FADS1), interleukin 18 binding 
protein (IL18BP), acyl-CoA synthetase family member 2 (ACSF2), 
cystatin B (CSTB), C-C motif chemokine ligand 4 (CCL4), adenosine 
deaminase (ADA), JAK3, malic enzyme 1 (ME1), muscle RAS 
Oncogene Homolog (MRAS) and RAS guanyl releasing protein 3 
(RASGRP3) were differentially expressed. Most of these genes are 
involved in the activation of processes such as leukocyte recruitment 
and migration and form a concise network around PI3K and MAPK/
ERK signalling (Figure 4).

Discussion

Using public datasets in the GEO database, we  studied 22 
sarcoidosis datasets and performed a meta-analysis to identify genes 
and pathways those are common across these studies and differentiate 
sarcoidosis patients from healthy controls. We found that there are clear 

differences in gene expression profiles for GBP1, STAT1 and WARS1 
among others between sarcoidosis patients and healthy controls. 
Furthermore, the integration of datasets provided a comprehensive view 
for certain genes (STAT1, WARS1, GBP1, VAMP5, and PSTPIP2) being 
consistently expressed in the majority of datasets advocating for their 
role in the pathogenesis of sarcoidosis. These genes could potentially 
be  used to develop meaningful genomic-derived biomarkers for 
sarcoidosis. In analogy to several other transcriptomic studies, 
we  identified both type I  and type II IFN signalling as important 
pathways (42), but in this meta-analysis also poorly studied pathways 
became apparent in the context of sarcoidosis such as EIF2 signalling 
and neuro-inflammation. Finally, we explored datasets with samples 
from sarcoidosis-affected tissues and identified tissue-specific DEGs 
(MMP12, CXCR6, and SNTB2) those likely to play important respective 
roles, specifically in granulomatous inflammation. Hence, it can 
be proposed that these specific genes and their respective translated 
proteins could be targeted for precise therapy of sarcoidosis lesions.

Whether a gene is considered differentially expressed in 
transcriptomic studies revolves around the chosen cut-offs in 
(adjusted) p-value and fold change. The results between transcriptomic 
studies often differ due to differences in study design, analysis 
strategies and sample size. Therefore, to circumvent these issues, a 
meta-analysis on several datasets of particular disease, becomes an 
important tool for analysis and inferences increasing the strength of 
such studies to establish true signals (43). We assessed the differential 
expression pattern by integrating these datasets based on the p-values 
thus creating a robust analysis to identify consistently DEGs. In this 
study, to the best of our knowledge, the largest systematic meta-
analysis of transcriptomic data in sarcoidosis is being presented.

FIGURE 1

Flowchart of dataset selection and analysis. *One dataset contained both blood and BALF samples.
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TABLE 2 Differentially expressed genes in at least 13 datasets.

Gene 
symbol

Frequency 
differentially 

expressed

BAL 
(n  =  3)

Blood 
(n  =  13) 

Lung 
(n  =  2)

Lacrimal 
gland (n  =  1)

Lymph 
node 
(n  =  1)

Nasal 
brush 
(n  =  1)

Skin 
(n  =  1)

Number of datasets 
Upregulated/

Downregulated

General 
directionality in 
sarcoidosis patients

GBP1 16 2 10 1 1 1 0 0 21/0 Upregulated

STAT1 16 2 10 1 1 1 0 0 21/0 Upregulated

WARS1 16 2 11 0 1 1 0 0 20/1 Upregulated

FCGR1A 15 2 10 0 1 1 0 0 17/3 Upregulated

GBP2 15 1 10 1 1 1 0 0 21/0 Upregulated

VAMP5 15 2 10 1 1 0 0 0 20/1 Upregulated

GBP4 14 1 9 1 1 1 0 0 18/1 Upregulated

GBP5 14 1 10 0 1 1 0 0 19/0 Upregulated

LAP3 14 1 9 1 1 1 0 0 18/2 Upregulated

PSTPIP2 14 2 9 0 1 1 0 0 19/1 Upregulated

TAP1 14 2 9 1 1 0 0 0 19/2 Upregulated

ABLIM1 13 2 9 0 1 0 0 0 3/18 Downregulated

ANKRD22 13 1 9 0 1 1 0 0 18/1 Upregulated

C2 13 1 8 1 1 1 0 0 18/3 Upregulated

GADD45B 13 1 10 0 1 0 0 0 18/3 Upregulated

HNRNPDL 13 1 10 1 0 1 0 0 3/18 Downregulated

IRF1 13 2 8 0 1 1 0 0 19/2 Upregulated

MAFB 13 2 8 0 1 1 0 0 19/1 Upregulated

STX11 13 1 9 0 1 1 0 0 20/1 Upregulated

TYMP 13 2 9 0 1 1 0 0 19/2 Upregulated

List of genes that were differentially expressed in at least twelve datasets comparing sarcoidosis samples to healthy controls and which showed consistent directionality of differential expression across the datasets. Information by tissue type is incorporated in this table.
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Sarcoidosis research so far has predominantly focused on the 
IFN-STAT1 pathway linked to T cells and macrophages. In fact, there 
have been numerous reports on the development and exacerbation of 
sarcoidosis after IFN therapy (44, 45). Our study highlights the 
importance of this pathway as several of the most consistently DEGs 
are associated with IFN signalling. Furthermore, in IPA analysis 
JAK1/2 was found in the connectivity network, strongly suggesting 
the rationale to target the JAK-STAT pathway with JAK inhibitors in 
sarcoidosis patients. Interestingly, we identified multiple members of 
GBP gene family to be consistently differentially expressed (GBP1, 
GBP2, GBP4 and GBP5). These genes are a group of seven 
IFN-inducible GTPases implicated in the host defence against 
intracellular pathogens by targeting and inducing lysis of pathogen-
containing vacuoles (46). Differential expression of GBPs as found in 
our study, is not only attributed to the pulmonary sarcoidosis, but 
aberrant expression of GBP1 has also been demonstrated earlier in 
acute respiratory distress syndrome (47).

One of the most consistently differentially expressed genes was 
FCGR1A (CD64), which was differentially expressed in 15 out of 22 
datasets. This gene is strongly induced by IFN-γ and plays a central 
role in antibody-dependent cytotoxicity and FCγ receptor-mediated 
phagocytosis (48). Phagosome and phagocytosis has been reported to 
be upregulated in monocytes of sarcoidosis patients (49). In proteomic 

studies, FCγ receptor-mediated phagocytosis is upregulated in 
sarcoidosis (50, 51). Several genes including FCGR1A, ubiquitin 
conjugating enzyme E2 L6 (UBE2L6) and VAMP5, found statistically 
significant in our meta-analysis have also been described in the 
context of tuberculosis (TB) (52). In both sarcoidosis and TB, 
granulomas are the hallmark, but the granulomas in sarcoidosis are 
non-caseating, whereas the granulomas in TB frequently contain a 
necrotic core. Most likely these diseases, despite their differences, may 
share common inflammatory pathways and mechanisms corroborated 
by overlapping gene expression profiles (25, 31, 33).

Our analysis revealed novel genes, such as WARS1 and VAMP5 
those were never implicated in sarcoidosis. WARS1 is an essential 
enzyme called tryptophayl-tRNA synthetase 1 that charges 
tryptophane to its cognate tRNA and also plays a role in the innate 
immune system. WARS1 is upregulated upon infection and can act as 
a ligand of toll-like receptor (TLR) 2 and TLR4. This leads to secretion 
of cytokines and activation of various immune pathways (53). VAMP5 
is part of the SNARE protein family, which is involved in vesicle fusion 
and recycling (54). VAMP5 is involved in intracellular transport 
including exocytosis, endocytosis and recycling of endosomes (55). 
These processes are closely related to autophagic pathways, which have 
been implicated in the pathogenesis of sarcoidosis (56). Identification 
of these genes adds to the knowledge about the genetics and 

TABLE 3 Gene list of the significant (padj  <  0.05) genes in the meta-analysis.

Gene symbol Adjusted p-value Number of datasets Upregulated/Downregulated

STAT1 9.27E-07 21/0

WARS1 1.26E-06 20/1

GBP1 1.79E-05 21/0

VAMP5 5.35E-05 20/1

PSTPIP2 7.20E-05 19/1

ANKRD22 9.75E-05 18/1

GBP5 0.000169 19/0

FCGR1A 0.000452 17/3

GBP2 0.000827 21/0

FCGR1B 0.001204 13/2

STX11 0.001292 20/1

PSME2 0.001619 20/1

UBE2L6 0.002172 20/1

GBP4 0.002705 18/1

PLEK 0.003109 19/2

CALHM6 0.005246 17/0

DHRS9 0.005825 18/2

IL15 0.014057 19/2

SOD2 0.0171 20/0

IRF1 0.0262 19/2

GLUL 0.027109 18/3

LAP3 0.03706 18/2

WDFY1 0.043271 19/0

FYB1 0.049856 19/2

Adjusted p-value is Bonferroni corrected. The direction of the differentially expressed gene is determined by investigating the directionality of fold change in the individual datasets. A gene 
was not considered significant if the directionality differed in more than three datasets from the main directionality.
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FIGURE 2

Connectivity network generated on 16 of the 25 significant genes from the meta-analysis. Centrally positioned in the network are STAT1 and interferon 
alpha, which suggests these play an important role in sarcoidosis. Red and green molecules are up- and downregulated in the genelist respectively, 
whilst orange and blue are predicted to be up- and downregulated based on the input genelist by the molecule activity predictor (MAP) function within 
IPA.

FIGURE 3

In silico functional analysis of the individual differentially expressed gene lists. (A) Heatmap of the comparison analysis within IPA that shows the 
canonical pathways involved in each individual dataset. Across the datasets, similar canonical pathways were predicted to be involved. (B) Heatmap 
that shows the upstream regulators predicted to be involved across the functional analyses of the individual datasets.
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pathogenesis of sarcoidosis and opens avenues for further research 
into these proteins.

IPA analysis of datasets analysed in this study predicted EIF2 
signalling to be  downregulated. The EIF2 signalling cascade is 
involved in autophagy, protein translation and cell survival as well as 
the mammalian target of rapamycin (mTOR) pathway (57, 58). 
Recently, the mTOR pathway gained much attention in sarcoidosis 
(59–61), after the finding that constitutive activity of mTORC1 causes 
formation of granulomas (62). In this regard, Gupta and colleagues 
successfully treated a patient with pulmonary sarcoidosis with mTOR 
inhibitor sirolimus (63). Moreover, our tissue-specific analysis showed 
PI3K in the connectivity network, suggesting that the PI3K/mTOR 
pathway is involved only in affected tissues. Another interesting 
finding in IPA analysis was the upregulation of neuro-inflammation 
signalling pathway. Small fiber neuropathy is observed in about 30% 
of patients with systemic sarcoidosis (64), in which circulating 
inflammatory and neurotoxic cytokines may be  involved (65). 
Recently, the upregulation of the neuro-inflammatory response was 

found by another group studying the sarcoidosis transcriptome and 
proteome (66). This interesting study is a meta-analysis as well, 
however, their strategy differed significantly from ours as they 
performed meta-analysis on the common pathways rather than DEGs. 
Moreover, recently two other meta-analyses on the transcriptome of 
sarcoidosis have been published (67, 68). These studies used only 11 
and 13 studies respectively, excluding many relevant studies in their 
analyses. Therefore, our study is the largest systematic meta-analysis 
to identify robust DEGs which can be  of value as biomarkers 
for sarcoidosis.

Interestingly, insulin was another hub in the connectivity network 
generated by IPA. Sarcoidosis patients are at increased risk for 
developing type 2 diabetes (T2D) (69). Much is unknown about this 
association, however, chronic inflammation and increased secretion 
of cytokines might predispose sarcoidosis patients to develop T2D 
(70). The IFN-γ/STAT1 upregulation, as found in our study, could 
be  linked to insulin resistance in adipocytes through multiple 
mechanisms, including downregulation of the insulin receptor and 

FIGURE 4

Connectivity network generated on 9 of the 14 genes with high tissue specificity. The PI3K-pathway and MAPK/ERK signalling are centrally positioned 
in the network. Red and green molecules are up- and downregulated in the genelist respectively, whilst orange and blue are predicted to be up- and 
downregulated based on the input genelist by the molecule activity predictor (MAP) function within IPA.
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glucose transporter type 4 (71). Additionally, STAT1 expression in 
white adipose tissue is elevated in prediabetic patients and STAT1 
levels are positively correlated with plasma glucose (72). Together, 
these data suggest an important role for IFN-γ/STAT1 signalling in 
T2D observed in sarcoidosis patients, that is further exacerbated by 
steroid treatment and warrants attention from clinicians.

Finally, we looked for a tissue-specific gene signature in sarcoidosis 
and found MMP12 upregulated in most tissue-specific datasets. 
MMP12 is an elastase enzyme predominately produced by M2 tissue 
macrophages (73), those aggregate and form the characteristic 
multinucleated giant cells as seen in granulomas (74). Involvement of 
MMP12 in sarcoidosis specially in granuloma progression has been 
reported previously (27, 75). In our study, MMP12 was only 
differentially expressed at tissue sites, which is highly suggestive for its 
crucial role in granuloma formation. CXCR6 was also tissue-specific in 
our analysis, and this gene has been found to be expressed in Th1 cells 
surrounding the central core of sarcoidosis granulomas (76). Therefore, 
tissue-specific DEGs like MMP12 and CXCR6, or potentially its ligand 
CXCL16, could be interesting therapeutic targets for sarcoidosis lesions.

Limitations of the study

Among 22 datasets included in this meta-analysis, we were limited 
with respect to sample size, variable tissues and cell types as well as 
different technological platforms. Additionally, sarcoidosis patients 
can differ substantially in clinical presentation, disease progression 
and treatment response. Studies have shown distinct gene expression 
profiles between self-limiting sarcoidosis and progressive sarcoidosis 
(37, 77). Unfortunately, clinical information such as age, sex, ethnicity, 
treatment regimen, and disease activity were poorly reported by most 
studies. To appropriately circumvent these limitations, we opted for an 
iterative and systematic approach, through which we observed highly 
consistent DEGs and pathways in sarcoidosis despite this variability 
among studies. Furthermore, we were not able to adjust for other 
confounding factors such as lymphopenia, which is often observed in 
sarcoidosis patients and associated with disease activity (78). Attention 
should be paid to treatment regime and disease activity. Eleven of the 
22 included datasets contained at least one sample that used 
immunosuppressive therapy, whereas three datasets excluded patients 
who were on immunosuppression. We  did not observe major 
differences in DEGs between these datasets, but it is known that 
immunosuppression can alter gene expression in disease (79). 
Appropriate studies with disease endotyping are needed to study and 
identify potential biomarkers stratifying sarcoidosis subgroups leading 
to a precision-medicine approach (80). Finally, only eight of the 22 
studies investigated here were derived from target tissues, highlighting 
the need for more studies investigating tissue-specific signatures to 
gain more insight in the genes and pathways involved in granuloma 
formation. Whether the described genes in this study represent 
activation or perpetuation of the disease needs further exploration.

Conclusion

In this meta-analysis study, 22 sarcoidosis gene expression 
datasets were systematically and uniformly assessed to identify 

DEGs and their signalling pathways. Integration of the results from 
individual datasets revealed a number of novel candidate genes 
(i.e., GBPs, VAMP5 and WARS1) and pathways in addition to 
previously described DEGs in sarcoidosis. Meta-analysis identified 
a robust and compact gene signature that points towards altered 
IFN-JAK-STAT1 signalling in sarcoidosis. Our findings add to the 
emerging evidence to employ JAK inhibitors as a targeted 
treatment in sarcoidosis patients. More strikingly, the DEGs found 
in our meta-analysis can further be explored to develop genomic-
derived biomarkers for sarcoidosis. We  found tissue-specific 
signature of genes like MMP12, CXCR6, and SNTB2 suggesting 
their pathways are likely to be involved in granuloma formation 
and progression and could eventually be  potential therapeutic 
targets for sarcoidosis. Clinical manifestation still remains a 
challenge with respect to disease activity and progression, which 
warrants the need for further transcriptomic studies with 
endotyping investigating pulmonary phenotypes and 
immune responses.
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Glossary

ADAMDEC1 a disintegrin and metalloprotease like decysin 1

ACSF2 Acyl-CoA synthetase family member 2

ADA adenosine deaminase

BALF bronchoalveolar lavage fluid

CCL4 C-C motif chemokine ligand 4

CSF2 colony stimulating factor 2

CSTB Cystatin B

CXCR6 C-X-C motif chemokine receptor 6

DEG differentially expressed gene

EIF2 Eukaryoitc initation factor 2

FADS1 fatty acid desaturase 1

FC fold change

FCGR1A high-affinity gamma FC receptor I

GEO genome expression omnibus

GBP guanylate-binding protein

IFN interferon

IL18BP interleukin 18 binding protein

IPA ingenuity pathway analysis

JAK Janus kinase

ME1 malic enzyme 1

mTOR mammalian target of rapamycin

MMP12 matrix metallopeptidase 12

MRAS muscle RAS oncogene homolog

NOD2 nucleotide-binding oligomerization domain containing 2

RASGRP3 RAS guanyl releasing protein 3

RMA robust microarray average

STAT1 signal transducer and activator of transcription 1

SNTB2 syntrophin beta 2

WARS1 Tryptophayl-tRNA synthetase 1

T2D type 2 diabetes

TB tuberculosis

Th1 T helper 1

TLR toll-like receptor

UBE2L6 ubiquitin conjugating enzyme E2 L6

VAMP5 vesicle-associated membrane protein 5

WSB1 WD repeat and SOCS box-containing protein 1
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